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Abstract To isolate low-frequency vibration, a novel single-degree-of-freedomvibration isolation systemwith
quasi-zero stiffness (QZS) and nonlinear damping using geometric nonlinearity is proposed in this study. One
of the remarkable features of this system is the use of scissor-like structures (SLSs) to achieve the nonlinear
stiffness and damping. The length difference between the connecting rods in SLS is considered. First, both
the stiffness and damping characteristics are derived and analyzed in detail. Then, the frequency response
and force transmissibility are obtained using the harmonic balance method. Finally, the effects of structural
parameters on the isolation performance are investigated. Theoretical results show that the proposed QZS
vibration system can not only isolate low-frequency vibration but also suppress the high-amplitude vibration
in the resonant region. Besides, increasing nonlinear damping has little influence on the isolation performance
in high frequencies. The proposed QZS vibration system can outperform a classical counterpart.

Keywords Vibration isolation · Quasi-zero stiffness · Geometric nonlinearity · Nonlinear damping

1 Introduction

Vibrations exist everywhere in engineering applications such as construction machinery, aerospace, vehicles,
and precision equipment. High-amplitude vibration could result in disastrous accidents [1]. Moreover, how
to isolate low-frequency vibration effectively is a challenging research hot spot. Vibrations can be generally
suppressed by applying passive vibration isolators, absorbers [2], or active control methods [3–5]. Compared
with other techniques, passive vibration isolators aremorewidely used in engineering because of high reliability
and low cost. However, linear vibration isolators have a common dilemma that decreasing the natural frequency
can lead to the reduction of bearing capacity. Therefore, it is necessary to design nonlinear vibration isolators
that can isolate the low-frequency vibration effectively.

The design of quasi-zero stiffness (QZS) vibration isolator has always been the focus of research [6]. The
QZS vibration isolators are generally obtained by combining the linear vibration isolator with the negative
stiffness corrector (NSC) which is used to produce the negative stiffness in the direction of vibration isolation
using a geometric relationship [7]. The positive stiffness can be counteracted by the negative one, which can
result in zero stiffness at the equilibrium position by designing appropriate structural parameters. Therefore, a
high-static-low-dynamic stiffness (HSLDS) is obtained, which can make sure that the vibration isolator has a
small static deflection and a low natural frequency simultaneously [8]. There are various NSCs to realize QZS
vibration isolators. Carrella et al. [9] designed a QZS vibration isolator using two oblique springs as NSC.
Then, Xu et al. [10] improved this QZS vibration isolator by replacing the NSC with four oblique springs.
The investigation results showed that the QZS vibration isolator has an excellent performance in isolating
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low-frequency vibration. Le and Ahn [11] designed a QZS vehicle seat whose NSC consisted of connecting
rods and horizontal springs. Liu et al. [12] proposed a QZS vibration isolator using four Euler buckled beams
as the NSC. The authors also considered the effects of load imperfection which can lead to asymmetric
stiffness [13]. The results showed that the QZS vibration isolator with load imperfection can exhibit purely
softening, softening-to-hardening, and purely hardening characteristics. Zhou et al. [14] built a QZS vibration
isolator based on two cam-roller-springmechanisms and found that the isolator can exhibit piecewise nonlinear
stiffness characteristics. The negative stiffness corrector also can be realized with the application of magnetic
forces. Zheng et al. [15] developed an HSLDS vibration isolator whose NSC consisted of a pair of coaxial ring
permanent magnets. A similar QZS vibration isolator was developed and further applied to neonatal transport
to protect new-born infants [16]. Yang et al. [17] proposed an NSC consisting of four connecting rods and four
horizontal springs. Furthermore, QZS vibration isolator also can be designed to isolate torsional vibration.
Zheng et al. [18] developed a QZS torsional vibration isolator whose NSC mainly consisted of two coaxial
ring magnets.

