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Abstract Navier’s closed-form solution for the higher order theory of micropolar plates based on the CUF
approach has been developed here. Obtained using a principle of virtual displacements the 2D system of the
differential equations for the higher order theory ofmicropolar elastic plates is solved here for the case of simply
supported plates using Navier’s method of the variables separation. For the higher order theory of micropolar
plates developed here, which is based on CUF, some numerical examples have been done and the influence
the rotation field on the stress–strain fields has been analyzed. Methods of determination of the classical and
micropolar elastic moduli of different materials have been analyzed, and available experimental data have been
presented in Nowacki’s notations. The obtained equations can be used for calculating the stress–strain and for
modeling thin walled structures in macro-, micro- and nanoscale when taking into account micropolar couple
stress and rotation effects.

Keywords Plates · CUF · Micropolar · Series expansion · Higher order theory

1 Introduction

In contrast to the classical theory of elasticity, micropolar theory considers additional rotational degrees of
freedom of the material particles, which are considered as small rigid bodies. Interactions between adjoined
particles occur in terms of the classical force stress tensor and the micropolar stress tensor which originate
due to the rotation of particles. As a result, the micropolar theory of elasticity considers the length-scale
effect, which is thought to be microstructure-dependent. Considering the microstructure of a material is very
important in modeling devices and structures made of heterogeneous material especially at micro- and nano-
scale, for example MEMS and NEMS, see Altenbach and Eremeyev [1], McFarland and Colton [51], Waseem
et al. [63] and Yoder et al. [66] and in biomechanics for bone modeling, see Eremeyev et al. [28,29] and
Fatemi et al. [33]. Since the publication of the Cosserat brother’s landmark book [22], there is a lot more books
and papers dedicated to various aspects of the theory of micropolar continua and its applications. Among
many other, the noteworthy books of Eringen [32] and Nowacki [52] as well as the recently published book
of Eremeyev et al. [27] are mentioned here. For more information between others, one can also refer to our
previous publications Carrera and Zozulya [18,19].
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Many structures in airspace, civil and mechanical engineering, micro-electronics, etc., can be considered
as beams, plates and shells (see for example Reddy [55] for references). Therefore, the development of the
plate theories based on the micropolar theory of elasticity is relevant and important task for the engineering
community. The first micropolar models of rods, plates and shells were developed by the Cosserat brothers
in [22], but it was only after the publication of the seminal paper by Ericksen and Truesdell [30] the generalized
micropolar models of rods, plates and shells are further developed and extensively discussed in the literature. A
reviewand critical analysis related to themicropolar theories of rods, plates and shells can be found inAltenbach
et al. [2], Carrera and Zozulya [18,19], Kovvali and Hodges [43]. We would like also to mention some works
related to micropolar plates, which were useful for this paper’s preparation: Altenbach and Eremeyev [2],
Altenbach et al. [3] Ambartsumian [4,5], Ansari et al. [7,8], Eringen [31], Jemielita [41], Karttunen et al. [42],
Kvasov and Steinberg [45], Sargsyan [58], Shaw [59], Steinberg [60], Steinberg and Kvasov [61]. Also, in our
previous papers Carrera and Zozulya [18,19] one can findmore details of the higher order theory of micropolar
beams and plates based on the CUF.

The CUF approach for the development of the higher order theories of beams, rods, plates and shells has
been presented in detail for the first time in Carrera [12] and then was further developed and published in
numerous publications. For more information, one can refer to the review papers Carrera [13,14] and the book
Carrera et al. [15]. Navier’s closed-form solution for the case of simply supported plates and shells based on
CUF has been developed in Carrera et al. [16,17]. Roughly speaking, the CUF consists in the expansion of the
field equations in the series of functions of the coordinates of the cross section. In the case of plates and shells,
usually it is expansion of the 3D equations of elasticity in the series of functions of the thickness coordinate. In
general, these functions can be arbitrary, but final equation becomes simpler if they are polynomials, especially
orthogonal polynomials. The Legendre polynomials have been widely used for the higher order theories of
beams, rods, plates and shells, among others see Vekua [62] and Zozulya [67]. For the development of the
higher order micropolar theory of beams, rods, plates and shells, the Legendre polynomials have been used in
Zozulya [68–72].

Constitutive equations of micropolar elasticity contain six coefficients that define themechanical properties
of material. In order to theory be effective and applicable in practice, one have to know these coefficients.
There are at least two approaches to their determination: theoretical (from first principles, via homogenization,
numerical calculation, etc.) and experimental (testing of specimens of real materials in laboratories).

Theoretical approach to micropolar elastic moduli definition can be generally divided into homogeniza-
tion and numerical calculation based on discrete molecular models. In Bigoni and Drugan [11], closed-form
formulae for Cosserat moduli via homogenization of a dilute suspension of elastic spherical inclusions embed-
ded in an isotropic elastic matrix is derived for the case that the inclusions are less stiff than the matrix.
Dos Reis and Ganghoffer [24,25] applied asymptotic homogenization of periodic beam and articulated bars
lattices for the homogenized micropolar moduli definition. The homogenized behavior of the tetragonal and
hexagonal lattices is determined in terms of homogenized micropolar moduli. Goda et al. [37–39] applied
discrete asymptotic homogenization for definition of micropolar moduli for textile and bone. In Diebels [26], a
theory of porous media is applied to micropolar mixture models. Askar [9] suggests calculating the micropolar
material moduli using the theory of molecular crystals dynamics. This work could be considered as the first
successful attempt for determining some of the micropolar material coefficients from the first principles. Askar
and Cakmak [10] proposed a 2D model composed of orientable points, joined by extensible and flexible rods
to explain the foundations of the micropolar continuum and determinate the micropolar elastic moduli of the
equivalent micropolar continuum. Chiroiu and Munteanu [20] used a nonlinear wave theory to construct an
inverse approach to estimate the micropolar elastic moduli of a micropolar plate. Based on the interrelations
between natural frequencies and the elastic properties of the material they show that it is possible to reconstruct
in a unique manner the unknown micropolar elastic moduli. In Chung andWaas [21], expressions for the char-
acterization of circular cell honeycombs as micropolar elastic solids using a combination of non-dimensional
analysis and numerical analysis are obtained. Closed-form expressions for the four in-plane micropolar com-
pliances are derived in terms of the cell size, cell thickness and the linear elastic properties of the cell’s wall
material. In Kumar [44], linear elastic micropolar constants are obtained using an energy approach for square,
equilateral triangular, mixed triangle and diamond cell topologies. In Liebenstein and Zaiser [50], a two-scale
model of disordered cellular materials using a beam network model is presented and material parameters for
regular honeycomb structures is described. A review of the lattice model application in micromechanics of
materials has been done in Ostoja-Starzewski [53].

