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Abstract This work deals w ith the development and extension of higher-order models for delaminated doubly
curved composite shells with constant radii of curvatures. The mechanical model is based on the method of
four equivalent single layers and the system of exact kinematic conditions. A remarkable addition of this work
compared to some previous ones, is a modified and improved continuity condition between the delaminated
and undelaminated parts of the shell. Using the principle of virtual work, the equilibrium equations of the
shell systems are brought to the stage and solved by using the classical Lévy plate formulation under simply
supported conditions. Four different scenarios of elliptic and hyperbolic delaminated shells are investigated
providing the solutions for themechanical fields aswell as for the J-integral. The analytical results are compared
to 3D finite element calculations, and excellent agreement was obtained for the displacement components and
normal stresses. On the contrary, it was found that the transverse shear stresses are captured quite differently
by the proposed method and the finite element models. Although the role of shear stresses should not be
underrated, they seem to be marginal because the distributions of the J-integral components are in very good
agreement with the numerically determined energy release rates.

Keywords Delamination · Mixed mode II/III fracture · First-order shell theory · Second-order shell theory ·
Energy release rate

1 Introduction

Laminated plates and shells are the quite important parts of engineering structures (e.g., ship body, car body-
work, helmets, pressure vessels) [1–6]. The heterogeneous nature of laminated composite materials makes
them susceptible to many types of damage modes. Delamination or interlaminar fracture is one of the primary
failure modes in such materials [7–9]. Delamination physically means that the neighboring layers partially or
entirely get separated from each other reducing significantly the stiffness and strength of the laminate [10],
respectively. Apart from that even the dynamic properties of the structure alter significantly [11–13]. It is
therefore very important to develop models which are able to capture adequately the mechanical behavior of
delaminated composite structures.

The literature offers numerous classic and improved models for the computational analysis of laminated
plates and shells. The so-called equivalent single layer (ESL) theories are two-dimensional theories based on
suitable assumptions of kinematics and stress state along the thickness direction compared to those of three-
dimensional models. Obviously, the classical laminated plate and shell theories (CLPT and CST) [14,15] are
quite essential in this field. Eventually, the CLPT and CST theories are useful only if the structure does not
contain imperfections at all. On the contrary, if material defects, such as cracks and delaminations, appear
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in the structure, then higher-order theories are indispensable [14]. The basic idea of the first-order shear
deformation plate (FSDT) and shell theories (FST) [16–19] is to involve cross section rotations given by
parameters, which are independent of the deflection. This model is able to provide the sufficient accuracy in
most of the cases. If further improvement is required, such as the more accurate description of interlaminar
shear or normal stresses, then the second- (SSDT and SST) [20,21] and third-order shear deformation (TSDT
and TST) [16,17,22] theories might be taken into consideration, as well as other higher-order theories (HSDT)
[23–28]. Further developments can be achieved by adding the transverse stretching term to the displacement
field [12,29–33].

As a final word of this short introduction, the three-dimensional methods are mentioned. The so-called
elasticity solution [34,35] and the layerwise theories [36–42] are able to provide more accurate solutions for
thick laminates and strain and stress fields at the ply level.

The application of plate and shell theories to standard problems is well documented in the literature
[14,43,44]. On the other hand, if the structure contains interlaminar cracks and delaminations, then the problem
becomes significantly more complicated and its size increases considerably as well [45,46]. The related
literature offers several analytical [47–50] and numerical [51,52] methodologies, respectively. One of the
analytical solutions was developed by the current author, and the major works are briefly mentioned in the
sequel.

The through-width delamination means that the delamination passes through the whole width of the shell
with delamination front parallel to the width. In contrast, the expression of through-thickness is related to the
thicknesswise or normal direction perpendicularly to shell midsurface. The basic idea to model plates with a
through-width delamination is to apply a semi-layerwise modeling technique [53]. This means that the plate
or shell is divided by the surface of the delamination and the obtained sublaminates (the top and bottom parts)
are further divided into subparts by interface or perturbation surfaces. If only two ESLs are utilized (above and
below the delamination), then the method of 2ESLs is involved [53–55]. If there are two additional interface
(or perturbation) surfaces, then the method of 4ESLs is proposed [56] as shown in Fig. 1. Apparently, Fig. 1
introduces cases I-IV through shell elements by varying the location of delamination surface. The kinematic
continuity of the adjacent layers can be ensured by using the system of exact kinematic conditions (SEKC)
developed primarily for the first-order plates [57]. The latter work was followed by the extension of the basic
idea to the second- and third-order plates [57] as well as thick sandwich plates [21,32].

The main purpose of the mentioned series of works was to find an optimal candidate for a possible shell
finite element for the delamination analysis of laminated structures. This element could make it possible to
provide high accuracy in the calculation of energy release rates and to replace the computationally expensive
3D finite element models. In this work, the first-, second and third-order shell theories are applied together
with the method of 4ESLs to delaminated composite shells. The extension of the former models is a challenge,
because shells are significantlymore complex structures than plates. Thus, themodels are extended and applied
to elliptic and hyperbolic shells with constant radii of curvature including a through-width delamination. Many
of the existingworks dealswith shells having constant radii of curvatures. Shellswith variable radii of curvatures
can be analyzed by beam function method and Galerkin method [58] or extended Kantorovich-Ritz method
[59] using differential quadrature method [60] and the finite element method [14]. An important aspect of this
work is the determination of the mode-II and mode-III energy release rates (ERR) and their distributions along
the delamination front performed by the three-dimensional J-integral [61,62]. Finally, the results are compared
to 3D finite element calculations, and a discussion is given as well as some conclusions.

2 Partial semi-layerwise displacement field and continuity conditions

The proposed modeling technique belongs to the partial semi-layerwise theories, i.e., the transverse normal
stress is neglected [14]. Figure 1 shows differential shell elements with delamination. In Fig. 1, ξ1 and ξ2 are
curvilinear coordinates, ζ is the through-thickness coordinate, respectively. The whole laminate is captured by
four ESLs, and two ESLs are applied below and above the delamination. The surfaces between the adjacent
ESLs are called interface surfaces or perturbation surfaces. Figure 2a shows the ξ1-ζ plane of the cross section of
a delaminated shell. The lines crossing the section through the thickness represent the in-surface displacements
by the different theories and different regions. The distribution is linear by FST, quadratic by SST and cubic in
accordance with the TST. Figure 2b shows how the transverse shear strains are distributed over the thickness
of shell. The ξ2-ζ plane of the problem is shown in Fig. 3a, and the shear strains are plotted in Fig. 3b. In
the sequel, the equations of undelaminated and delaminated regions are presented separately and are based on
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Fig. 1 Shell elements with orthotropic plies and the position of delamination over the shell thickness for cases I–IV

(a) (b)

Fig. 2 Cross sections and deformation of the top and bottom elements of a delaminated composite shell in the ξ1-ζ plane (a).
Distribution of the transverse shear strains by FST and SST (b)

an assumed displacement field. To clarify the assumptions of the models, the strain–displacement relation of
doubly curved shells is applied and can be written as [14]:
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(a) (b)

Fig. 3 Cross sections and deformation of the top and bottom elements of a delaminated composite shell in the ξ2-ζ plane (a).
Distribution of the transverse shear strains by FST and SST (b)
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where ε1 and ε2 are the normal strains, γ denotes the shear strains, A1 = a1(1+ζ (i)/R1), A2 = a2(1+ζ (i)/R2)
are the Lamé parameters, u, v and w are the displacement parameters, index i refers to the actual ESL, a1 and
a2 are the scale factors, R1 and R2 are principal radii of curvatures in both directions. If the shell is shallow,
then 1+ζ (i)/R1 ∼= 1 and 1+ζ (i)/R2 ∼= 1. Also, in this paper, doubly curved shells with constant curvature are
considered only, i.e., a1=const. and a2=const. In accordance with Eqs. (1) and (2), it is clear that the strain field
depends upon the displacement components. Moreover, the strain field equations can be obtained in Cartesian
coordinate system through ∂/∂x = ∂/(a1∂ξ1) and ∂/∂y = ∂/(a2∂ξ2). The primary field parameter is the
displacement; thus, it is formulated separately for the undelaminated and delaminated parts of the shell.