The scissor-like structure (SLS) is also a good choice for low-frequency vibration isolation and is generally
comprised of connecting rods and joints. Sun et al. [19] proposed a nonlinear vibration isolator consisting of
an n-layer SLS with the same rod length and horizontal springs. The results showed that this isolator can
realize quasi-zero stiffness by designing appropriate structural parameters and is superior to an existing QZS
vibration isolator. Wu et al. [20] also proposed a similar vibration isolator in which the connecting rods of the
SLSwere of different lengths. The authors verified its good performance by experiment. Then,Wang et al. [21]
analyzed the subharmonic and ultra-subharmonic resonances of this nonlinear vibration isolator. The results
indicated that the subharmonic resonance can be suppressed by adjusting structural parameters. Note that these
mentioned vibration isolators were not developed by combining the SLS and the linear vibration isolator. The
SLS had multiple layers and was installed vertically. Therefore, these vibration isolators cannot guarantee the
high static stiffness, and the structures are complicated. Sun et al. [22,23] designed a three-dimensional QZS
vibration isolation system based on the SLSs and further applied it to the sensor. In our previous work [24,25],
we also designed a QZS vibration isolator whose NSC consisted of an SLS and a horizontal spring. In this
design, the NSC was also installed vertically.

It is worth noting that the performance of the QZS vibration isolator in the resonant region could be
deteriorated when the excitation amplitude increases. This phenomenon is caused by the existence of nonlinear
stiffness [26]. It is well known that increasing the linear viscous damping can suppress the transmissibility
in the resonant region, while the performance in the isolation region can be deteriorated [27]. This dilemma
can be overcome by applying the nonlinear damping. Cubic nonlinear viscous damping is commonly used
in the vibration system. It has been demonstrated that applying cubic nonlinear damping can suppress the
force transmissibility in the resonant region effectively and has little effect on the performance in the isolation
region [28]. However, it is detrimental to the performance in the isolation region under base excitation [29].
Thus, the geometric nonlinear damping was subsequently proposed by scholars. Tang and Brennan [30]
proposed geometric nonlinear damping based on an oblique linear viscous damper and made a comparison
with cubic nonlinear damping. The results showed that applying the geometric nonlinear damping can reduce
the force transmissibility in the resonant region effectively, while the performance in the isolation region
remains unaffected. Besides, the geometric nonlinear damping can outperform the linear one when isolating
the base excitation. Sun and Jing [31] applied a horizontal viscous damper in an n-layer SLS vibration isolator
and obtained geometric nonlinear damping. The authors found that SLS can also achieve beneficial damping
characteristics. Dong et al. [32] obtained geometric nonlinear damping using semi-active electromagnetic shunt
damping and applied it in an HSLDS vibration isolator. Recently, Liu et al. [33] achieved geometric nonlinear
damping by combining a cam-roller mechanism and a horizontal linear viscous damper. In our previous work
[24], geometric nonlinear dampingwas also proposed based on the SLS. How the geometric nonlinear damping
affects the isolation performance was explained from the perspective of equivalent damping.

The above-mentioned literature shows that applying the SLS can achieve the geometric nonlinear stiffness
and damping and is beneficial for isolating low-frequency vibration. Inspired by the SLS proposed in Ref.
[23], a novel QZS vibration system is designed using single-layer SLSs and springs as NSC. The proposed
QZS vibration isolation system has a simpler structure than the counterpart proposed in Ref. [23] and is used
to isolate one-dimensional vibration. The rods with different lengths are considered to reveal the effect of rod
length on the isolation performance.

The rest of this paper is organized as follows. In Sect. 2, a model of the proposed QZS vibration system
is established, and the analysis of the nonlinear stiffness and damping is conducted. In Sect. 3, the frequency
response of the system is derived based on the harmonic balance method and further verified by numerical
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Fig. 1 Schematic diagram of the proposed QZS vibration system

simulation. In Sect. 4, the parametric analysis on the frequency response and the performance is conducted in
detail. Section 5 draws the conclusions.

2 Mathematical model

Figure 1 shows the schematic diagram of the proposed QZS vibration system. The negative stiffness corrector
is composed of two same SLSs and two springs. Each SLS consists of two pairs of connecting rods with
different lengths and four joints. A spring and a linear viscous damper are installed in parallel in each SLS. The
SLSs are obliquely installed between the base wall and the supporting platform, which is different from most
of the prior studies [19–21]. The supporting platform is used to support the isolation object. In the vertical
direction, a supporting spring and a linear viscous damper are installed in parallel between the base and the
supporting platform. The sliding bar acts as a guide mechanism with the help of a linear bearing to ensure that
the isolation object can only move in the vertical direction.