As mentioned in Hassanpour and Heppler [40], Gauthier and Jahsman [34–36] were the first who tried to
determinate all six micropolar moduli. Based on theoretical consideration, they tested a circular cylinder and
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rectangular plate made of composite of epoxy matrix and distributed rigid aluminum shot applying torsional
and pure bending deformation, respectively. They performed both static and dynamic tests to determine all
six micropolar elastic moduli of the material. The static test was not successful Gauthier and Jahsman citer35,
whereas the dynamic test was quite successful and as a result they determined four (out of six) micropolar
elastic moduli Gauthier and Jahsman [36]. See also Gauthier [34]. We would like to mention that based on
the results from Gauthier and Jahsman [36] all six micropolar elastic moduli is reported in Shaw [59]. The
experimental approach suggested by Gauthier and Jahsman was further developed and extensively used by
Lakes and coauthors to determine the micropolar elastic moduli of different materials such as bone Lakes [47],
Park and Lakes [54] and Yang and Lakes [65], polymeric foams Lakes [46,47] and Rueger and Lakes [56,57],
cell polymethacrylimide foams of three different grades (i.e.,WF51,WF110,WF300) Anderson and Lakes [6].
A review of experimental research and more experimental data can be found in Hassanpour and Heppler [40]
and Lakes [48,49].

In this paper, based on the 2D higher order models of micropolar elastic plates developed using a principle
of virtual displacements Navier’s closed-form solutions for the case of the simply supported plate based on
CUF is presented. Numerical calculations of the displacements and rotation as well as classical force and
micropolar couple stress tensors have been done, and the results of calculation are presented in the form of
tables and graphs. The obtained results can be useful for modeling of thin-walled structures in macro-, micro-
and nano-scales by taking into account micropolar couple stress and rotation effects. The proposed models
can also be efficient in MEMS and NEMS modeling as well as in computer simulation.

2 Mathematical formulation of the boundary-value problem

Here, we present a closed-form solution for higher order elastic micropolar plates, which are developed in
Carrera and Zozulya [19] based on CUF. We first introduce here basic notations and equations which are
presented in detail in Carrera and Zozulya [19]. Let us consider an elastic body in a 3D Euclidian space, which
occupies the domainV = � × [r − h, h], where � is the middle plane of the plate, 2h is the thickness of the
plate. The adopted system of coordinates is Cartesian, where axises xandy coincide with the middle plane of
the plate and z is directed orthogonally to the middle plane.

In micropolar theory, it is assumed that the body consists of interconnected particles in the form of small
rigid bodies. In this case, each particle possesses six degrees of freedom and the position of the particle during
deformation is determined by the displacements u(x, y, z)and rotation ω(x, y, z) vectors as functions of their
coordinates. The internal forces (the interaction between adjacent elements) in a micropolar continuum are
defined in terms of classical force stress tensor σ(x, y, z) and a micropolar couple stress tensor μ(x, y, z).
The micropolar deformations are fully described by the asymmetric strain ε(x, y, z) and torsion χ(x, y, z)
tensors.

In the same way as in Carrera and Zozulya [18,19], here we introduce vector notations and represent the
above functions that define the stress–strain state of the micropolar media in vector form. The classical force
stress and strain as well as micropolar couple stress and twist tensors are presented as nine component vectors,
as it is presented bellow

σ = ∣
∣σxx , σyy, σzz, σxy, σyx , σxz, σzx , σyz, σzy

∣
∣T ,

ε = ∣
∣εxx , εyy, εzz, εxy, εyx , εxz, εzx , εyz, εzy

∣
∣T ,

μ = ∣
∣μxx , μyy, μzz, μxy, μyx , μxz, μzx , μyz, μzy

∣
∣T ,

χ = ∣
∣χxx , χyy, χzz, χxy, χyx , χxz, χzx , χyz, χzy

∣
∣
T

, (2.1)

The displacements and rotations are presented as three component vectors in the following form

u(x, y, z) = ∣
∣ux (x, y, z), uy(x, y, z), uz(x, y, z)

∣
∣T ,

ω(x, y, z) = ∣
∣ωx (x, y, z), ωy(x, y, z), ωz(x, y, z)

∣
∣T

(2.2)

In the equations, superscript T means transpose vector.
Kinematic relations in micropolar elasticity connect vectors of displacements and rotation with the strain

and torsion vectors (2.2) by the following equations
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ε = D · u + Dc · ω, χ = D · ω (2.3)

where D and Dc are matrix operators of the form

DT =

∣
∣
∣
∣
∣
∣
∣

∂
∂x 0 0 0 ∂

∂y 0 ∂
∂z 0 0

0 ∂
∂y 0 ∂

∂x 0 0 0 0 ∂
∂z

0 0 ∂
∂z 0 0 ∂

∂x 0 ∂
∂y 0

∣
∣
∣
∣
∣
∣
∣

, Dc,T =
∣
∣
∣
∣
∣
∣

0 0 0 0 0 0 0 1 −1
0 0 0 0 0 −1 1 0 0
0 0 0 1 −1 0 0 0 0

∣
∣
∣
∣
∣
∣

, (2.4)

Constitutive relations are presented here by introducing the function of density of a potential energy. In
the case of linear orthotropic micropolar media, it can be presented in the following general form

2W (ε, χ) = εT · C · ε + χT · A · χ (2.5)

where classical and micropolar moduli of elasticity for linear orthotropic micropolar media are presented as
9 × 9 matrices of the form

C =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

C11 C12 C13 0 0 0 0 0 0

C12 C22 C23 0 0 0 0 0 0

C13 C23 C33 0 0 0 0 0 0

0 0 0 C44 CT
44 0 0 0 0

0 0 0 CT
44 C44 0 0 0 0

0 0 0 0 0 C55 CT
55 0 0

0 0 0 0 0 CT
55 C55 0 0

0 0 0 0 0 0 0 C66 CT
66

0 0 0 0 0 0 0 CT
66 C66

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

A =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A11 A12 A13 0 0 0 0 0 0

A12 A22 A23 0 0 0 0 0 0

A13 A23 A33 0 0 0 0 0 0

0 0 0 A44 AT
44 0 0 0 0

0 0 0 AT
44 A44 0 0 0 0

0 0 0 0 0 A55 AT
55 0 0

0 0 0 0 0 AT
55 A55 0 0

0 0 0 0 0 0 0 A66 AT
66

0 0 0 0 0 0 0 AT
66 A66

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.6)

where Ci j , i, j = 1, 2, 3 are the classical and Cii , CT
ii , i = 4, 5, 6 are the micropolar and also Ai j , i, j =

1, 2, 3 and Aii , AT
ii , i = 4, 5, 6 are the micropolar moduli of elasticity

In the case of isotropicmaterials, there aremany notations for themicropolar elasticmodulus (for references
seeHassanpour andHeppler [40], Jemielita [41], etc.). Here, we use the constitutive relations for themicropolar
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linear elasticity introduced by Nowacki [52]. The corresponding classical and micropolar moduli of elasticity
in this case have the form

C11 = C22 = C33 = λ + 2μ, C12 = C13 = C23 = λ,

C44 = C55 = C66 = μ + α, CT
44 = CT

55 = CT
66 = μ − α,

A11 = A22 = A33 = β + 2γ A12 = A13 = A23 = β,

A44 = A55 = A66 = γ + ε, AT
44 = AT

55 = AT
66 = γ − ε (2.7)

where λ andμare Lamé constants of classical elasticity,α,β, γ and εare additionalmicropolar elastic constants.
When taking derivative of the function of density of a potential energy (2.5) with respect to strain ε and

torsion χ tensors and substituting in the obtained result the kinematic relations (2.3), the classical stress and
micropolar couple stress vectors can be presented in one of the following forms

σ = ∂W

∂ε
= C · ε = C · (D · u + Dc · ω), μ = ∂W

∂χ
= A · χ = A · Du · ω (2.8)