2.1 Undelaminated part

The general third-order Taylor-expansion of the in-surface displacement functions results in the following
displacement field components [63]:

u(i)(ξ1, ξ2, ζ
(i)) = u0(ξ1, ξ2) + u0i (ξ1, ξ2) + θ(ξ1)i (ξ1, ξ2)ζ

(i) + φ(ξ1)i (ξ1, ξ2)[ζ (i)]2
+λ(ξ1)i (ξ1, ξ2)[ζ (i)]3,

v(i)(ξ1, ξ2, ζ
(i)) = v0(ξ1, ξ2) + v0i (ξ1, ξ2) + θ(ξ2)i (ξ1, ξ2)ζ

(i) + φ(ξ2)i (ξ1, ξ2)[ζ (i)]2
+λ(ξ2)i (ξ1, ξ2)[ζ (i)]3,

w(i)(ξ1, ξ2) = w(ξ1, ξ2), (3)

where i = 1..4 is the index of the actual ESL, ζ (i) is the local through thickness coordinate of the i th ESL
and always coincides with the local midplane, u0 and v0 are the global, u0i and v0i are the local membrane
displacements; moreover, θ means the rotations of cross sections about the ξ1 and ξ2 axes, φ denotes the
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second-order, and λ represents the third-order terms in the displacement functions. Finallyw(i) is the transverse
deflection function. Equation (1), which is the basic idea behind the third-order shear deformable shell theory
(TST), will be applied equally to the undelaminated and delaminated portions, and the continuity between
these parts will be established. In this work, only shear deformable shell models are developed, and in other
words, the deflection is inextensible in the through-thickness direction involving that w(i)(ξ1, ξ2) = w(ξ1, ξ2).
The displacement functions of the first-order (FST) and second-order shear deformable shell theory (SST) can
be obtained by reducing Eq. (3) and setting φ(ξ1)i = φ(ξ2)i = 0 and λ(ξ1)i = λ(ξ2)i = 0, respectively [64,65].
The displacement field given by Eq. (3) is associated with each ESL.

The displacement vector field for the i th ESL isu(i) = (u(i) v(i) w(i)
)T. The layerwise kinematic continuity

between the displacement fields of adjacent ESLs is established by the system of exact kinematic conditions
(SEKC), which was originally developed in [20,53,55–57]. The SEKC is the set of continuity conditions
against the displacement and shear strain components. Similar conditions have been applied by others too,
e.g., [14,42,51]. The first set of conditions formulates the continuity of the in-surface (ξ1, ξ2) and transverse
(ζ ) displacements between the neighboring plies as (refer to Figs. 2 and 3):

(u(1), v(1), w(1))
∣∣
ζ (1)=t1/2

= (u(2), v(2), w(2))
∣∣
ζ (2)=−t2/2

,
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,
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∣∣
ζ (4)=−t4/2

, (4)

where ti , i = 1..4 are the thicknesses of ESLs. The second set of conditions defines the global membrane
displacements (u0, v0) at the reference surface of the actual region. The reference surface belongs to the second
ESL (see Fig. 2); therefore, the following condition is imposed:

(u(2), v(2))
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ζ (2)=ζ

(2)
R

= (u0(ξ1, ξ2), v0(ξ1, ξ2)), (5)

where ζ
(2)
R = 1/2(t3 + t4 − t1) is the position of the global midsurface of the model with respect to ESL2 (see

Fig. 2). The next set of conditions imposes the continuous shear strains at the interface surfaces [66]:

(γ1ζ(1), γ2ζ(1))
∣∣
ζ (1)=t1/2

= (γ1ζ(2), γ2ζ(2))
∣∣
ζ (2)=−t2/2

,

(γ1ζ(2), γ2ζ(2))
∣∣
ζ (2)=t2/2

= (γ1ζ(3), γ2ζ(3))
∣∣
ζ (3)=−t3/2

,

(γ1ζ(3), γ2ζ(3))
∣∣
ζ (3)=t3/2

= (γ1ζ(4), γ2ζ(4))
∣∣
ζ (4)=−t4/2

, (6)

where the shear strains are determined by Eq. (2). This equation set is applicable only to the second- and
third-order shells, refer to Figs. 2b and 3b. Although the continuity of shear strains seems to be wrong, if the
shear moduli of the neighboring layers are relatively close to each other, then this condition works perfectly.
Moreover, it makes it possible to reduce the number of displacement parameters and the mathematical size
of the problem. It should be mentioned that if the mismatch between the shear moduli of adjacent layers is
relatively large, as it is in the case of softcore sandwich plates, then this condition should be ignored [21]. The
oscillations in the shear strain distribution can be reduced by ensuring continuous shear strain derivatives at
interface surfaces 1-2 and 3-4:(
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furthermore, by imposing continuous second derivatives of shear strains in the same surfaces by using the
conditions below: (

∂2γ1ζ(1)

∂(ζ (1))2
,
∂2γ2ζ(1)

∂(ζ (1))2

)∣∣∣∣
ζ (1)= t1

2

=
(

∂2γ1ζ(2)

∂(ζ (2))2
,
∂2γ2ζ(2)

∂(ζ (2))2

)∣∣∣∣
ζ (2)=− t2

2

,

(
∂2γ1ζ(3)

∂(ζ (3))2
,
∂2γ2ζ(3)

∂(ζ (3))2

)∣∣∣∣
ζ (3)= t3

2

=
(

∂2γ1ζ(4)

∂(ζ (4))2
,
∂2γ2ζ(4)

∂(ζ (4))2

)∣∣∣∣
ζ (4)=− t4

2

. (8)



66 A. Szekrényes

Table 1 Primary parameters of the different shell theories, undelaminated part, p = ξ1 or ξ2. The parameter in the circle is an
autocontinuity parameter [57]

TST & SST θ(p)2, φ(p)2 , θ(p)4, φ(p)4

FST θ(p)1 , θ(p)2 , θ(p)3 , θ(p)4

Obviously the latter two sets of conditions are again applicable only for the second- and third-order shells in
accordance with Figs. 2b and 3b. To further reduce the number of parameters in the displacement field and to
obtain more accurate results, the so-called shear strain control condition (SSCC, [56]) is applied at the top and
bottom boundaries of the undelaminated part:

(γ1ζ(1), γ2ζ(1))
∣∣
ζ (1)=−t1/2

= (γ1ζ(4), γ2ζ(4))
∣∣
ζ (4)=t4/2

. (9)

In Eq. (3), the displacement functions are modified in order to satisfy Eqs. (4)–(9). In the general sense, by
applying the FST, SST and TST theories the in-surface displacement functions can be written as:

u(i)(ξ1, ξ2, ζ ) = u0(ξ1, ξ2) +
(
K (0)

(u)i j + K (1)
(u)i jζ

(i) + K (2)
(u)i j

[
ζ (i)
]2 + K (3)

(u)i j

[
ζ (i)
]3)

ψ(1) j , (10)

v(i)(ξ1, ξ2, ζ ) = v0(ξ1, ξ2) +
(
K (0)

(v)i j + K (1)
(v)i jζ

(i) + K (2)
(v)i j

[
ζ (i)
]2 + K (3)

(v)i j

[
ζ (i)
]3)

ψ(2) j , (11)

w(i)(ξ1, ξ2, ζ ) = w(ξ1, ξ2), (12)

where K(p)i j , (p = u or v) is the displacement multiplicator matrix and related exclusively to the geometry
(ESL thicknesses and radii of curvatures), i refers to the ESL number, the summation index j defines the
component in ψ , which is the vector of primary parameters. Subscript u and v indicates the corresponding
direction (ξ1 or ξ2); finally, w(i)(ξ1, ξ2) = w(ξ1, ξ2) for each ESLs, i.e., the transverse normal of each ESL is
inextensible [14]. Equations (10)–(11) can be obtained by parameter elimination [21]. It is important to note that
the size and the elements ofψ depend on the applied theory, the number of ESLs and the number of conditions
applied. Tables 1 and 2 collect a possible choice of primary parameters for the undelaminated and delaminated
parts as well. The parameters in circle are the so-called autocontinuity parameters [57]. The corresponding
K(p)i j multiplicator matrix elements (in Cartesian coordinate system) are presented in “Appendix A” for the
FST and SST theories assuming shallow shell geometry. The multiplicator matrix elements of TST theory are
so lengthy that these are not presented in this work at all.