2.1 Geometric nonlinear stiffness characteristics

A simplified plane diagram of the designed QZS vibration system is shown in Fig. 2. When the vibration
system supports an object with rated mass m, it will stabilize from an initial position to the static equilibrium
position where the diagonals of SLSs coincide, and the static deflection is �x . At the equilibrium position,
the distance between the left and right joints of each SLS is Le. The lengths of two pairs of connecting rods
are L1 and L2, respectively. In the two SLSs, the stiffness of springs is kh , and the damping coefficients of
dampers are ch . The stiffness of the spring and the damping coefficient of the damper between the object and
the base are kv and cv , respectively. It is assumed that the prestretching length of springs in the SLSs is d
at the equilibrium position. The displacement of the object from its static equilibrium position in the vertical
direction is x .

It is assumed that the mass of rods, springs, dampers, and supporting platform is neglected. The rotational
frictions of joints are also neglected. The motion and the static analysis of the right-side SLS are shown in Fig.
3. In Fig. 3a, capital letters A, B, C , D, and O represent four joints and intersection of the two diagonals of
the SLS, respectively, at the equilibrium position. B ′, C ′, D′, and O ′ represent corresponding points when the
displacement of the isolation object is x . α is the angle between diagonals AB and AB ′.

It is assumed that the distance between points A and O is LOA, and the distance between points B and O
is LOB . According to the geometric relationship, the following equations can be obtained

L2
1 − L2

OB = L2
2 − L2

OA (1)

LOA + LOB = Le (2)
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Fig. 2 Plane diagram of the proposed QZS vibration system

(a) (b)

Fig. 3 a Motion and b static analysis of the right-side SLS

Thus, LOA and LOB can be obtained by combining Eqs. (1) and (2), which yields

LOA = L2
e − L2

1 + L2
2

2Le
(3)

LOB = L2
e + L2

1 − L2
2

2Le
(4)

The distance between points C and D is given by

LCD =
√
√
√
√4L2

1 −
(

L2
e + L2

1 − L2
2

Le

)2

(5)

When the isolation object is subjected to a force F , it will deviate from the static equilibrium position by a
displacement x . The distance between points A and B ′ and the distance between pointsC ′ and D′ are separately
given by

L AB′ =
√

L2
e + x2 (6)

LC ′D′ =
√
√
√
√4L2

1 −
(

x2 + L2
e + L2

1 − L2
2

√

x2 + L2
e

)2

(7)

Therefore, the force generated by the spring in the SLS is given by

f1 = kh (d − (LCD − LC ′D′)) (8)

Note that the prestretching length d cannot be greater than LCD due to the size limitation of the SLS. It is
impractical if d is greater than LCD .

The forces f1, f2, f3, f4, and F have the following relationships according to Fig. 3b.

f2 sin α1 = f3 sin α2 (9)

f1 = f2 cosα1 + f3 cosα2 (10)
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f4
2

= F

2
+ mg

2
+ 2 f2 sin α1 sin α (11)

where f2 and f3 denote the forces acting on the connecting rods, and f4 = kv (x + �x) is the force generated
by the vertical spring. Note that mg = kv�x , and g is the gravitational acceleration. α1 and α2 denote the
angles between the diagonal C ′D′ and its adjacent connecting rods, respectively.