Following the CUF, the displacements and the rotation field that are functions of the three Cartesian coordinates
(x, y, z) are represented as series of functions of the coordinate z directed orthogonally to the middle plane in
the form

u(x, y, z) = Fu,τ (z) · uτ (x, y), ω(x, y, z) = Fω,τ (z) · ωτ (x, y), τ = 1, 2, . . . , M (2.9)

Where the basic functions of the thickness coordinates

Fu,τ (z) =

∣
∣
∣
∣
∣
∣
∣
∣

Fux ,τ (z) 0 0

0 Fuy ,τ (z) 0

0 0 Fuz ,τ (z)

∣
∣
∣
∣
∣
∣
∣
∣

, uτ (x, y) =

∣
∣
∣
∣
∣
∣
∣
∣

ux,τ (x, y)

uy,τ (x, y)

uz,τ (x, y)

∣
∣
∣
∣
∣
∣
∣
∣

,

Fω,τ (z) =

∣
∣
∣
∣
∣
∣
∣
∣

Fωx ,τ (z) 0 0

0 Fωy ,τ (z) 0

0 0 Fωz ,τ (z)

∣
∣
∣
∣
∣
∣
∣
∣

, ωτ (x, y) =

∣
∣
∣
∣
∣
∣
∣

ωx,τ (x, y)

ωy,τ (x, y)

ωz,τ (x, y)

∣
∣
∣
∣
∣
∣
∣

(2.10)

In (2.9) according to the Einstein notation, the repeated subscript τ indicates summation. The first subscript in
the base functions indicates a component of the displacements or rotations vectors, and the second one indicates
the number of series component. In general, the choice of the number M and functions Fu,τ (z)and Fω,τ (z)is
arbitrary, that is, different base functions of any order can be taken into account to model the kinematic field of
the plate along its thickness. Usually number M corresponds to the order of the plate theory. The final equation
becomes simpler if functions Fu,τ and Fω,τ are polynomials, especially orthogonal polynomials. Coefficients
of the expansions uτ (x, y) and ωτ (x, y) are functions of the coordinates x and y, which coincided with the
middle plane of the plate. The first subscript in the base functions Fu,τ and Fω,τ indicates the component of the
displacements or rotations vectors, the second one indicates the serial number of the function in the expansion.

Applying matrix differential operators (2.4) to the displacements and rotation presented by Eq. (2.9), one
can obtain the strain and torsion vectors in the form

ε = Du,τ · uτ + DT
ω,τ · ωτ , χ = Dω,τ · ωτ (2.11)

whereDu,τ ,Dω,τ andDT
ω,τ arematrix operators obtained by substituting expansion (2.9) to thematrix operators

(2.4). Their explicit form is presented in the Carrera and Zozulya [19].
By substituting kinematic relations (2.11) into generalized Hooke’s law (2.8), the classical force stress and

the micropolar couple stress vectors can now be presented in the form

σ = C · (

Du,τ · uτ + Dω
τ · ωτ

)

, μ = A · Dω,τ · ωτ (2.12)
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Originally the CUF approach for the development of the higher order theories of plates and shells was based
on the principle of virtual displacements (PVD), (see Washizu [64]), which in the general case of 3D linear
micropolar elasticity can be presented in the form

δ

∫

V

W (ε, χ)dV = δLext (bu,bω,pu,pω) (2.13)

Here, W (ε, χ)is a density of potential energy of the micropolar body, Lext (bu,bω,pu,pω)is a work of the
external volume bu,bω, and pu,pω surface load.

By substituting the expressions for the strain and torsion vectors presented by Eq. (2.11), the classical force
stress and the micropolar couple stress vectors presented by Eqs. (2.12) into (2.13) we will get a variation of
the density of potential energy in the form

δW = (DT
u,τ · Fu,τ (z) · δuτ (x, y)

+Dω,T
τ · Fω,τ (z) · δωτ (x, y)) · C · (Du,s · Fu,s(z) · us(x, y) +

+Dω
s · Fω.s(z) · ωs(x, y)) + (DT

u,τ · Fω,τ (z) · δωτ (x, y)) · A · Du,s · Fω,s(z) · ωs(x, y) (2.14)

The volume forces and momentum loads are the function of the Cartesian coordinates bu(x, y, z) and
bω(x, y, z). They also can be represented as a series of functions of the thickness coordinate z in the form

bu(x, y, z) = Fu,τ (z) · bu,τ (x, y), bω(x, y, z) = Fω,τ (z) · bω,τ (x, y), τ = 1, 2, . . . , M (2.15)

The surface load is the function of only the plate middle plane coordinatesx and y, and the thickness coordinate
z has specific values that correspond to points on the surfaces z = −h and z = h.

Let us consider a variation of the work of the external volume and surface load in the case of micropolar
media. Taking into account (2.14) and (2.15), the variation of the work of the external volume and surface load
in the case of micropolar media has the form

δLext (bu,bω,pu,pω)

=
∫

V

(Fu,τ (z) · δuτ (x, y) · Fu,s(z) · bu,s(x, y) + Fω,τ (z) · δωτ (x, y) · Fω,s(z) · bω,s(x, y))dV +

+
∫

∂V

Fu,τ (z) · δuτ (x, y) · pu(x, y) + Fω,τ (z) · δωτ (x, y) · pω(x, y))dS (2.16)

Here, the integrals over volume have been transformed into the integrals over surface by using the matrix
analogy of the Gauss–Ostrogradsky divergence theorem in the form

∫

V

Dy
u,τ · (C · (Du,s · Fu,s(z) · us(x, y) + Dω,s · Fω.s(z) · ωs(x, y)) · δuτ (x, y)dV

=
∫

∂V

Du,T
n,τ · (C · (Du,s · Fu,s(z) · us(x, y) + Dω,s · Fω.s(z) · ωs(x, y)) · δuτ (x, y)dS,

∫

V

Dy
ω,τ · (A · Dω,s · Fω,s(z) · ωs(x, y)) · δωτ (x, y)dV

=
∫

∂V

Dω,T
n,τ · (A · Dω,s · Fω,s(z) · ωs(x, y)) · δωτ (x, y)dS (2.17)

where DT
a,τ = Dy,T

a,τ + DC,T
a,τ are matrix operators of the form
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Dy,T
a,τ =

∣
∣
∣
∣
∣
∣
∣
∣
∣

Fax ,τ (z)
∂
∂x 0 0 0 Fax ,τ (z)

∂
∂y 0 0 0 0

0 Fay ,τ (z)
∂
∂y 0 Fay ,τ (z)

∂
∂x 0 0 0 0 0

0 0 0 0 0 Faz ,τ (z)
∂
∂x 0 Faz ,τ (z)

∂
∂y 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.18)

DC,T
a,τ =

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 0 0 0 ∂Fax ,τ (z)
∂z 0 0

0 0 0 0 0 0 0 0
∂Fay ,τ (z)

∂z

0 0
∂Faz ,τ (z)

∂z 0 0 0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.19)

and Da,T
n,τ is the matrix analogy of the vector normal to the boundary of the form

Da,T
n,τ =

∣
∣
∣
∣
∣
∣
∣

nx Fax ,τ (z) 0 0 0 ny Fax ,τ (z) 0 0 0 0

0 ny Fay ,τ (z) 0 nx Fay ,τ (z) 0 0 0 0 0

0 0 0 0 0 nx Faz ,τ (z) 0 ny Faz ,τ (z) 0

∣
∣
∣
∣
∣
∣
∣

(2.20)

In fact, Eq. (2.17) represent equations of equilibrium and natural boundary conditions for displacements and
rotations of the micropolar elastic higher order plate in the integral form obtained using the CUF.