2.2 Delaminated part

In the delaminated region (refer to Fig. 1), the top and bottom surfaces are equally modeled by two ESLs, and
thus, the first and third of Eq. (4) still hold in each theory. In accordance with Eq. (2), the transverse deflections
of the top and bottom shells of the delaminated region are identical (constrained mode model, [55]). The main
aim of the analysis was to develop a shell model to capture the delamination effect with good accuracy and to
verify the analytical model by FE calculations under the same conditions, i.e., without the contact mechanics.
The contact conditions—which would make the problem nonlinear—are not considered in this work being
a linear analysis; however, this should be one of the next future steps. The definition of the top and bottom
reference surfaces involves:

(u(1), v(1))
∣∣
ζ (1)=t2/2

= (u0b(ξ1, ξ2), v0b(ξ1, ξ2)),

(u(3), v(3))
∣∣
ζ (3)=t4/2

= (u0t (ξ1, ξ2), v0t (ξ1, ξ2)), (13)

where u0b and u0t are the global membrane displacements of the bottom and top shells (refer to Figs. 2 and 3).
This implies that in Eq. (3) u0 and v0 should be replaced by u0b and v0b for ESL1 and ESL2, moreover by u0t
and v0t for ESL3 and ESL4, respectively. Furthermore, the first and third of Eq. (4) apply again, as well as
Eqs. (5)–(6). Three other equations are formulated by using the shear strain control conditions:

(γ1ζ(1), γ2ζ(1))
∣∣
ζ (1)=−t1/2

= (γ1ζ(2), γ2ζ(2))
∣∣
ζ (2)=t2/2

,
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Table 2 Primary parameters of the different shell theories, delaminated part, p = ξ1 or ξ2

TST & SST (u0b; v0b), (u0t ; v0t ), θ(p)2 , θ(p)4 , φ(p)4

FST θ(p)1 , θ(p)2 , θ(p)3 , θ(p)4

(γ1ζ(3), γ2ζ(3))
∣∣
ζ (3)=−t3/2

= (γ1ζ(4), γ2ζ(4))
∣∣
ζ (4)=t4/2

,

(γ1ζ(1), γ2ζ(1))
∣∣
ζ (1)=−t1/2

= (γ1ζ(4), γ2ζ(4))
∣∣
ζ (4)=t4/2

, (14)

Using the equations above, the displacement field can be given by the following equations:

u(i)(ξ1, ξ2, ζ ) =
(
K (0)

(u)i j + K (1)
(u)i jζ

(i) + K (2)
(u)i j [ζ (i)]2 + K (3)

(u)i j [ζ (i)]3
)

ψ(1) j , i = 1..2,

v(i)(ξ1, ξ2, ζ ) =
(
K (0)

(v)i j + K (1)
(v)i jζ

(i) + K (2)
(v)i j [ζ (i)]2 + K (3)

(v)i j [ζ (i)]3
)

ψ(2) j , i = 1..2, (15)

u(i)(ξ1, ξ2, ζ ) =
(
K (0)

(u)i j + K (1)
(u)i jζ

(i) + K (2)
(u)i j [ζ (i)]2 + K (3)

(u)i j [ζ (i)]3
)

ψ(1) j , i = 3..4,

v(i)(ξ1, ξ2, ζ ) =
(
K (0)
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(v)i jζ

(i) + K (2)
(v)i j [ζ (i)]2 + K (3)

(v)i j [ζ (i)]3
)

ψ(2) j , i = 3..4,

w(i)(ξ1, ξ2, ζ ) = w(ξ1, ξ2), i = 1..4, (16)

where the K(p)i j multiplicator matrix elements can be obtained by applying the above-mentioned equations
to Eq. (1). The K(p)i j elements are collected in “Appendix A” for the FST and SST theories. Quite similar
to the undelaminated part, Table 2 collects the primary parameters chosen for the delaminated part. It may
be surprising that even the membrane displacements are treated as primary parameters in Table 2, in contrast
to Table 1. This can be perceived by considering the conditions against the transverse shear strains (e.g., Eq.
(14)) and the fact that according to Eq. (2) shear strains depend on the membrane displacements too.

3 The strain and stress fields

Applying Eqs. (1)–(2) to the displacement field by Eqs. (10)–(12) for the undelaminated part or Eq. (15) for
the delaminated part yields:

⎛
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The vector of transverse shear strains is:
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)
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To determine the stress field, we apply the constitutive equation for orthotropic materials under plane stress

state, which is σ
(m)
(i) = C

(m)

(i) ε(m) [14,15], leading to:

⎛
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σ1
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τ1ζ
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where C
(m)

(i) is the stiffness matrix of the mth layer within the i th ESL.
For the delaminated part, the form of the strain and stress fields is the same as those by Eqs. (17)–(18);

however, Eqs. (15)–(16) have to be involved when Eqs. (1)- (2) are applied.
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4 Governing partial differential equations

To derive the governing equations of the shell system, we apply the virtual work principle [14,67]:

T1∫
T0

(δU − δWF )dt = 0, δU =
∑
i

δU(i), δWF =
∑
i

δWF(i) (20)

where U is the strain energy,WF is the work of external forces, and t is the time (L = U −WF is the Lagrange
function). To derive the equilibrium equations of the shell system in a compact and invariant form, we define
the following vectors:

N(1,12)
i = (

N1 N12
)T
(i) , N(12,2)

i = ( N12 N2
)T
(i) ,

M(1,12)
i = (

M1 M12
)T
(i) , M(12,2)

i = (M12 M2
)T
(i) , (21)

where it was assumed that N12 = N21, etc. The vectors of higher-order stress resultants become:

L(1,12)
i = (

L1 L12
)T
(i) , L(12,2)

i = ( L12 L2
)T
(i) ,

P(1,12)
i = (

P1 P1
)T
(i) , P(12,2)

i = ( P12 P2
)T
(i) . (22)

Finally, the vector of shear forces becomes:

Qi = ( Q1 Q2
)T
(i) . (23)

In the sequel, the equilibrium equations are derived separately for the undelaminated and delaminated regions.

4.1 Undelaminated region

The application of virtual work principle [14] to the undelaminated region of the shell leads to three sets of
equations. The first set is related to the in-surface equilibrium of the following stress resultants:

δu0 :
4∑

i=1

∇̂ · N(1,12) + a1a2
R1

Q1(i)+a1
2

(
1

R1
− 1

R2

)
M12(i),2 = 0,

δv0 :
4∑

i=1

∇̂ · N(12,2) + a1a2
R2

Q2(i)−a2
2

(
1

R1
− 1

R2

)
M12(i),1 = 0, (24)

where ∇̂ = a2(..),1e1 + a1(..),2e2 (e1 and e2 are shown in Fig. 1). The second set of equations is related to the
elements of the vector of primary parameters:

δψ(1) j :
δψ(2) j :

} 4∑
i=1

(
K (0)

(u)i j ∇̂ · N(1,12)

K (0)
(v)i j ∇̂ · N(12,2)

)
+
(
K (1)

(u)i j ∇̂ · M(1,12)

K (1)
(v)i j ∇̂ · M(12,2)

)
+
(
K (2)

(u)i j ∇̂ · L(1,12)

K (2)
(v)i j ∇̂ · L(12,2)

)

+
(
K (3)

(u)i j ∇̂ · P(1,12)

K (3)
(v)i j ∇̂ · P(12,2)

)
− a1a2

(
(R1K

(1)
(u)i j − K (0)

(u)i j )/R1 · Q1(i)

(R2K
(1)
(v)i j − K (0)

(v)i j )/R2 · Q2(i)

)

−2a1a2

(
K (2)

(u)i j R1(i)

K (2)
(v)i j R2(i)

)
− a1a2

(
(3R1K

(3)
(u)i j + K (2)

(u)i j )/R1 · S1(i)
(3R2K

(3)
(v)i j + K (2)

(v)i j )/R2 · S2(i)

)
=
(
0
0

)
. (25)

The last equation represents the equilibrium of shear and membrane forces:

4∑
i=1

∇̂ · Qi − a1a2

4∑
i=1

(
N1(i)

R1
+ N2(i)

R2

)
+q = 0, (26)
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where q is the function of external load. As a next step we write the equilibrium equations in Cartesian
coordinate system (x, y and ζ ) by [14]:

∂

∂x
= 1

a1

∂

∂ξ1
,

∂

∂y
= 1

a2

∂

∂ξ2
. (27)

Applying Eq. (27) and dividing Eqs. (24)–(26) by a1a2, it is possible to obtain:

δu0 :
4∑

i=1

(
∇ · N(1,12) + Q1(i)

R1
+C0M12(i),y

)
= 0,

δv0 :
4∑

i=1

(
∇ · N(12,2) + Q2(i)

R2
− C0M12(i),x

)
= 0, (28)

where [14]:

C0 = 1

2

(
1

R1
− 1

R2

)
. (29)

Moreover, we have:

δψ(1) j :
δψ(2) j :

} 4∑
i=1

(
K (0)

(u)i j∇ · N(1,12)

K (0)
(v)i j∇ · N(12,2)

)
+
(
K (1)

(u)i j∇ · M(1,12)

K (1)
(v)i j∇ · M(12,2)

)
+
(
K (2)

(u)i j∇ · L(1,12)

K (2)
(v)i j∇ · L(12,2)

)

+
(
K (3)

(u)i j∇ · P(1,12)

K (3)
(v)i j∇ · P(12,2)

)
−
(

(R1K
(1)
(u)i j − K (0)

(u)i j )/R1 · Q1(i)

(R2K
(1)
(v)i j − K (0)

(v)i j )/R2 · Q2(i)

)

−2

(
K (2)

(u)i j R1(i)

K (2)
(v)i j R2(i)

)
−
(

(3R1K
(3)
(u)i j + K (2)

(u)i j )/R1 · S1(i)
(3R2K

(3)
(v)i j + K (2)

(v)i j )/R2 · S2(i)

)
=
(
0
0

)
. (30)

The equation of shear and in-surface forces reduces to:

4∑
i=1

∇ · Qi −
4∑

i=1

(
N1(i)

R1
+ N2(i)

R2

)
+q = 0. (31)

The stress resultants in Eqs. (28)–(31) are determined based on the assumption of shallow shells by considering
that 1 + ζ/R1 ∼= 1 and 1 + ζ/R2 ∼= 1 [14]. Thus, in this case the stress resultants are approximated as:

⎛
⎜⎝

Nαβ

Mαβ

Lαβ

Pαβ

⎞
⎟⎠

(i)

=
ti/2∫

−ti /2

σαβ

⎛
⎜⎝

1
ζ

ζ 2

ζ 3

⎞
⎟⎠

(i)

dζ (i),

⎛
⎝ Qα

Rα

Sα

⎞
⎠

(i)

=
ti/2∫

−ti/2

ταζ

⎛
⎝ 1

ζ

ζ 2

⎞
⎠

(i)

dζ (i), (32)

where α and β take 1 or 2. Taking the constitutive law by Eq. (19) back into Eq. (32) yields [14,21]:

⎛
⎜⎝

{N }
{M}
{L}
{P}

⎞
⎟⎠

(i)

=
⎡
⎢⎣
[A] [B] [D] [E]
[B] [D] [E] [F]
[D] [E] [F] [G]
[E] [F] [G] [H ]

⎤
⎥⎦

(i)

⎛
⎜⎜⎝

{ε(0)}
{ε(1)}
{ε(2)}
{ε(3)}

⎞
⎟⎟⎠

(i)

, (33)

⎛
⎝ {Q}

{R}
{S}

⎞
⎠

(i)

=
⎡
⎣ [A] [B] [D]
[B] [D] [E]
[D] [E] [F]

⎤
⎦

(i)

⎛
⎝ {γ (0)}

{γ (1)}
{γ (2)}

⎞
⎠

(i)

, (34)
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(a) (b)

Fig. 4 Simply supported doubly curved elliptic (a) and hyperbolic (b) delaminated composite shells subjected to a concentrated
force

where Apq is the extensional, Bpq is coupling, Dpq is the bending, Epq , Fpq , Gpq and Hpq are higher-order
stiffnesses defined as [21]: (

Apq , Bpq , Dpq , Epq , Fpq ,Gpq , Hpq
)
(i)

=
Nl(i)∑
m=1

ζ
(i)
m+1∫

ζ
(i)
m

C
(m)

pq (1, ζ, ζ 2, ζ 3, ζ 4, ζ 5, ζ 6)(i)dζ (i), (35)

The equations of the delaminated part can be obtained similarly.

4.2 Delaminated region

Taking Eqs. (15)–(16) into consideration while formulating Eq. (20) (similarly to the undelaminated region)
results in identical equilibrium equations with those given by Eqs. (30)–(31) in accordance with Table 2.

5 Lévy method and state space solution

Analytical solution of the presented system of PDEs is possible under Lévy type boundary conditions [68].
Figure 4 shows simply supported elliptic (a) and hyperbolic (b) delaminated shells built-up by layers made out
of orthotropic material. The shells are divided into four parts: 1 , 1q and 1a are the parts of the delaminated

region, 2 is the undelaminated region. Region 1q is the delaminated region subjected to the uniform line

load. The region denoted by 1a is a delaminated region, and finally, region 1 is the delaminated part between

the undelaminated part 2 and 1q . The concentrated force was captured by a uniformly distributed line load
over a finite length. In accordance with Fig.4, the line load was distributed over the length of 2d0 and xQ is the
point of action of the resultant force, F . For each region, the models presented in Sects. 2–4 should be applied.

The basic idea of Lévy formulation is that the primary displacement parameters (presented in Tables 1
and 2), the external load parameter, q in Eq. (31), the deflection, w(x, y) and the membrane displacements are
expressed by trial functions in the form of:

{
ψ(1)i (x, y)
ψ(2)i (x, y)

}
=

∞∑
n=1

{
Φ(1)in(x) sin βy
Φ(2)in(x) cosβy

}
,

⎧⎪⎨
⎪⎩

u(x, y)
v(x, y)
q(x, y)
w(x, y)

⎫⎪⎬
⎪⎭ =

∞∑
n=1

⎧⎪⎨
⎪⎩
Un(x) sin βy
Vn(x) cosβy
Qn(x) sin βy
Wn(x) sin βy

⎫⎪⎬
⎪⎭, (36)
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where β = nπ/b, b is the shell width (see Fig. 4), Qn is defined in [56,57]. In the next step, we take the
trial functions in Eq. (37) back into the strain field (Eqs. (17)–(18)). This is followed by expressing the stress
resultants in accordance with Eqs. (33)–(34). Finally, to reduce the system of PDEs to system of ODEs, we
can employ the equilibrium equations given by Eqs. (28)–(31). The system of ODEs can be solved by the
state-space approach [44], and the state-space model of the shell system takes the form below: [14,44]:

Z′ = TZ + F, (37)

where Z is the state vector, T is the system matrix, F is the vector related to the external load, and the comma
means differentiation with respect to x . The general solution of Eq. (37) becomes [44]:

Z(x) = eTx

⎛
⎝K +

x∫
x∗

e−Tξ F(ξ)dξ

⎞
⎠ = G(x)K + H(x), (38)

where K is the vector of constants, x∗ is the lower integration bound for the different regions of the problems
in Fig. 4. The parameters of the state vector can be expressed through:

Z (d)
i =

r∑
j=1

G(d)
i j K (d)

j + H (d)
j , Z (ud)

i =
s∑

j=1

G(ud)
i j K (ud)

j + H (ud)
j , (39)

where subscript (d) = 1 , 1a or 1q refers to the delaminated, while (ud) = 2 refers the undelaminated
shell portion, r and s are the size of vectors and matrices of these parts, respectively.

5.1 Generalized continuity conditions

The generalized continuity conditions between regions 1 and 2 in Fig. 4 can be written as:

⎛
⎜⎜⎜⎝

gα

hα

mα

nα

pα

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

(1)

x=+0

=

⎛
⎜⎜⎜⎝

gα

hα

mα

nα

pα

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

(2)

x=−0

, (40)

where g, h,m, n and p denote parameter sets or functions defined in the sequel.