Combining Eqs. (9), (10), and (11) can derive

F = f4 − mg − 4 f1 sin α

cot α1 + cot α2
(12)

Thus, the restoring force of the vibration system can be further written as

F (x) = kvx − 2kh

⎛

⎜
⎜
⎝
d −

√
√
√
√4L21 −

(

L2e + L21 − L22
Le

)2

+

√
√
√
√
√
√4L21 −

⎛

⎝
x2 + L2e + L21 − L22

√

x2 + L2e

⎞

⎠

2
⎞

⎟
⎟
⎠

· 2 sin α

cot α1 + cot α2
(13)

where

cot α1 =
√

4L2
1

(

x2 + L2
e

) − (

x2 + L2
e + L2

1 − L2
2

)2

x2 + L2
e + L2

1 − L2
2

(14)

cot α2 =
√

4L2
1

(

x2 + L2
e

) − (

x2 + L2
e + L2

1 − L2
2

)2

x2 + L2
e − L2

1 + L2
2

(15)

sin α = x
√

x2 + L2
e

(16)

Writing Eq. (13) in a nondimensional form can yield

f (u) = u − 2β

⎛

⎜
⎝δ −

√

4l21 − (

1 + l21 − l22
)2 +

√
√
√
√4l21 −

(

u2 + 1 + l21 − l22√
u2 + 1

)2
⎞

⎟
⎠ ·

u
(
(

u2 + 1
)2 − (

l21 − l22
)2

)

(

u2 + 1
)3/2

√

4l21
(

u2 + 1
) − (

u2 + 1 + l21 − l22
)2

(17)

where f = F/(kvLe), β = kh/kv , u = x/Le, δ = d/Le, l1 = L1/Le, and l2 = L2/Le.
Equation (17) can be further rewritten in the following form for simplicity:

f (u) = u−2β

⎛

⎝δ − lh +
√

4l21 −
(
u2 + 1 + l0√

u2 + 1

)2
⎞

⎠ ·
u

(
(

u2 + 1
)2 − l20

)

(

u2 + 1
)3/2

√

4l21
(

u2 + 1
) − (

u2 + 1 + l0
)2

(18)

where lh =
√

4l21 − (1 + l0)2 and l0 = l21 − l22 .
Differentiating Eq. (18) with respect to u can obtain the stiffness of the vibration system, which yields

k (u) = 1 +
2βu2

(
(

u2 + 1
)2 − l20

)2

(

u2 + 1
)3

(

4l21
(

u2 + 1
) − (

u2 + l0 + 1
)2

) +
β

(

δ
√

u2 + 1 − lh
√

u2 + 1 +
√

4l21 − (

u2 + l0 + 1
)2

)

(

u2 + 1
)2

√

4l21
(

u2 + 1
) − (

u2 + l0 + 1
)2

·
(

2l20 − 2
(

u2 + 1
) (

5u2 + 1
)

+ 2u2
(

(

u2 + 1
)2 − l20

)
(

3

u2 + 1
+ 4l21 − 2u2 − 2l0 − 2

4l21
(

u2 + 1
) − (

u2 + l0 + 1
)2

))

(19)

Therefore, letting k (u = 0) = 0 can obtain the quasi-zero stiffness condition, which leads to

lh + 2βδ
(

l20 − 1
) = 0 (20)
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Fig. 4 Nondimensional stiffness for various l1 when l0 = 0 and δ = 0.4

Fig. 5 Nondimensional stiffness for various l0 when l1 = 0.75 and δ = 0.4

The QZS condition can be further written as

β = lh
2δ

(

1 − l20
) (21)

Substituting Eq. (21) into Eqs. (18) and (19) can obtain the restoring force fq(u) and the stiffness kq(u) of
the QZS vibration system, which are listed in “Appendix A.” The effect of rod length l1 on the stiffness of the
QZS vibration system is shown in Fig. 4. The stiffness at u = 0 is zero, indicating that the QZS property is
obtained. Increasing l1 can reduce the stiffness of the QZS vibration system and expand the negative stiffness
interval. Note that the stiffness is less than that of the linear system in the selected displacement range.

l0 represents the length difference between the two adjacent connecting rods of the SLS. Its effect on the
stiffness of theQZS vibration system is shown in Fig. 5. It can be observed that increasing l0 leads to an increase
in system stiffness and narrows the negative stiffness interval. Note that the greater the length difference l0,
the smaller the rod length l2.

The effect of prestretching length δ on the stiffness of the QZS vibration system is shown in Fig. 6. It can
be observed that increasing δ can reduce the system stiffness and expand the negative stiffness interval. Note
that δ cannot be greater than lh due to the size limitation of the SLS.