The integrals over volume and surface in (2.17) have the form

∫

V

(·)dV =
∫

�

h∫

−h

(·) dzd�,

∫

∂V

(·)dV =
∫

∂�

h∫

−h

(·) dzdS (2.21)

When taking into account this decomposition and integrating these equations over the plate’s thickness, as
well as considering that variations δuτ and δωτ depend only on variables x and y, the differential equations
for displacements and rotations of the micropolar elastic higher order plates can be presented in the matrix
form

LG
M · uGM = bGM (2.22)

where global matrix operator LG
n , vectors of unknown functions u

G
M and right hand bGM side have the form

LG
M =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Lloc
1,1 · · · Lloc

1,M

...
. . .

...

Lloc
M,1 · · · Lloc

M,M

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, uGM =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

uloc1

...

ulocM

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, bGM =

∣
∣
∣
∣
∣
∣
∣
∣
∣

bloc1

...

blocM

∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.23)

Matrices Lloc
τ,sare the fundamental nucleus of the differential equations of equilibrium for the higher order

micropolar elastic plates. The explicit form of Lloc
τ,s as well as of the vectors of local unknown functions

ulocs and local expression for external body and surface loads blocs and also expressions for natural boundary
conditions have been presented in Carrera and Zozulya [19].

Essential boundary conditions for the micropolar elastic higher order plates can be presented in the matrix
form

BE,G
M · uGM

∣
∣
∣

L

0
= u0,GM (2.24)
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where global matrix operator BE,G
M , vectors of the right-hand side have the form

BE,G
M =

∣
∣
∣
∣
∣
∣
∣
∣
∣

I · · · 0
...

. . .
...

0 · · · I

∣
∣
∣
∣
∣
∣
∣
∣
∣

, u0,GM =

∣
∣
∣
∣
∣
∣
∣
∣
∣

u0,loc1

...

u0,locM

∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.25)

Here, Iis the identity matrix and therefore global matrix operator BE,G
M is the identity matrix operator.

In this section, the system of differential equations as well as natural and essential boundary conditions for
the 2D linear micropolar theory of the elastic plate within the framework of the CUF is considered in detail.
These equations will be used in the next sections for the development of the close form solution for the higher
order micropolar 2D plate theories.

3 Navier’s close form solution for higher order micropolar elastic plate

Boundary-value problems for the systemof equations andboundary conditions presented inSect. 1 are generally
solved numerically, for example by using finite element methods Carrera et al. [15]. In some special cases, they
can be solved analytically. In this section, we develop Navier’s close form solution for higher order micropolar
plates, which is based on the CUF.

Let us present displacements and rotation fields as a Fourier series expansion in the form

ux (x, y, z) = Fux ,τ (z)
∞
∑

n,m=0

Un.m
ux ,τ cos

(
nπ

L1
x

)

sin

(
mπ

L2
y

)

,

ωx (x, y, z) = Fωx ,τ (z)
∞
∑

n,m=0

Un,m
ωx ,τ

sin

(
nπ

L1
x

)

cos

(
mπ

L2
y

)

,

uy(x, y, z) = Fuy ,τ (z)
∞
∑

n,m=0

Un,m
uy ,τ sin

(
nπ

L1
x

)

cos

(
mπ

L2
y

)

,

ωy(x, y, z) = Fωy ,τ (z)
∞
∑

n,m=0

Un,m
ωy ,τ

cos

(
nπ

L1
x

)

sin

(
mπ

L2
y

)

,

uz(x, y, z) = Fuz ,τ (z)
∞
∑

n,m=0

Un,m
uz ,τ sin

(
nπ

L1
x

)

sin

(
mπ

L2
y

)

,

ωz(x, y, z) = Fωz ,τ (z)
∞
∑

n,m=0

Un,m
ωz ,τ

cos

(
nπ

L1
x

)

cos

(
mπ

L2
y

)

, (3.1)

whereUn
ux ,τ , . . . ,Un

ωz ,τ
are coefficients of theFourier series expansionof the functionsux,τ (y), . . . , ωz,τ (y)of

the form

Un,m
ux ,τ = 4

L1L2

L1∫

0

cos

(
nπ

L1
x

) L2∫

0

ux,τ (x, y) sin

(
mπ

L2
y

)

dydx, . . . ,Un,m
ωz ,τ

= 4

L1L2

L1∫

0

cos

(
nπ

L1
x

) L2∫

0

ωz,τ (x, y) cos

(
mπ

L2
y

)

dydx (3.2)

Components of the vector of external load will be presented here as a Fourier series expansion in the form
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b̃ux ,τ (x, y) =
∞∑

n,m=0
Bn.m
ux ,τ cos

(
nπ
L1

x
)

sin
(
mπ
L2

y
)

, b̃ωx ,τ (x, y) =
∞∑

n,m=0
Bn,m

ωx ,τ
sin

(
nπ
L1

x
)

cos
(
mπ
L2

y
)

,

b̃uy ,τ (x, y) =
∞∑

n,m=0
Bn,m
uy ,τ sin

(
nπ
L1

x
)

cos
(
mπ
L2

y
)

, b̃ωy ,τ (x, y) =
∞∑

n,m=0
Bn,m

ωy ,τ
cos

(
nπ
L1

x
)

sin
(
mπ
L2

y
)

,

b̃uz ,τ (x, y) =
∞∑

n,m=0
Bn,m
uz ,τ sin

(
nπ
L1

x
)

sin
(
mπ
L2

y
)

, b̃ωz ,τ (x, y) =
∞∑

n,m=0
Bn,m

ωz ,τ
cos

(
nπ
L1

x
)

cos
(
mπ
L2

y
)

,

(3.3)

where Bn,m
ux ,τ , . . . , Bn,m

ωz ,τ
are coefficients of the Fourier series expansion of the functions b̃ux ,τ (x, y), . . . ,

b̃ωz ,τ (x, y), they have the form

Bn,m
ux ,τ = 4

L1L2

L1∫

0

cos

(
nπ

L1
x

) L2∫

0

b̃ux ,τ (x, y) sin

(
mπ

L2
y

)

dydx, · · · , Bn
ωz ,τ

= 4

L1L2

L1∫

0

cos

(
nπ

L1
x

) L2∫

0

b̃ωz ,τ (x, y) cos

(
mπ

L2
y

)

dydx (3.4)

Substitution of the representations (3.1) for the displacements and rotation fields into (2.22) for any n and m
give us a system of linear algebraic equations for the Fourier series expansion coefficients in the form

KG
n,m,M · UG

n,m,M = BG
n,m,M (3.5)

where global matrix operator KG
n,m,M , vectors of unknown coefficients UG

n,m,M and right-hand side BG
n,m,M

have the form

KG
n,m,M =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Kn,m,loc
1,1 · · · Kn,m,loc

1,M

...
. . .

...

Kn,m,loc
M,1 · · · Kn,m,loc

M,M

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, UG
n,m,M =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Un,m,loc
1

...