– The continuity of deflection, its derivatives and the primary parameters can be defined by a parameter set
given by:

g(l)
α = (w,

∂w

∂x
, ....., ψ(p) j ; j = 1..Min(ql)), (41)

where l denotes the actual region ( 1 or 2 ) and ql is the number of parameters in ψ(p) j in both regions.
We note that ql is the total number of parameters in ψ(p) j . As an example, for the TST model in Table 1,
there are four parameters, and on the other hand, in Table 2, we have three, (excluding the membrane
displacements) and thus for the TST theory with 4ESLs Min(ql) = 3.

– The continuity condition of membrane displacement parameters can be imposed by using the following
functions: [21]:

h(1)
α =

q1∑
j=1

(
K (0)

(u)1 jψ(1) j

K (0)
(u)1 jψ(2) j

)∣∣∣∣∣∣
(1)

,

h(2)
α =

(
u0
v0

)
+

q2∑
j=1

(
K (0)

(u)1 jψ(1) j

K (0)
(u)1 jψ(2) j

)∣∣∣∣∣∣
(2)

,
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m(1)
α =

q1∑
j=1

(
K (0)

(u)3 jψ(1) j

K (0)
(v)3 jψ(2) j

)∣∣∣∣∣∣
(1)

,

m(2)
α =

(
u0
v0

)
+

q2∑
j=1

(
K (0)

(u)3 jψ(1) j

K (0)
(v)3 jψ(2) j

)∣∣∣∣∣∣
(2)

. (42)

In accordance with Eq. (42), the membrane displacement continuity requires the imposition of the condi-
tions above for a single layer in the bottom and a single one in the top shell.

– Since ql is not always the same number for the delaminated and undelaminated parts of the shell, it is
required to define the so-called autocontinuity (AC) condition by [56,57]:

n(l)
α =

ql∑
j=1

(
K (ϑ)

(u)κ jψ(1) j

K (ϑ)
(v)κ jψ(2) j

)∣∣∣∣∣∣
(l)

, (43)

where ϑ = 1, 2, 3 depending on the order of multiplicator matrix, κ is the ESL number that the AC
parameter is associated with (see Tables 1 and 2). The AC is not required for the FST, but it is for the SST
and TSTmodels. The application of Eq. (43) to the latter two theories involves the following. In accordance
with Table 1, the AC parameter is φ(p)2 in the undelaminated part, and this is a second-order parameter in
Eq. (3); thus, ϑ = 2. Moreover, it belongs to the second ESL, and therefore, κ = 2 as well. This results in
the following:

(
φ(1)2
φ(2)2

)∣∣∣∣
(2)

x=−0
=

q1=5∑
j=1

(
K (2)

(u)2 jψ(1) j

K (2)
(v)2 jψ(2) j

)∣∣∣∣∣∣
(1)

x=+0

. (44)

– The continuity conditions of stress resultants can be defined by:

p(l)
α =

( ∑
i=1..k

N(1,12)
i ,M̂

(1,12)
1 ..., L̂

(1,12)
1 ..., P̂

(1,12)
1 , ...

)∣∣∣∣∣
(l)

, (45)

where the vectors including the hat mean equivalent stress resultants. Since Eq. (45) plays a key role in the
accuracy of the solution, the equations sets are detailed for each theory. In the case of the FST theory, the
rotations are primary parameters; thus, the continuity of bending moments should be imposed by:

(
M̂1

M̂12

)(1)

( j)

∣∣∣∣∣
x=+0

=
(

M̂1

M̂12

)(2)

( j)

∣∣∣∣∣
x=−0

, (46)

where: (
M̂1

M̂12

)(l)

( j)

=
(

M1
M12

)(l)

( j)
+

4∑
i=1

(
K (0)(l=2)

(u)i j N (l)
1(i)

K (0)(l=2)
(v)i j N (l)

12(i)

)
, j = 1..4, (47)

where it is important to highlight that the multiplicator matrices of the undelaminated region (l = 2) are
equally involved for both sides of the equation [69]. Equation (46) means eight conditions. If the SST or
TST theories are considered, then six conditions are formulated against the equivalent stress resultants:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M̂(u)12

M̂(u)34

M̂(v)12

M̂(v)34

L̂(u)1234

L̂(v)1234

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1)

( j)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x=+0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M̂(u)12

M̂(u)34

M̂(v)12

M̂(v)34

L̂(u)1234

L̂(v)1234

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

( j)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x=−0

(48)
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where:

M̂ (l)
(u)12 =

2∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

K (0)
(u)i1 + K (0)

(u)i3

K (1)
(u)i1 + K (1)

(u)i3

K (2)
(u)i1 + K (2)

(u)i3

K (3)
(u)i1 + K (3)

(u)i3

⎞
⎟⎟⎟⎟⎟⎠

(l=2)

(
N1(i) M1(i) L1(i) P1(i)

)(l)
(49)

M̂ (l)
(u)34 =

4∑
i=3

⎛
⎜⎜⎜⎜⎜⎝

K (0)
(u)i1 + K (0)

(u)i3

K (1)
(u)i1 + K (1)

(u)i3

K (2)
(u)i1 + K (2)

(u)i3

K (3)
(u)i1 + K (3)

(u)i3

⎞
⎟⎟⎟⎟⎟⎠

(l=2)

(
N1(i) M1(i) L1(i) P1(i)

)(l)
(50)

M̂ (l)
(v)12 =

2∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

K (0)
(v)i1 + K (0)

(v)i3

K (1)
(v)i1 + K (1)

(v)i3

K (2)
(v)i1 + K (2)

(v)i3

K (3)
(v)i1 + K (3)

(v)i3

⎞
⎟⎟⎟⎟⎟⎠

(l=2)

(
N12(i) M12(i) L12(i) P12(i)

)(l)
(51)

M̂ (l)
(v)34 =

4∑
i=3

⎛
⎜⎜⎜⎜⎜⎝

K (0)
(v)i1 + K (0)

(v)i3

K (1)
(v)i1 + K (1)

(v)i3

K (2)
(v)i1 + K (2)

(v)i3

K (3)
(v)i1 + K (3)

(v)i3

⎞
⎟⎟⎟⎟⎟⎠

(l=2)

(
N12(i) M12(i) L12(i) P12(i)

)(l)
(52)

L̂(l)
(u)1234 =

4∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

K (0)
(u)i2 + K (0)

(u)i4

K (1)
(u)i2 + K (1)

(u)i4

K (2)
(u)i2 + K (2)

(u)i4

K (3)
(u)i2 + K (3)

(u)i4

⎞
⎟⎟⎟⎟⎟⎠

(l=2)

(
N1(i) M1(i) L1(i) P1(i)

)(l)
(53)

L̂(l)
(v)1234 =

4∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

K (0)
(v)i2 + K (0)

(v)i4

K (1)
(v)i2 + K (1)

(v)i4

K (2)
(v)i2 + K (2)

(v)i4

K (3)
(v)i2 + K (3)

(v)i4

⎞
⎟⎟⎟⎟⎟⎠

(l=2)

(
N12(i) M12(i) L12(i) P12(i)

)(l)
(54)

where l = 1 or 2 but again l = 2 is fixed for the multiplicator matrices and refers to the undelaminated
region.

The continuity conditions between regions 1 - 1q and 1q - 1a for the problems in Fig. 4 are imposed by :

g(1)
β

∣∣∣
x=xQ−d0

= g(1q)
β

∣∣∣
x=xQ−d0

,

g(1)
γ

∣∣∣
x=xQ−d0

= g(1q)
γ

∣∣∣
x=xQ−d0

,

g(1q)
β

∣∣∣
x=xQ+d0

= g(1a)
β

∣∣∣
x=xQ+d0

,

g(1q)
γ

∣∣∣
x=xQ+d0

= g(1a)
γ

∣∣∣
x=xQ+d0

,

(55)
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where the parameter sets are [21]:

g(l)
β = (w,

∂w

∂x
, ....., u0b, u0t , v0b, v0t , ψ(p) j ; j = 1..ql), p = 1, 2,

g(l)
γ =

(
2∑

i=1

N(1,12)
i ,

4∑
i=3

N(1,12)
i , M(1,12)

i .., L(1,12)
i .., P(1,12)

i ..