To simplify the subsequent dynamic analysis, the nondimensional restoring force of the QZS vibration
system can be replaced approximately by a fifth-order Taylor series when the oscillations are small [9], which
yields

f aq (u) = γ1u
3 + γ2u

5 (22)
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Fig. 6 Nondimensional stiffness for various δ when l1 = 0.75 and l0 = 0

(a) (b)

Fig. 7 a Exact restoring force and its approximation and b exact stiffness and its approximation when l1 = 0.75, l0 = 0, and
δ = 0.4

where

γ1 = 2l20
l20 − 1

+ (

l20 − 1
) δ − lh

2δl2h

γ2 =
2

(

l2h + l20 − 1
)
(

δlh
(

3l20 + 1
) − (

l20 − 1
)2

)

+ δl3h + 15δl3hl
2
0 + 2l2h

(

5l20 + 1
) (

1 − l20
) − (

l20 − 1
)3

8δl3h
(

1 − l20
)

−3
(

l2h + l20 − 1
)2 + 4l2h

8l4h

Thus, the approximate nondimensional stiffness is given by

kaq (u) = 3γ1u
2 + 5γ2u

4 (23)

The exact restoring force and stiffnesswith their approximations are shown in Fig. 7a, b, respectively.Generally,
the approximate curves are in great agreement with exact ones in the displayed displacement range. Therefore,
it is reasonable to use approximate restoring force for the following dynamic analysis.

2.2 Geometric nonlinear damping characteristics

The geometric nonlinear damping also can be realized by combining the SLS with linear viscous damper.
It can be observed from Fig. 3a that when the displacement of the isolation object is x , the variation of the
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Fig. 8 Nonlinear damping coefficient for various l1 when l0 = 0 and ζ2 = 1

distance LC ′D′ is given by

�LC ′D′ =
√
√
√
√4L2

1 −
(

L2
e + L2

1 − L2
2

Le

)2

−
√
√
√
√4L2

1 −
(

x2 + L2
e + L2

1 − L2
2

√

x2 + L2
e

)2

(24)

Differentiating Eq. (24) with respect to the time can obtain the relative velocity between points C ′ and D′
along the diagonal, which yields

VC ′D′ = x
(

x2 + L2
e + L2

1 − L2
2

) (

x2 + L2
e − L2

1 + L2
2

)

(

x2 + L2
e

)
√

(

x2 + L2
e

)
(

4L2
1

(

x2 + L2
e

) − (

x2 + L2
e + L2

1 − L2
2

)2
)
ẋ (25)

Thus, the total nonlinear damping force Fd (x, ẋ) transmitted to the isolation object in the vertical direction
is given by

Fd (x, ẋ) = 2Fd1 (x, ẋ)
2

cot α1 + cot α2
· sin α (26)

where Fd1 (x, ẋ) = chVC ′D′ is the damping force generated by the linear viscous damper in the SLS. Equation
(26) can be further expanded as

Fd (x, ẋ) = ch
2x2

(
(

x2 + L2
e

)2 − (

L2
1 − L2

2

)2
)2

(

x2 + L2
e

)3
(

4L2
1

(

x2 + L2
e

) − (

x2 + L2
e + L2

1 − L2
2

)2
) ẋ (27)

Rewriting the nonlinear damping force in the nondimensional form leads to

fd
(

u, u′) =
2ζ2u2

(
(

u2 + 1
)2 − l20

)2

(

u2 + 1
)3

(

4l21
(

u2 + 1
) − (

u2 + l20 + 1
)2

)u′ (28)

where fd = Fd/(kvLe), ζ2 = ch/(mω0), ω0=
√
kv/m, u′ = du/dτ , τ = ω0t , and t is time.

The effect of rod length l1 on the nonlinear damping coefficient is shown in Fig. 8. It can be observed that
the nonlinear damping coefficient becomes greater with the increase of displacement. When the displacement
is zero, the damping coefficient also becomes zero. Thus, the vibration system can achieve heavy damping for
high vibration and low damping for small vibration. Besides, increasing l1 leads to a decrease in the nonlinear
damping coefficient.