Un,m,loc
M

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, BG
n,m,M =

∣
∣
∣
∣
∣
∣
∣
∣
∣

Bn,m,loc
1

...

Bn,m,loc
M

∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.6)

Matrices Kloc
τ,s are the fundamental nucleus of the algebraic equations for the Navier’s solution for the higher

order micropolar elastic beams. These matrices and vectors of local unknown functions Uloc
s and local expres-

sion for external body forces Bloc
s have the form

Kn,m,loc
τ,s =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Kn,m,τ,s
ux ,ux K n,m,τ,s

ux ,uy K n,m,τ,s
ux ,uz K n,m,τ,s

ux ,ωx K n,m,τ,s
ux ,ωy K n,m,τ,s

ux ,ωz

K n,m,τ,s
uy ,ux K n,m,τ,s

uy ,uy K n,m,τ,s
uy ,uz K n,m,τ,s

uy ,ωx K n,m,τ,s
uy ,ωy K n,m,τ,s

uy ,ωz

K n,m,τ,s
uz ,ux K n,m,τ,s

uz ,uy K n,m,τ,s
uz ,uz K n,m,τ,s

uz ,ωx K n,m,τ,s
uz ,ωy K n,m,τ,s

uz ,ωz

K n,m,τ,s
ωx ,ux K n,m,τ,s

ωx ,uy K n,m,τ,s
ωx ,uz K n,m,τ,s

ωx ,ωx
K n,m,τ,s

ωx ,ωy
K n,m,τ,s

ωx ,ωz

K n,m,τ,s
ωy ,ux K n,m,τ,s

ωy ,uy K n,m,τ,s
ωx ,uz K n,m,τ,s

ωy ,ωx
K n,m,τ,s

ωy ,ωy
K n,m,τ,s

ωy ,ωz

K n,m,τ,s
ωz ,ux K n,m,τ,s

ωz ,uy K n,m,τ,s
ωz ,uz K n,m,τ,s

ωz ,ωx
K n,m,τ,s

ωz ,ωy
K n,m,,τ,s

ωz ,ωz

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, Un,loc
s =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Un,m
ux ,s

Un,m
uy ,s

Un,m
uz ,s

Un,m
ωx ,s

Un,m
ωy ,s

Un,m
ωz ,s

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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Bn,loc
s =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Bn,m
ux ,τ

Bn,m
uy ,τ

Bn,m
uz ,τ

Bn,m
ωx ,τ

Bn,m
ωy ,τ

Bn,m
ωz ,τ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.7)

Analytical expressions for coefficients of the fundamental nucleus matrixes Kn,m,loc
τ,s are presented in

“Appendix.”
Using the equations presented here, one can find a analytical solution of the boundary-value problem for the

higher order micropolar plate with homogeneous essential boundary conditions in the form of a Fourier series
expansion (3.1). In the next sections, we specify the form of Eq. (3.5) and coefficients presented in “Appendix”
for some relatively simple completely linear expansion cases (CLEC). The theories based on shear deformation
and Kirchhoff–Love hypothesis can be considered as special case of the CLEC. For the CLEC, we present
exactly expressions for corresponding differential equations and solve also some specific problems.

4 Linear expansion case for micropolar elastic plate

Here, we consider the particular case of the CLEC of the micropolar model of plates in detail. In this case, the
displacement and rotation vectors are presented in the form

u(x, y, z) = Fu,1(z) · u1(x, y) + Fu,2(z) · u2(x, y), ω(x, y, z) = Fω,1(z) · ω1(x, y) + Fω,2(z) · ω2(x, y),

(4.1)

where

Fu,1 =

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0

0 1 0

0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

, u1 =

∣
∣
∣
∣
∣
∣
∣
∣

ux,1

uy,1

uz,1

∣
∣
∣
∣
∣
∣
∣
∣

, Fu,2 =

∣
∣
∣
∣
∣
∣
∣
∣

z 0 0

0 z 0

0 0 z

∣
∣
∣
∣
∣
∣
∣
∣

, u2 =

∣
∣
∣
∣
∣
∣
∣
∣

ux,2

uy,2

uz,2

∣
∣
∣
∣
∣
∣
∣
∣

,

Fω,1 =

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0

0 1 0

0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

, ω1 =

∣
∣
∣
∣
∣
∣
∣
∣

ωx,1

ωy,1

ωz,1

∣
∣
∣
∣
∣
∣
∣
∣

, Fω,2 =

∣
∣
∣
∣
∣
∣
∣
∣

z 0 0

0 z 0

0 0 z

∣
∣
∣
∣
∣
∣
∣
∣

, ω2 =
∣
∣
∣
∣
∣
∣

ωx,2

ωy,2
ωz,2

∣
∣
∣
∣
∣
∣

,

(4.2)

In this case, vector of displacements u(x, y, z) as well as vector of rotations ω(x, y, z) are represented by
two vector-valued coefficients; Taylor expansionu1(x, y), u2(x, y) and ω1(x, y), ω2(x, y), all of which have
three components. In total, we have twelve functions that describe the displacement and rotation fields in
the micropolar plates. These functions are related by differential equations (2.22) together with boundary
conditions of the form (2.24) for the case M = 2. In this case, integrals of the functions of the thickness
coordinates in Eqs. (3.6)–(3.7) can be easily calculated analytically, and they only have values 0,2h and 2h3/3.
By substituting these values in (3.5), we obtain the exact expressions for matrix operators LG

M (2.23) of the
system of differential equations. The obtained system of differential equations is the general one, it takes into
account all variables represented in the expansion (4.1) and together with boundary conditions it can be used
for analysis of the stress–strain state of the micropolar plates under arbitrary loading.

Analysis of the obtained differential equations shows that there are two groups of equations and corre-
sponding unknown functions, which can be considered separately. Using series representations (3.1), these
differential equations can be transformed in the corresponding algebraic equations. Let us consider each group
of the equations in detail.

Thefirst groupof independent variables areUn,m
uz,1

,Un,m
ωx ,1

, Un,m
ωy ,1

,Un,m
ux ,2

,Un,m
uy ,2

,Un,m
ωz ,2

, and the displacements
here are related to the bending mode of deformation in the z direction perpendicular to the plane x, y, which is
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represented by functionsUn,m
uz ,1

,Un,m
ux ,2

,Un,m
uy ,2

and rotations which are related to the twisting mode along x ,y and

z directions, which are represented by functions Un,m
ωx ,1

, Un,m
ωy ,1

,Un,m
ωz ,2

. In this case, the system of differential
equations (2.22) has the following form

KG
n,m,2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Kn,m,1,1
uz ,uz K n,m,1,1

uz ,ωx K n,m,1,1
uz ,ωy K n,m,1,2

uz ,ux K n,m,1,2
uz ,uy K n,m,1,2

uz ,ωz

K n,m,1,1
ωx ,uz K n,m,1,1

ωx ,ωx
K n,m,1,1

ωx ,ωy
K n,m,1,2

ωx ,ux K n,m,1,2
ωx ,uy K n,m,1,2

ωx ,ωz

K n,m,1,1
ωy ,uz K n,m,1,1

ωy ,ωx
K n,m,1,1

ωy ,ωy
K n,m,1,2

ωy ,ux K n,m,1,2
ωy ,uy K n,m,1,2

ωy ,ωz

K n,m,2,1
ux ,uz K n,m,2,1

ux ,ωx K n,m,2,1
ux ,ωy K n,m,2,2

ux ,ux K n,m,2,2
ux ,uy K n,m,2,2

ux ,ωz

K n,m,2,1
uy ,uz K n,m,2,1

uy ,ωx K n,m,2,1
uy ,ωy K n,m,2,2

uy ,ux K n,m,2,2
uy ,uy K n,m,2,2

uy ,ωz

K n,m,2,1
ωz ,uz K n,m,2,1

ωz ,ωx
K n,m,2,1

ωz ,ωy
K n,m,2,2

ωz ,ux K n,m,2,2
ωz ,uy K n,m,2,2

ωz ,ωz

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,UG
n,m,2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Un,m
uz ,1