)∣∣∣∣∣
(l)

, (56)

where i = 1..4 if not fixed. It is important to note that Eqs.(55) and (56) depend on the applied theory. As a
matter of fact, for the FST model the conditions against N and M should be imposed, for the SST and TST
even the condition with respect to L is required.

5.2 Boundary conditions

The boundary conditions of the problems in Fig. 4 for the SST and TSTmodels are detailed here. The boundary
conditions are imposed at region 1a in Fig. 4 as:

(w, v0b, v0t , θ(ξ2)2, θ(ξ2)4, φ(ξ2)4)
∣∣(1a)

x=a = 0,(
2∑

i=1

N1(i),

4∑
i=3

N1(i)

)∣∣∣∣∣
(1a)

x=a

= 0,

(M1(1) + M1(2), M1(3) + M1(4), L1(4))
∣∣(1a)

x=a = 0. (57)

For region 2 , the conditions are:

(w, v0, θ(ξ2)1, φ(ξ2)2, θ(ξ2)4, φ(ξ2)4)
∣∣(2)
x=−c = 0,

( 4∑
i=1

N1(i), M1(1) + M1(2), M1(3) + M1(4), L1(2), L1(4)

)∣∣∣∣∣
(2)

x=−c

= 0. (58)

For the SST and FST theories, the boundary conditions can be obtained similarly (refer to [21]).

6 Finite element model

In the next subsections, the solution of the problems in Fig. 4 is presented. The lay-up of the shell is given
by Fig. 1, and the elastic properties of layers are listed in Table 3. The finite element models of the delami-
nated elliptic and hyperbolic shells were also created in ANSYS environment using 3D isoparametric SOLID
elements with linear interpolation, and themechanical fields were calculated. The FEmodel employed to deter-
mine the transverse displacement and energy release rates is shown in Fig. 5. In the vicinity of the delamination,
tip mesh refinement was done, as it can be seen in Fig. 5. The energy release rates are determined by the virtual
crack closure technique (VCCT) [70,71]. The crack tip element sizes were: �ξ1=0.25 mm, �ξ2=1.015 mm
and �ζ=0.25 mm. mm, respectively. These values were determined in accordance with the recommendations
of the literature meaning that �ξ1 and �ζ should be between one quarter and one half of the thickness of one
layer, which is 0.5 mm (refer to Fig. 1). [70,72] . To determine the distribution of displacements and stresses
over the thickness, the mesh shown in Fig. 4 was refined and the number of elements was twice of the original
mesh in each direction. The two different meshes resulted in essentially the same transverse displacements.

The geometrical data are: a = 105mm, b = 100 mm, c = 45mm and xQ = 31mm. The load is F = 1000

N. The lay-up of the plate is [±45 f /0/ ± 45 f
2 /0̄]S , which is shown in Fig. 1. The radii of curvatures were

R1 = 300, R2 = 200 for the elliptic shell and R1 = 300, R2 = −200 for the hyperbolic shell ([mm]),
respectively.
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Table 3 Elastic properties of single carbon/epoxy composite laminates

E1 E2 E3 G23 G13 G12 ν23 ν13 ν12
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [-] [-] [-]

±45 f 16.39 16.39 16.4 5.46 5.46 16.4 0.5 0.5 0.3
0 148 9.65 9.65 4.91 4.66 3.71 0.27 0.25 0.3

Fig. 5 3D FE model of an elliptic composite shell with delamination

7 Results and discussions

Results are presented for the mechanical fields (displacement and stress) as well as for the ERRs and mode
mixities. The effect of shell geometry and delamination position on the results is demonstrated.

7.1 Displacement and stress fields

In this subsection, the results of the developed analytical model and those of the 3D FE model are compared
to each other. The main aspect is the verification of the analytical model. The deflection of the middle curve
(y = b/2) of the mid-surface of the shell is plotted in Fig. 6 for the elliptical shell (R1 = 300 mm, R2 = 200
mm) including cases I and III (refer to Fig. 1). The agreement with the numerical results is undeniably good.
Out of the three theories, the highest displacement is provided by the TST model, it is followed by the SST
and the FST is placed third for both cases I and III. If the shell mid-surface is hyperbolic (R1 = 300 mm,
R2 = −200mm), then the results for cases II and IV presented in Fig. 7 were obtained. The agreement between
analytical and numerical results is again quite good. However, the ranking of the theories turns about, and this
time the FST theory gives the highest deflection at each point, the runner-up is the SST theory, and finally, the
TST is placed third, respectively.

In many previous works, the deflection function was a primary indicator to assess the accuracy of a plate
theory [56,57]. Following this concept, each theory seems definitely to have sufficient accuracy compared to
the FE model. The next stage is to elaborate how the in-surface displacements, the normal and shear stresses
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(a)

(b)

Fig. 6 Comparison of deflections at Y = b/2 determined by FE analysis FST, SST and TST for elliptic shells, case I (a) and case
III (b)

are distributed over the thickness of shell. For this aim, some specified points are assigned on the mid-surface
of the shell.

The in-surface displacements and the normal stresses are shown in Fig. 8 for case I if the shell is elliptic. The
location of the points the distributions are created in the vicinity of can be found by reading the coordinates of
the horizontal axis labels. The left fragment of the figure indicates the lay-up and the location of delamination
as well. The analytical model follows very well the set of points by FE solution (u displacement) in Fig. 8.
Also, the normal stress (σ1) is captured excellently by each theory, which is piecewise continuous, as expected.
The v displacement is shown in the bottom of Fig. 8 indicating that there is no difference between the results by
three shell theories; however, themembrane displacement (or simply the value at themid-surface) is apparently
higher by FE solution than it is predicted by the shell theories. The distributions of the normal stress, σ2, are
placed again in the bottom of the figure including good agreement between the different solutions. Figure 9
brings the shear stresses, τ1ζ and τ2ζ into the stage. The peak by the FE solution takes place at the delamination
tip, this cannot be reproduced by the analytical models, and what is more, the latter is essentially a non-singular
solution [56,57].

The distributions for case III are shown in Figs. 10 and 11. Considering the in-surface u displacement, the
FST theory seems to follow the FE solution better than the SST and TST. The latter two theories result in a
significant perturbation at ESL3 andESL4. Similarly to case I in Fig. 8, themembrane part of the v displacement
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(a)

(b)

Fig. 7 Comparison of deflections at Y = b/2 determined by FE analysis FST, SST and TST for hyperbolic shells, case I (a) and
case III (b)

component is notably smaller than that by FE solution. Finally, the approximation of both normal stresses in
Fig. 10 is apparently good, and the difference between the FST, SST and TST is negligible. Figure 11 presents
the shear stresses along the thickness at some specified locations of the mid-surface. The agreement between
the analysis and numerical model is bad again.

To elaborate how the radii of curvatures influence the field parameters, a hyperbolic shell is analyzed as
well (R1 = 300 mm, R2 = −200 mm). Cases II and IV are chosen to demonstrate the results. Taking Fig. 12
and case II into consideration, the overall agreement is essentially very good between the analysis and FE
calculation results from the standpoint of each parameter. The shear stresses shown by Fig. 13 provide again
bad agreement. At this stage, the ability of the proposed models to capture the shear stresses accurately seems
to be insufficient, and this will be commented later. To finalize this subsection, Figs. 14 and 15 for case IV are
brought to the scene and these figures emphasize the accuracy of the models in describing the displacements
and normal stresses. The shear stresses demonstrated in Fig. 15 seem to fit better the FE solution; however,
the outstanding peak by the SST and TST taking place in ESL4 is significant.