The effect of rod length difference l0 on the nonlinear damping coefficient is shown in Fig. 9. Increasing
l0 can lead to an increase in the nonlinear damping coefficient. Thus, it can be concluded that increasing the
rod lengths of the SLS can reduce the nonlinear damping coefficient.
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Fig. 9 Nonlinear damping coefficient for various l0 when l1 = 0.75 and ζ2 = 1

Fig. 10 Comparison of the exact nonlinear damping coefficient and its approximation when l1 = 0.75, l0 = 0, and ζ2 = 1

To simplify the subsequent analysis, a fourth-order Taylor series is applied to replaceEq. (28) approximately
[30], which yields

f ad (u, u̇) = ζ2
(

λ1u
2 + λ2u

4) u′ (29)

where

λ1 = 2
(

1 − l20
)2

l2h
, λ2 = 2

(

2l20 − 3l40 + 1
)

l2h
− 2

(

l20 − 1
)2 (

l2h + l20 − 1
)

l4h

The comparison of the exact nonlinear damping coefficient and its approximation is given in Fig. 10. Generally,
the approximate damping coefficient curvematcheswellwith the exact one in the displayed displacement range.
Therefore, it is suitable to apply the approximate nonlinear damping force in the following dynamic analysis.

3 Frequency response

The equation of motion of the isolation object subjected to a force excitation can be expressed as

mẍ + cv ẋ + Fd (x, ẋ) + F (x) = Fe cosωt (30)

where Fe and ω represent the amplitude and frequency of the force excitation, respectively. Writing Eq. (30)
in a nondimensional form and replacing the exact restoring force and the nonlinear damping force with their
approximations, respectively, can obtain

u′′ + 2ζ1u
′ + ζ2

(

λ1u
2 + λ2u

4) u′ + γ1u
3 + γ2u

5 = fe cos�τ (31)
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where

ω0 =
√

kv

m
, ζ1 = cv

2mω0
, ζ2 = ch

mω0
, � = ω

ω0
, fe = Fe

kvLe
, τ = ω0t, (·)′ = d (·)

dτ

The harmonic balance method (HBM) is applied to obtain the approximate solution. It is assumed that the
first-order steady-state solution is expressed as

u = A cos (�τ + θ) (32)

where A and θ are the amplitude and initial phase of the steady-state solution, respectively. Letting ϕ = �τ +θ
and substituting Eqs. (32) into (31) can obtain

−ζ2
(

λ1A3�
( 1
4 sin ϕ + 1

4 sin (3ϕ)
) + λ2A5�

( 1
8 sin ϕ + 3

16 sin (3ϕ) + 1
16 sin (5ϕ)

)) − A�2 cosϕ

−2ζ1A� sin ϕ + 1
4γ1A

3 (3 cosϕ + cos (3ϕ)) + 1
16γ2A

5 (10 cosϕ + 5 cos (3ϕ) + cos (5ϕ))

= fe cosϕ cos θ + fe sin ϕ sin θ

(33)

Neglecting the terms containing sin(3ϕ), cos(3ϕ), sin(5ϕ), and cos(5ϕ) can obtain

fe cos θ = −A�2 + 3

4
γ1A

3 + 5

8
γ2A

5 (34)

fe sin θ = −2ζ1A� − 1

4
ζ2λ1A

3� − 1

8
ζ2λ2A

5� (35)

Thus, the amplitude–frequency equation can be obtained using sin2 θ + cos2 θ = 1, which yields

(

A�2 − 3

4
γ1A

3 − 5

8
γ2A

5
)2

+
(

2ζ1A� + 1

4
ζ2λ1A

3� + 1

8
ζ2λ2A

5�

)2

= f 2e (36)

The force transmissibility is used to evaluate the vibration isolation performance of the proposedQZS vibration
system. The force transmitted to the base can be expressed as

fs = 2ζ1u
′ + ζ2

(

λ1u
2 + λ2u

4) u′ + γ1u
3 + γ2u

5 (37)