Un,m
ωx ,1

Un,m
ωy ,1

Un,m
ux ,2

Un,m
uy ,2

Un,m
ωz ,2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, BG
n,m,2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Bn,m
uz ,1

Bn,m
ωx ,1

Bn,m
ωy ,1

Bn,m
ux ,2

Bn,m
uy ,2

Bn,m
ωz ,2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.3)

Analytical expressions for coefficients of the fundamental matrix KG
n,m,2can be obtained from corresponding

coefficients of the fundamental nucleus matrixes Kn,m,loc
τ,s presented in “Appendix.” Essential boundary con-

ditions have the form similar to (2.24) with taking into account that the vector of independent variables has
the form (4.3).

The second group of variables are Un,m
ux ,1

,Un,m
uy ,1

, Un,m
ωz ,1

,Un,m
uz ,2

,Un,m
ωx ,2

,Un,m
ωy ,2

, and displacements here are
related to the tension–compression mode of deformation in the plane x, y, which is represented by functions
Un,m
ux ,1

,Un,m
uy ,1

, Un,m
uz ,2

and rotations which are related to the stretching mode along x ,y and z directions, which

are represented by functions Un,m
ωz ,1

,Un,m
ωx ,2

,Un,m
ωy ,2

. In this case, the system of differential equations (2.22) has
the following form

KG
n,m,2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Kn,m,1,1
ux ,ux K n,m,1,1

ux ,uy K n,m,1,1
ux ,ωz K n,m,1,2

ux ,uz K n,m,1,2
ux ,ωx K n,m,1,2

ux ,ωy

K n,m,1,1
uy ,ux K n,m,1,1

uy ,uy K n,m,1,1
uy ,ωz K n,m,1,2

uy ,uz K n,m,1,2
uy ,ωx K n,m,1,2

uy ,ωy

K n,m,1,1
ωz ,ux K n,m,1,1

ωz ,uy K n,m,1,1
ωz ,ωz

K n,m,1,2
ωz ,uz K n,m,1,2

ωz ,ωx
K n,m,1,2

ωz ,ωy

K n,m,1,1
uz ,ux K n,m,1,1

uz ,uy K n,m,1,1
uz ,ωz K n,m,1,2

uz ,uz K n,m,1,2
uz ,ωx K n,m,1,2

uz ,ωy

K n,m,1,1
ωx ,ux K n,m,1,1

ωx ,uy K n,m,1,1
ωx ,ωz

K n,m,1,2
ωx ,uz K n,m,1,2

ωx ,ωx
K n,m,1,2

ωx ,ωy

K n,m,1,1
ωy ,ux K n,m,1,1

ωy ,uy K n,m,1,1
ωy ,ωz

K n,m,1,2
ωy ,uz K n,m,1,2

ωy ,ωx
K n,m,2,2

ωy ,ωz

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,UG
n,m,2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Un,m
ux ,1

Un,m
uy ,1

Un,m
ωz ,1

Un,m
uz ,2

Un,m
ωx ,2

Un,m
ωy ,2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, BG
n,m,2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Bn,m
uz ,1

Bn,m
uy ,1

Bn,m
ωz ,1

Bn,m
uz ,2

Bn,m
ωx ,2

Bn,m
ωy ,2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.4)

Analytical expressions for coefficients of the fundamental matrix KG
n,m,2 can be obtained from corresponding

coefficients of the fundamental nucleus matrixes Kn,m,loc
τ,s presented in “Appendix.” Essential boundary con-

ditions have the form similar to (2.24) with taking into account that the vector of independent variables has
the form (4.4).

In the case of isotropic material, Eqs. (4.3) and (4.4) are simplified. In Nowacki’s notations (2.7), full
form of the differential equations of equilibrium in form of displacement and rotation for bending and tension–
compressionmodes has been presented in “Appendix.”Essential boundary conditions in the case of the isotropic
material have the same form as for considered above case of orthotropic material.

5 Models of micropolar plates based on Mindlin’s hypothesis

Theories of micropolar plates, which are based on the shear deformationMindlin’s hypothesis, can be obtained
as a special case of the linear expansion theory developed in the previous section.
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According to the shear deformation kinematic assumptions and based on the CUF, the displacement field
of the micropolar plate can be presented in the form

ux (x, y, z) = ux,1(x, y) + zux,2(x, y),

uy(x, y, z) = uy,1(x, y) + zux,2(x, y),

uz(x, y, z) = uz,1(x, y),

(5.1)

Following Eringen [24], Altenbach and Eremeyev [2] and Carrera and Zozulya [19] and based on the analysis
of Eqs. (4.3) and (4.4) of the linear micropolar plates model, the rotation field will be presented in the form

ωx (x, y, z) = ωx,1(x, y), ωy(x, y, z) = ωy,1(x, y), ωz(x, y, z) = ωz,1(x, y), (5.2)

In this case, basic functions of the thickness coordinate (2.10) have the form

Fu,1 =

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0

0 1 0

0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

, Fu,2 =

∣
∣
∣
∣
∣
∣
∣
∣

z 0 0

0 z 0

0 0 0

∣
∣
∣
∣
∣
∣
∣
∣

, Fω,1 =

∣
∣
∣
∣
∣
∣
∣

1 0 0

0 1 0

0 0 1

∣
∣
∣
∣
∣
∣
∣

, (5.3)

In this case, we have five unknown functions ux,1(x, y), uy,1(x, y), uz,1(x, y), ux,2(x, y), ux,2(x, y),for the
displacement vector u(x, y, z), and three unknown functionsωx,1(x, y), ωy,1(x, y), ωz,1(x, y) for the rotation
vector ω(x, y, z), in total we have eight functions that describe the displacement and rotation fields in the
micropolar plate. These functions are related by the system of differential equations, which can be obtained
from the corresponding equations for the linear theory by just deleting functions that are omitted in the theory
based on the shear deformation hypothesis.

Analysis of the corresponding equations shows that in the sameway as in the linear theory case there are two
groups of equations along with their corresponding variables that can be considered separately, independently
of other equations of the full system. Let us consider the equations of each group separately.

The first group of variables areUn,m
uz ,1

,Un,m
ωx ,1

, Un,m
ωy ,1

,Un,m
ux ,2

,Un,m
uy ,2

, the displacements here are related to the
bending mode of deformation in the z direction, and the rotations are related to the twisting along directions x
and y. Twisting along direction z is not presented in this group of equations; therefore, the system of differential
equations in form of displacement and rotation has the following form
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(5.4)

Analytical expressions for coefficients of the fundamental matrix KG
n,m,2can be obtained from corresponding

coefficients of the fundamental nucleus matrixes Kn,m,loc
τ,s presented in “Appendix.” Essential boundary con-

ditions have the form similar to (2.24) with taking into account that the vector of independent variables has
the form (5.4).