7.2 Energy release rates and mode-mixity

The energy release rate is equivalent to the J-integral under quasi-static conditions and linear elastic material
[73]. Because of the constrained mode model GI = 0 and mixed mode II/III fracture conditions are involved.
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Fig. 8 Distribution of in-surface displacements (u, v) and normal stresses (σ1, σ2) over the thickness, case I, elliptic shell

Fig. 9 Distribution of shear stresses (τ1ζ , τ2ζ ) over the thickness, case I, elliptic shell
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Fig. 10 Distribution of in-surface displacements (u, v) and normal stresses (σ1, σ2) over the thickness, case III, elliptic shell

Fig. 11 Distribution of shear stresses (τ1ζ , τ2ζ ) over the thickness, case III, elliptic shell
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Fig. 12 Distribution of in-surface displacements (u, v) and normal stresses (σ1, σ2) over the thickness, case II, hyperbolic shell

Fig. 13 Distribution of shear stresses (τ1ζ , τ2ζ ) over the thickness, case II, hyperbolic shell
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Fig. 14 Distribution of in-surface displacements (u, v) and normal stresses (σ1, σ2) over the thickness, case IV, hyperbolic shell

Fig. 15 Distribution of shear stresses (τ1ζ , τ2ζ ) over the thickness, case IV, hyperbolic shell
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The required calculation can be performed based on the previous works of the author [56,57], and thus, no
details are given here. The mode-II J-integral becomes:

JI I = 1
2

k∑
i=1

{ (N1(i) ε
(0)
1(i)

∣∣∣(1)
x=+0

−N1(i) ε
(0)
1(i)

∣∣∣(2)
x=−0

)−

(N2(i) ε
(0)
2(i)

∣∣∣(1)
x=+0

−N2(i) ε
(0)
2(i)

∣∣∣(2)
x=−0

)+

(M1(i) ε
(1)
1(i)

∣∣∣(1)
x=+0

−M1(i) ε
(1)
1(i)

∣∣∣(2)
x=−0

)−

(M2(i) ε
(1)
2(i)

∣∣∣(1)
x=+0

−M2(i) ε
(2)
2(i)

∣∣∣(2)
x=−0

)+

(L1(i) ε
(2)
1(i)

∣∣∣(1)
x=+0

−L1(i) ε
(2)
1(i)

∣∣∣(2)
x=−0

)−

(L2(i) ε
(2)
2(i)

∣∣∣(1)
x=+0

−L2(i) ε
(2)
2(i)

∣∣∣(2)
x=−0

)+

(P1(i) ε
(3)
1(i)

∣∣∣(1)
x=+0

−P1(i) ε
(3)
1(i)

∣∣∣(2)
x=−0

)−

(P2(i) ε
(3)
2(i)

∣∣∣(1)
x=+0

−P2(i) ε
(3)
2(i)

∣∣∣(2)
x=−0

) } ,

(59)

where k = 4 because the method of 4ESLs is applied. The stress resultants are determined by Eqs. (33)–(34).
The mode-III J-integral is:

JI I I = − 1
2

k∑
i=1

{ (N12(i) γ̂
(0)
12(i)

∣∣∣(1)
x=+0

−N12(i) γ̂
(0)
12(i)

∣∣∣(2)
x=−0

)+

(M12(i) γ̂
(1)
12(i)

∣∣∣(1)
x=+0

−M12(i) γ̂
(1)
12(i)

∣∣∣(2)
x=−0

)+

(L12(i) γ̂
(2)
12(i)

∣∣∣(1)
x=+0

−L12(i) γ̂
(2)
12(i)

∣∣∣(2)
x=−0

)+

(P12(i) γ̂
(3)
12(i)

∣∣∣(1)
x=+0

−P12(i) γ̂
(3)
12(i)

∣∣∣(2)
x=−0

) } ,

(60)

where k = 4 and:

γ̂
(q)

12(i) = ∂u(q)

(i)

∂y
− ∂v

(q)

(i)

∂x
, q = 0, 1, 2, 3, (61)

are the so-called conjugate shear strains. Equations (59)–(61) are valid up to the third-order shells and plates;
however, it is easy to generalize for nth order shells and plates as well. Previously, the deflection and the
comparison stage with FE computation results was assigned to be the primary indicator to assess the accuracy
and sufficiency of the theories. The secondary indicator is the distribution of ERRs along the delamination
front and its relation to the FE calculations performed by the VCCT. It is reasonable to mention that other
path invariant integrals are available to characterize singularities in electromagnetic and hydrodynamic fields
[74,75].

In the sequel, the results for elliptic and hyperbolic shells are presented. Figure 16 plots the results for
case I and when the shell is elliptic. The analytical models fit well the numerical set of points, and there are
only minor differences between the different theories. The mode ratios are also calculated, and in each figure,
GT = GI I + GI I I is the total ERR. It is seen that the agreement between analytical and numerical solutions
decreases significantly near the edges and it is around the middle the solutions agree at. Case II is summarized
in Fig. 17 providing an excellent agreement between the different methods. Very briefly, the results for cases
III and IV are shown in Figs. 18 and 19 proving again the suitability of the proposed models for the solution
of shell problems with delamination.

The hyperbolic shells are also taken into account. In accordance with Figs. 20 and 21, the results are
promising again and they match excellently with the FE results from each point of view (ERR and mode
mixity). However, looking at Fig. 22, it is clear that the accuracy of the models declines from the point of
view of mode-II ERR. In this respect, the SST and TST theories are better than the FST. At the same time,
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Fig. 16 Distribution of ERRs and mode mixity along the delamination front, case I, elliptic shell

Fig. 17 Distribution of ERRs and mode mixity along the delamination front, case II, elliptic shell

Fig. 18 Distribution of ERRs and mode mixity along the delamination front, case III, elliptic shell
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Fig. 19 Distribution of ERRs and mode mixity along the delamination front, case IV, elliptic shell

Fig. 20 Distribution of ERRs and mode mixity along the delamination front, case I, hyperbolic shell

Fig. 21 Distribution of ERRs and mode mixity along the delamination front, case II, hyperbolic shell
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Fig. 22 Distribution of ERRs and mode mixity along the delamination front, case III, hyperbolic shell

Fig. 23 Distribution of ERRs and mode mixity along the delamination front, case IV, hyperbolic shell

the mode-III ERR is correctly determined by each theory. Continuing with Fig. 23, it is again the mode-II
component that is captured by less correctly compared to themode-III component, which is still well captivated.
The possible reasons for the bad agreement experienced through cases III and IV for the hyperbolic shell are
difficult to figure out. On the one hand, the FE mesh and crack tip element size were the same for the elliptic
and hyperbolic shells; thus, it is likely not a FE convergence problem. This can be admitted by especially
considering the fact that the ERR oscillates with the crack tip element size and the literature recommendations
were met in this work [70,72]. On the other hand, the mismatch was not observed in the case of mode-III ERR
at all, and this implies again that the local FE mesh is probably not the crucial factor causing the disagreement.
Apparently, more work is required to resolve this discrepancy. Finally, it can also be concluded that although
the transverse shear stresses by numerical and analytical solutions did not agree, the two methods are based
on very different considerations [56,57]. In the FE models, the shear stress distribution is governed by two
major aspects. First, the delamination tip is a singular-type point involving significant stress concentration.
Second, the dynamic boundary condition is approximately satisfied at the top and bottom surfaces, and the
higher the number of elements is, the rather the dynamic boundary condition (zero shear stress) satisfied is. In
contrast, the analytical solution is non-singular, and the shear stress distribution is governed by the fact that the
areas under the shear stress distributions are equal to the shear forces. Thus, no correlation can be established
between the accuracy of ERRs and shear stresses.
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8 Conclusions

In thiswork, the first-, second- and third-order shell theorieswere applied to delaminated elliptic and hyperbolic
shells made out of composite material. The mathematical model was derived for the undelaminated and
delaminated parts as well using the principle of virtual work. The set of equilibrium equations was solved
by the Lévy formulation and the state space method involving simply supported edges. In the next step, the
generalized boundary and continuity conditions were also provided and some important improvements were
done as compared to some previous works dealing with delaminated composite plates. The mechanical fields,
namely the displacement and stress, were determined, and the results were compared to spatial finite element
calculations.