Substituting Eq. (32) into Eq. (37) can obtain the amplitude of fs , which yields

ft =
(

(
3

4
γ1A

3 + 5

8
γ2A

5
)2

+
(

2ζ1A� + 1

4
ζ2λ1A

3� + 1

8
ζ2λ2A

5�

)2
)1/2

(38)

Thus, the force transmissibility is given by

T f = 20 lg

(
ft
fe

)

(39)

The amplitude–frequency curve obtained by the HBM is shown in Fig. 11. To verify the analytical result,
the amplitudes of the first harmonic components obtained by the Runge–Kutta method are also given for
comparison. It can be observed that the analytical solutions match well with the numerical ones, demonstrating
the feasibility of the HBM. It is worth noting that the numerical solutions in the shaded area cannot be obtained
due to that they are unstable [34]. In the following analysis, the excitation amplitude and the linear damping
ratio default to fe = 0.01 and ζ1 = 0.02, unless otherwise stated.
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Fig. 11 Amplitude–frequency curves when l1 = 0.75, l0 = 0.1, δ = 0.4, ζ1 = 0.02, ζ2 = 0.02, and fe = 0.01

(a) (b)

Fig. 12 Amplitude–frequency curves for various l1 when l0 = 0 and δ = 0.4

4 Vibration isolation performance analysis

4.1 Effect of connecting rod length l1

The above analysis indicates that the rod length l1 can affect both the stiffness and nonlinear damping of the
QZS vibration system. The amplitude–frequency curves for various l1 are shown in Fig. 12. When there is
no nonlinear damping, increasing l1 can reduce the resonant frequency but leads to an increase in the peak
amplitude, as shown in Fig. 12a. However, it has little effect on the response amplitude in high frequencies.
When ζ2 = 0.2, increasing l1 can lead to an increase in the resonant frequency, as shown in Fig. 12b. The peak
amplitude keeps the same trend.

The force transmissibility curves for various l1 are shown in Fig. 13. When there is no nonlinear damping,
increasing l1 can reduce peak transmissibility. Note that there is little effect on the force transmissibility in high
frequencies. The result is the opposite for the case of ζ2 = 0.2, as shown in Fig. 13b. Increasing l1 leads to an
increase in the peak transmissibility. Therefore, selecting a smaller rod length is beneficial when the nonlinear
damping is considered.

4.2 Effect of connecting rod length difference l0

The amplitude–frequency curves for various l0 are shown in Fig. 14. It can be observed that the rod length
difference l0 has little effect on the response amplitude in high frequencies.When there is no nonlinear damping,
increasing l0 can lead to an increase in the resonant frequency and a decrease in the peak amplitude. When
ζ2 = 0.2, the resonant frequency increases at first and then decreases with the increase of l0, as shown in Fig.
14b. However, the peak amplitude keeps decreasing.



128 W. Zou et al.

(a) (b)

Fig. 13 Force transmissibility curves for various l1 when l0 = 0 and δ = 0.4

Fig. 14 Amplitude–frequency curves for various l0 when l1 = 0.75 and δ = 0.4

The force transmissibility curves for various l0 are shown in Fig. 15. It is worth noting that increasing l0
also has little effect on the performance in high frequencies. When there is no nonlinear damping, increasing
l0 can lead to an increase in the peak transmissibility. For the case of ζ2 = 0.2, the peak transmissibility
keeps decreasing when l0 increases. Therefore, selecting a larger rod length difference is beneficial when the
nonlinear damping is considered.

4.3 Effect of prestretching length δ

The amplitude–frequency curves for various δ are shown in Fig. 16. It can be found that increasing δ can
reduce the resonant frequency but lead to an increase in the peak amplitude. Besides, it leads to an increase
in the response amplitude over low frequencies, but has little influence on the response amplitude in high
frequencies.