The second group of variables are Un,m
ux ,1

,Un,m
uy ,1

, Un,m
ωz ,1

, the displacements here are related to the tension–
compression mode of deformation in the plane x, y and the rotations are related to the twisting mode along
direction z. The twisting along directions x and y is not presented in this system of equations and therefore,
has the following form
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Table 1 Comparison of notations for material constants

Lame modulus Lame modulus Cosserat couple
coefficient

Cosserat modu-
lus

Cosserat modu-
lus

Cosserat modu-
lus

Nowacki [52] λ μ α β γ ε

Eringen [32] λE = λ μE = μ + κ/2 κE = α/2 αE = β βE = (γ + ε) γ E= (γ − ε)/2
Hassanpour
and Hep-
pler [40]

λH = λ μH = μ κH = α αH = β γ H = γ βH = ε
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(5.5)

Analytical expressions for coefficients of the fundamental matrix KG
n,m,2can be obtained from corresponding

coefficients of the fundamental nucleus matrixes Kn,m,loc
τ,s presented in “Appendix.” Essential boundary con-

ditions have the form similar to (2.24) with taking into account that the vector of independent variables has
the form (5.5).

In the case of isotropic material, Eqs. (5.4) and (5.5) are simplified. In Nowacki’s notations (2.7), full form
of the differential equations of equilibrium in form of displacement and rotation for bending and tension–
compression modes have been presented in “Appendix.” Essential boundary conditions in the case of the
isotropic material have the same form as for considered above case of orthotropic material.

6 Some numerical results and discussion

In this section, we provide the results of the evaluation of the presented higher order models of the micropolar
elastic plates and consider examples of the numerical calculation of the displacements, rotation, as well as
classical andmicropolar stress tensors.Because experimental data formechanical characteristics of the classical
and micropolar properties of materials is available only for isotropic cases, only isotropic materials will be
considered here. As it was mentioned in Carrera and Zozulya [19], different authors use different notations
for field functions and for classical and micropolar material constants. Therefore, usually it is a complicated
task to analyze and compare the results obtained by different authors. In Cowin [23], Hassanpour and Heppler
[40] and Jemielita [41] relations between classical and micropolar constants used by different authors are
presented. The most frequently used are notations introduced by Nowacki [52] and Eringen [32]. In spite
of many disadvantages, Eringen’s notations critically analyzed in Hassanpour and Heppler [40] are used in
numerous theoretical (see Altenbach and Eremeyev [2], Ansari, et al., [7,8], Eremeyev, at all, [28,29], Kovvali
and Hodges [43], etc.), and experimental (see Gauthier [34], Gauthier and Jahsman [35,35], Lakes [46,47,49],
Park and Lakes [54], Yang and Lakes [65], etc.) works. That is way in this work we use Nowacki’s notations.
In Table 1, we present the relation between Nowacki’s notations used here and Eringen’s notations, as well as
for the notations used in the review paper by Hassanpour and Heppler [40], where summarized information
about experimental data of classical and micropolar constants which is available in the literature. In Table 1,
constants in Eringen’s notations supplied with upper index E and constants in Hassanpour and Heppler’s
notations with upper index H as well as constants in notations used here are presented without upper index.

Another problem which also complicates the situation is the following, in the works related to the exper-
imental tests of materials, and classical and micropolar mechanical propertied definition are used so-called
engineering constants. The relations between engineering constants and constants used for the constitutive law
formulation in Eringen’s notations are presented in Gauthier [34], Lakes [47,49], etc. For convenience, we
present the relations between engineering constants and constants used for the constitutive law formulation in
Nowacki’s notations here
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Table 2 Experimental data for classical and micropolar moduli of some materials in Nowacki’s notations

Material λ (MPa) μ (MPa) α (MPa) β (N) γ (N) ε (N)

HB 4000 4000 63.49 −131.8 193.3 3046
FPSF 0.098 0.600 0.059 −6.685 9.126 50.87
FDP 416.0 104.0 4.333 −27.76 39.97 5.324
FP 762.6 103.9 4.333 −27.76 39.97 5.324
FS 2195 1033 114.7 −3.233 4,364 0.0534
WF300 88.04 285.0 2.879 198.2 182.4 493.5
WF110 550.0 75.00 0.758 40.97 20.28 16.47
WF51 11.06 29.00 1.208 8.677 8.456 26.63
AEC 7590 1897 7.450 2240 2445 185.0

E = μ(3λ+2μ)
λ+μ

,G = μ, ν = λ
2(λ+μ)

,

l2t = γ
μ
, l2b = γ+ε

4μ , N 2 = α
μ+α

, ψ = 2γ
β+2γ

(6.1)

where E , G and ν are Young’s and shear modules and Poisson ratio, lb and lt are characteristic lengths for
bending and torsion, respectively, N is a coupling number, ψ is a polar ratio.

Now, from the relations (6.1) one can find all of the material constants used for the constitutive relations
formulation (2.8) in Nowacki’s notations (2.7). They have the following form

λ = 2Gν
1−2ν , μ = G, α = GN2

(N2−1)
,

β = 2(α+μ)(ψ−1)l21
ψ

, γ = μl2t , ε = μ(4l2b − l2t ),
(6.2)

For convenience, we translate the experimental data for the classical andmicropolar elastic moduli for different
materials available in the literature to Nowacki’s notations using relations (6.2) and present in Table 2.

The information presented in Table 2 was gathered from the references presented in the parentheses below.
We also use the following abbreviations: HB - human bone (Lakes [47,48], Park and Lakes [54], Yang and
Lakes [65]), FPSF-PSF foam (Lakes [46,48]), FDP-dense polyurethane foam (Lakes [47,48]), FP-polyurethane
foam (Lakes [46,48]), FS-syntactic foam (Lakes [46,48]), WF300, WF110 and WF51-polymethacrylimide
foam of the corresponding grade (Anderson and Lakes [6]), AEC-aluminum–epoxy composite (Gauthier [34],
Gauthier and Jahsman [35,36]). We have to mention that most of the data presented in Table 2 can be found
in the papers Hassanpour and Heppler [40] and Lakes [48], but in a different form and different notations.