Based on the work carried out in this paper, the following conclusions can be drawn. The deflection of
the shell was captured accurately by the proposed models; thus, it is considered to be a primary indicator to
assess the accuracy of a possible model. Moreover, there were only negligible differences among the different
shell theories in capturing the deflection independently of whether the shell was elliptic or hyperbolic. The
in-surface displacements were calculated with sufficient accuracy. Nevertheless, it is important to note that the
displacement distributions were significantly perturbated by the delamination front. From the point of view of
stresses, the agreement was very good for the normal stresses, but it was less satisfactory for the transverse
shear stresses. In the final stage, the energy release rates and mode mixities were computed and the ERR was
assigned to be the secondary indicator to assess the accuracy of the proposed models. Out of the four cases
investigated, each provided very good agreement with the finite element solution if the shell was elliptic. If
the shell was hyperbolic, then a moderate reduction in the accuracy was found in case III, and a significant one
was experienced for case IV; however, this effect was recognized only regarding the mode-II component and
not the mode-III one at all. The main outcome of this work is the following. The solution by the developed
models can be accurate even if the transverse shear stresses do not agree with the FE results. Out of the three
shell theories, the second-order model seems to be reasonable to be the candidate for a possible shell finite
element. This statement can be justified by the facts that the size of mathematical model is smaller than that
of the first-order theory, it is the same as that of third-order model, and in the crucial cases (case II and IV
for the hyperbolic shell), its performance was a little bit better than that of the first-order theory. The possible
application field of the presented models is to model plated fracture specimens [76–78].
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Table 4 Multiplicator matrix elements for the FST theory, p = u or v

[i, j] Undelaminated part [i, j] Delaminated part
K (0)

(p)i j K (1)
(p)i j K (0)

(p)i j K (1)
i j

[1, 1] − 1
2 t1 1 [1, 1] − 1

2 t2 1
[1, 2] −ξ

(2)
R − 1

2 t2 0 [1, 2] 0 0
[1, 3] 0 0 [1, 3] 0 0
[1, 4] 0 0 [1, 4] 0 0
[2, 1] 0 1 [2, 1] − 1

2 t2 + 1
2 t1 0

[2, 2] −ξ2R 0 [2, 2] 1
2 t2 1

[2, 3] 0 0 [2, 3] 0 0
[2, 4] 0 0 [2, 4] 0 0
[3, 1] 0 1 [3, 1] 0 0
[3, 2] −ξ

(2)
R + 1

2 t2 0 [3, 2] 0 0
[3, 3] 1

2 t3 0 [3, 3] − 1
2 t4 1

[3, 4] 0 0 [3, 4] 0 0
[4, 1] 0 1 [4, 1] 0 0
[4, 2] −ξ

(2)
R + 1

2 t2 0 [4, 2] 0 0
[4, 3] t3 0 [4, 3] − 1

2 t4 + 1
2 t3 0

[4, 4] 1
2 t4 0 [4, 4] 1

2 t4 1

Table 5 Multiplicator matrix elements for the SST theory, undelaminated part, where p = u or v. If p = u, then Rp = R1, if
p = v, then Rp = R2

[i, j] K (0)
(p)i j K (1)

(p)i j K (2)
(p)i j

[1, 1] − 1
8

(
6t1+8t2+16ξ (2)

R

)
Rp+2t12+

(
2t2+8ξ (2)

R −t3
)
t1

2 Rp+t1
1
2

−2 t2−t3+2Rp
2Rp+t1

1
2
2t1+2t2+t3+2Rp

t1(2Rp+t1)

[1, 2] 1
8

(
6t1t2+4t22−16 ξ

(2)
R

2
)
Rp+2t12t2+

(
2t22−8ξ (2)

R

2+t3t2

)
t1

2Rp+t1
− 1

2
t2(2Rp+t3)
2Rp+t1

− 1
2
t2(2Rp+2t1−t3)

t1(2Rp+t1)

[1, 3] − 1
8
t1(2Rp−2t4−t3)

2Rp+t1
1
2
2Rp−2t4−t3

2Rp+t1
− 1

2
2Rp−2t4−t3
t1 (2Rp+t1)

[1, 4] − 1
8
t1t4 (2Rp+t3)

2Rp+t1
1
2
t4(2Rp+t3)
2Rp+t1

− 1
2
t4(2Rp+t3)
t1(2Rp+t1)

[2, 1] −ξ
(2)
R 1 0

[2, 2] (−ξ
(2)
R )2 0 1

[2, 3] 0 0 0
[2, 4] 0 0 0
[3, 1] −ξ

(2)
R + 1

2 t2 + 3
8 t3

1
2 − 1

2t3
[3, 2] −(ξ

(2)
R )2 + 1

4 t2
2 + 3

8 t3t2
1
2 t2 − 1

2
t2
t3[3, 3] 1

8 t3
1
2

1
2t3[3, 4] 1

8 t4t3 − 1
2 t4 − 1

2
t4
t3

[4, 1] 1
2 t3 + 1

2 t2 − ξ
(2)
R 0 0

[4, 2] 1
4 t2

2 + 1
2 t3t2 − ξ

(2)
R

2
0 0

[4, 3] 1
2 t4 + 1

2 t3 1 0
[4, 4] − 1

4 t4 (t4 + 2 t3) 0 1
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Table 6 Multiplicator matrix elements for the SST theory, delaminated part, where p = u or v. If p = u, then Rp = R1, if
p = v, then Rp = R2

[i, j] K (0)
(p)i j K (1)

(p)i j K (2)
(p)i j

[1, 1] (4Rp+t1)t1
4t1Rp−t22+t12

0 − 4
(4t1Rp−t22+t12)

[1, 2] − t22

4t1Rp−t22+t12
0 4

(4t1Rp−t22+t12)

[1, 3] − 1
2
(2Rp−t2)

(
4t1Rp+2Rpt2+t1t2+t12

)
t2

(2Rp+t1)(4t1Rp−t22+t12)
2Rp−t2
2Rp+t1

2 (2Rp−t2)(2Rp+t1+t2)
(2Rp+t1)(4t1Rp−t22+t12)

[1, 4] 1
4

(−t33−3t32t4+
(−4t4Rp−t42+8Rp

2)t3+t43
)
t22

(4t1Rp−t22+t12)(2Rp+t3)t3
0 − t43−t33−t42t3−3t32t4+8Rp

2t3−4t4Rpt3
(4t1Rp−t22+t12)(2Rp+t3)t3

[1, 5] 1
4

(
4 t3 Rp−t42+t32

)
t22t4

(4 t1 Rp−t22+t12)t3
0 −

(
4 t3 Rp−t42+t32

)
t4

(4 t1 Rp−t22+t12)t3

[2, 1] t1(4Rp−t2)
4t1 Rp−t22+t12

0 4 t1
(4t1Rp−t22+t12)t2

[2, 2] −t22+t12+t1t2
4t1Rp−t22+t12

0 −4 t1
(4t1Rp−t22+t12)t2

[2, 3] 1
4
(8Rp−3t2)t13+

(
24Rp

2−3t22
)
t12+

(−4t22Rp+8t2Rp
2+t23

)
t1−8t22Rp

2+t24

(2Rp+t1)(4t1Rp−t22+t12)
1 −−t13−3t12t2+

(−4Rpt2−t22+8Rp
2)t1+t23

(4t1Rp−t22+t12)t2(2Rp+t1)

[2, 4] − 1
4

(−t22+t12+t1t2
)(
t43−t42t3+

(−3t32−4t3Rp
)
t4+8Rp

2t3−t33
)

(4t1Rp−t22+t12)(2Rp+t3)t3
0

(−t33−3t32t4+
(−4t4 Rp−t42+8Rp

2)t3+t43
)
t1

(4t1Rp−t22+t12)(2Rp+t3)t2t3

[2, 5] − 1
4

t4
(−t22+t12+t1 t2

)(
4 t3 Rp−t42+t32

)
(4 t1 Rp−t22+t12)t3

0
t1
(
4 t3 Rp−t42+t32

)
t4

(4 t1 Rp−t22+t12)t2 t3[3, 1] 0 0 0
[3, 2] 1 0 0
[3, 3] 0 0 0

[3, 4] − 1
4
t4
(−t4t3+4t3 Rp+t42

)
t3(2Rp+t3)

−t4+2Rp
2Rp+t3

t3+t4
t3(2Rp+t3)

[3, 5] 1
4

t43

t3
0 − t4

t3[4, 1] 0 0 0
[4, 2] 1 0 0
[4, 3] 0 0 0

[4, 4] 1
4
t33+(t4+4Rp)t32+t42t3−t43

t3(2Rp+t3)
1 0

[4, 5] − 1
4

(−t42+t32+t4 t3
)
t4

t3
0 1
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