The force transmissibility curves for various δ are shown in Fig. 17. Generally, increasing δ can reduce the
peak transmissibility and expand the vibration isolation frequency band. There is little effect on the performance
in high frequencies. Thus, selecting a larger prestretching length is beneficial to the low-frequency vibration
isolation.
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(a) (b)

Fig. 15 Force transmissibility curves for various l0 when l1 = 0.75 and δ = 0.4

Fig. 16 Amplitude–frequency curves for various δ when l1 = 0.75, l0 = 0, and ζ2 = 0.2

Fig. 17 Force transmissibility curves for various δ when l1 = 0.75, l0 = 0, and ζ2 = 0.2

4.4 Effect of damping ratio ζ2

The amplitude–frequency curves for various ζ2 are shown in Fig. 18. Generally, increasing ζ2 can lead to a
decrease in both the resonant frequency and the peak amplitude. Moreover, it can also suppress the response
amplitude in the resonant region, but has little effect on the amplitude in high frequencies.

The force transmissibility curves for various ζ2 are shown in Fig. 19. Similarly, increasing ζ2 can effectively
reduce the transmissibility in the resonant region. Meanwhile, there is little effect on the performance in the
isolation region.
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Fig. 18 Amplitude–frequency curves for various ζ2 when l1 = 0.75, l0 = 0, and δ = 0.4

Fig. 19 Force transmissibility curves for various ζ2 when l1 = 0.75, l0 = 0, and δ = 0.4

Fig. 20 A classical QZS vibration system at the equilibrium position

4.5 Comparison with an existing QZS vibration system

To verify the superior performance of the proposed QZS vibration system, an existing QZS vibration system
[35] is given for comparison, as shown in Fig. 20. This classical QZS vibration system is composed of three
springs and three linear viscous dampers. Concretely, the stiffness of the horizontal and vertical springs is kh
and kv , respectively. The damping coefficients of the horizontal and vertical viscous dampers are separately
ch and cv . The distance between the base wall and the isolation object with rated mass m is Le. It is assumed
that the precompression length of the horizontal springs is d at the equilibrium position. The displacement of
the object from the static equilibrium position in the vertical direction is x .
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(a) (b)

Fig. 21 Isolation performance comparison between the proposed QZS vibration system, an existing QZS vibration system, and
the linear one when l1 = 0.75, l0 = 0, ζ1 = 0.02, and δ = 0.4

The nondimensional restoring force, stiffness, and damping force of the system are separately given by

f (u) = u + 2βu

(

1 − δ + 1√
u2 + 1

)

(40)

k (u) = 1 + 2βu2

u2 + 1
−

2β
(

δ + 1 − √
u2 + 1

)

(

u2 + 1
)3/2 (41)

fd (u, u̇) = 2ζ2u2

u2 + 1
u′ (42)

The QZS condition is given by

β = 1

2δ
(43)

Therefore, the approximate restoring force and the approximate damping force using Taylor series expansion
are separately given by

f aq (u) = δ + 1

2δ
u3 − 3 (δ + 1)

8δ
u5 (44)

f ad (u, u̇) = 2ζ2
(

u2 − u4
)

u′ (45)

Substituting Eqs. (44) and (45) into Eq. (30) and following the same procedure in Sect. 3 can obtain the
same amplitude–frequency equation as Eq. (36). The isolation performance comparison between the proposed
QZS vibration system, an existing QZS vibration system, and the linear one is shown in Fig. 21. Compared
with an existing QZS vibration system, the proposed one not only has lower peak transmissibility but also
has a wider vibration isolation frequency band for different levels of excitation amplitude no matter if there is
nonlinear damping. Moreover, compared with the linear vibration system, the proposed QZS vibration system
has a much wider vibration isolation frequency band and lower force transmissibility in high frequencies.
Therefore, the proposed QZS vibration system can achieve excellent isolation performance.

5 Conclusions

AnovelQZSvibration systemwith scissor-like structures is proposed. Themathematicalmodel of the proposed
system is established, and the length difference between the connecting rods in the SLS is considered. It is
demonstrated that the QZS property and the nonlinear damping all can be obtained using the SLS. The
parametric analysis shows that the geometric nonlinear stiffness can ensure that the systemhas awide frequency
band of vibration isolation. Applying geometric nonlinear damping can suppress the high-amplitude vibration
in the resonant region,while the isolation performance in high frequencies remains unaffected.Theperformance
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of theQZS vibration system can be adjusted flexibly by four parameters.Moreover, the proposedQZS vibration
system can outperform a classical one.
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Appendix A
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