In order to validate the proposed higher order model of the micropolar plates, we (following Kvasov
and Steinberg [45] and Steinberg and Kvasov [61]) consider the bending of the square micropolar plate of
thickness2h = 0.1 m, made of polyurethane foam, subjected to the mechanical loading applied in the perpen-
dicular direction to the top surface of the plate. The values of the polyurethane foam elastic and micropolar
elasticmoduli are presented inTable 2, line four. The distribution of the appliedmechanical loading is sinusoidal
and has the form

b̃uz ,1(x, y) = B1,1
uz ,1

sin
(π

L
x
)

sin
(π

L
y
)

(6.3)

Here, L1 = L2 = L is the length of the plate side, B1,1
uz ,1

is an amplitude of the mechanical loading.
For the numerical calculation, we use Navier’s close form solutions presented for higher order theories

by Eqs. (3.1)–(3.5) and for CLEC presented by Eq. (4.3). Amplitude of the mechanical loading is taken
B1,1
uz ,1

= 106 (N/m2) for the cases 2h/L = 1/5, . . . , 1/15 and B1,1
uz ,1

= 105 (N/m2) for the case 2h/L =
1/20, . . . , 1/30. The results of the displacements and the rotations calculation for the orders M = 1, . . . , 4
models are presented in Table 3. Unfortunately, we cannot compare the obtained results with the ones reported
in Kvasov and Steinberg [45] and Steinberg and Kvasov [61] because in those papers calculations were done
for the wrong dimension of the micropolar moduli. For the right dimension of the classical and micropolar
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Table 3 Displacements and rotation of the free supported plate for the theories of order M = 1, . . . , 4

2h/L M ux (m) uz(m) ωx (rad) 2h/L M ux (m) uz(m) ωx (rad)

1
5 1 0.0 0.00666 0.00191 1

20 1 0.0 0.14136 0.01102
2 −0.00008 0.00624 0.00187 2 −0.00052 0.13437 0.01052
3 −0.00007 0.00638 0.00199 3 −0.00052 0.13461 0.01057
4 −0.00008 0.00638 0.00200 4 −0.00052 0.13461 0.01057

1
10 1 0.0 0.09201 0.01408 1

25 1 0.0 0.34339 0.02148
2 −0.00065 0.08719 0.01352 2 −0.00101 0.32655 0.02047
3 −0.00064 0.08778 0.01378 3 −0.00101 0.32692 0.02053
4 −0.00065 0.08778 0.01379 4 −0.00101 0.32692 0.02054

1
15 1 0.0 0.45207 0.04679 1

30 1 0.0 0.71013 0.03703
2 −0.00220 0.42928 0.04471 2 −0.00175 0.67544 0.03531
3 −0.00218 0.43070 0.04509 3 −0.00176 0.67597 0.03539
4 −0.00210 0.43070 0.04512 4 −0.00176 0.67597 0.03539

Fig. 1 Components ux and uz of the displacement vector of the micropolar plate in x direction

Fig. 2 Components ux and uz of the displacement vector of the micropolar plate in x and y directions

Fig. 3 Components ωx and ωy of the rotation vector of the micropolar plate in x and y directions, respectively
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Fig. 4 Components ωx and ωy of the rotation vector of the micropolar plate in x and y directions

Fig. 5 Components σxx and σzz of the force stress tensor of the micropolar plate in y direction

Fig. 6 Components σxx and σzz of the force stress tensor of the micropolar plate in x and y directions
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Fig. 7 Components σxx and σzz of the force stress tensor of the micropolar plate in y and z directions

Fig. 8 Components σxy and σxz of the force stress tensor of the micropolar plate in y direction

moduli refer to Table 2 (also see papers Carrera and Zozulya [19], Hassanpour and Heppler [40], Eremeyev et
al. [28,29], Kovvali and Hodges [43], Shaw [59], etc.).

In order to illustrate theory developed above of the higher order micropolar elastic beam using CUF, we
consider the micropolar elastic plate with 2h/L = 1/10 subjected to the mechanical loading applied to the
upper surfaces of the plate. Distribution of the applied mechanical loading has the form

b̃ux ,1(x, y) = B1,1
ux ,1

cos
(

π
L x

)

sin
(

π
L y

)

,

b̃uy ,1(x, y) = B1,1
uy ,1

sin
(

π
L x

)

cos
(

π
L y

)

,

b̃uz ,1(x, y) = B1,1
uz ,1

sin
(

π
L x

)

sin
(

π
L y

)

.

(6.4)

Analysis of the data presented in Table 3 as well as Figs. 1 and 3 shows that for theories of order M = 2 and
higher order the displacements and the rotations have almost the same values. Therefore, rest the calculations
have been done for the case M = 2. The results of calculations of the displacement and rotation field are
presented in Figs. 1, 2, 3 and 4. Components of the classical force and couple stress tensors are presented in
Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16. For the displacement and rotation field, we present line graphs
of their distribution along the line y = L/2 and surface graphs of their distribution along plane x, y. For the
classical force and couple stress tensors beside linear and surface graphs mentioned above, we also present
contour graphs of their distribution along the thickness.

The data presented in Table 3 and in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 give qualitative
and quantitative information about the behavior of the displacements, rotation as well as forced and couple
stress. Analysis of the equations of micropolar theory of plates based on the Kirchhoff hypothesis presented in
Altenbach and Eremeyev [2], Carrera and Zozulya [19] and Eringen [31] shows that equations for rotational
fields can be solved independently of displacement fields. It means that in this case the consistent theory of
micropolar plates cannot be developed. The result presented in Table 3 and in Figs. 1 and 3 for theories of
the first-order M = 1 coincides with one obtained using the micropolar theory of plated based on Mindlin’s
hypothesis presented in Sect. 5. It can be used as a benchmark example for the finite element analysis of
micropolar plates.

7 Conclusion

In this paper, we apply Navier’s method of the variables separation for higher-order theories for micropolar
plates based on the CUF approach. In this publication, the 2D micropolar plate theory is developed from
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Fig. 9 Components σxy and σxz of the force stress tensor of the micropolar plate in x and y directions

Fig. 10 Components σxy and σxz of the force stress tensor of the micropolar plate in y and z directions

Fig. 11 Components μxx and μyy of the couple stress tensor of the micropolar plate in y direction

general 3D equations of linear micropolar elasticity using the principle of virtual displacements and the CUF
approach. The obtained equations have been used here for the development of the close form Navier’s solution
and computation of the displacements, rotations as well as classical force and micropolar couple stress tensors.

A complete 2D system of the differential equations for the higher order theory of micropolar elastic plates
is presented here. Carrera and Zozulya [19] have been presented in details theoretical results and complete
system of the equations for micropolar plates based on the CUF approach. Whereas in this paper, Navier’s
closed-form solution for the case of the simply supported plate has been developed for the in general case
of higher order theory of micropolar plates based on CUF. For the case of The CLEC approximation theory,
elements of the matrix operators that are presented in the Navier’s closed-form solution are presented in the
explicate form. For the verification and application of the theories of the higher order micropolar plates based
on CUF that have been developed here, numerical examples have been considered and the influence of the
rotation field on the stress–strain fields has been analyzed.
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Fig. 12 Components μxx and μyy of the couple stress tensor of the micropolar plate in x and y directions

Fig. 13 Components μxx and μyy of the couple stress tensor of the micropolar plate in y and z directions

Fig. 14 Components μxy and μxz of the couple stress tensor of the micropolar plate in y direction

Theoretical and experimentalmethods to determinate the classical andmicropolar elasticmoduli of different
materials have been analyzed, and available experimental data have been presented in Nowacki’s notations.

The obtained equations can be used for stress–strain calculation as well as for modeling thin-walled
structures in macro-, micro- and nano-scales by taking into account micropolar couple stress and rotation
effects. The proposed models can especially be efficient in MEMS and NEMS modeling as well as computer
simulation.
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Fig. 15 Components μxy and μxz of the couple stress tensor of the micropolar plate in x and y directions

Fig. 16 Components μxy and μxz of the couple stress tensor of the micropolar plate in y and z directions
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Appendix

Higher order micropolar elastic plate
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Linear expansion case of micropolar plates
Bending mode
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Micropolar plates based on Mindlin’s hypothesis
Bending mode
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