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Abstract A new numerical approach for the time-dependent wave and heat equations as well as for the time-
independent Poisson equation on irregular domains has been developed. Trivial Cartesian meshes and simple
9-point stencil equations with unknown coefficients are used for 2-D irregular domains. The calculation of the
coefficients of the stencil equations is based on the minimization of the local truncation error of the stencil
equations and yields the optimal order of accuracy. The treatment of the Dirichlet and Neumann boundary
conditions in the new approach is related to the development of high-order boundary conditions with the
stencils that include the same or a smaller number of grid points compared to that for the regular 9-point
internal stencils. At similar 9-point stencils, the accuracy of the new approach is two orders higher than that for
the linear finite elements. The numerical results for irregular domains in Part 2 of the paper also show that at
the same number of degrees of freedom, the new approach is even much more accurate than the quadratic and
cubic finite elements with much wider stencils. Similar to our recent results on regular domains, the order of
the accuracy of the new approach for the Poisson equation on irregular domains with square Cartesian meshes
is higher than that with rectangular Cartesian meshes. The new approach can be directly applied to other partial
differential equations.

Keyword Local truncation error · Irregular domains · Cartesian meshes · Optimal accuracy · Wave · Heat
and Poisson equations

1 Introduction

The development of numerical techniques for an accurate solution of partial differential equations (PDEs)
on complex domains is an active area of research. The finite element method, the finite volume method, the
isogeometric elements, the spectral elements and similar techniques represent very powerful tools for the
solution of PDE for a complex geometry. However, the generation of non-uniform meshes for a complex
geometry is not simple and may lead to the decrease in accuracy of these techniques if ‘bad’ elements (e.g.,
elements with small angles) appear in themesh.Moreover, the conventional derivation of discrete equations for
these techniques (e.g., based on the Galerkin approaches) does not lead to the optimal accuracy. For example,
it has been shown in many publications on wave propagation that at the same width of the stencil equations of
a semi-discrete system for regular rectangular domains with uniform meshes, the accuracy of the conventional
linear finite elements can be improved from order two to order four (e.g., see [1,14–16,31–33,40,42,46,51,59]
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and others), and the accuracy of the conventional high-order finite and isogeometric elements can be improved
from order 2p to order 2p+2where p is the element order (e.g., see [2,47,56–58]). However, the improvement
in the order of accuracy for the high-order elements in [2,47,56–58] is not optimal. In our papers [21,23,28],
the order of accuracy of the high-order elements on rectangular domains has been improved to 4p, and this
order is optimal at a given width of stencil equations.

There is a significant number of publications related to the numerical solution of different PDEs on irreg-
ular domains with uniform embedded meshes. For example, we can mention the following fictitious domain
numerical methods that use uniform embedded meshes: the embedded finite difference method, the cut finite
element method, the finite cell method, the Cartesian grid method, the immersed interface method, the virtual
boundary method, the embedded boundary method, etc, e.g., see [3–5,7–11,13,17–19,34–39,41,43–45,48–
50,52–55,60] and many others. The main objective of these techniques is to simplify the mesh generation for
irregular domains as well as to mitigate the effect of ‘bad’ elements. For example, the techniques based on the
finite element formulations (such as the cut finite element method, the finite cell method, the virtual boundary
method and others) yield the p + 1 order of accuracy even with small cut cells generated by the complicated
irregular boundary (e.g., see [7,41,44,48,49,53,55] and many others). The main advantage of the embedded
boundary method developed in [34,37–39,45] is the use of a simple Cartesian mesh. The boundary conditions
or fluxes in these techniques are interpolated using the Cartesian grid points, and this leads to the increase
in the stencil width for the grid points located close to the boundary. (However, the numerical techniques
developed in [34,37–39,45] provide just the second order of accuracy for the global solution.) Therefore, the
development of robust numerical techniques for the solution of PDEs on irregular domains that provide an
optimal and high order of accuracy is still a challenging problem.

A new numerical approach suggested in this paper is the generalization of our previous numerical algo-
rithms developed for the improvement of accuracy of linear and high-order finite element techniques for wave
propagation problems and heat transfer problems for regular rectangular domains with uniform meshes. For
example, in [20–22,31–33] we have improved the accuracy of the linear finite elements and the high-order
isogeometric elements used for wave propagation from order 2p to order 4p where p is the order of the poly-
nomial basis functions. These techniques have been based on the reduction of the numerical dispersion error.
Because the numerical dispersion error is based on the existence of exact and numerical harmonic solutions for
systems of partial differential equations and its discrete counterpart, then the application of these approaches
was limited to wave propagation problems for regular rectangular domains with uniform meshes only. (The
numerical dispersion error is defined on uniform meshes.) In [21,23,28], we have improved the accuracy of
the linear finite elements and the high-order isogeometric elements for time-dependent and time-independent
heat transfer problems for regular rectangular domains with uniform meshes. In contrast to the use of the
numerical dispersion error, the approach in [21,23,28] was based on the minimization of the order of the
local truncation error and did not require the existence of exact and numerical harmonic solutions. However,
the use of uniform meshes in [21,23,28] reduces the application of the technique to rectangular domains and
significantly restricts the value of the proposed approach. Moreover, in our paper [21] it was shown that the
direct application of some techniques with improved accuracy on uniform meshes (e.g., the MIR techniques
in [14,31,59]) to non-uniform meshes leads to a significant degradation in the order of accuracy (e.g., by three
orders for the wave equation). In this paper, we show that the approach based on the minimization of the
local truncation error is very general and can be applied to different partial differential equations on complex
irregular domains. We will call this approach as the optimal local truncation error method (OLTEM).

The idea of the proposed OLTEM is very simple. We start the development of a new numerical technique
by assuming the stencil equations of a discrete or semidiscrete system of equations used for the solution of a
system of partial differential equations. A stencil equation is a linear combination of the numerical values of
the function (for a discrete system) or the function and its derivatives (for a semidiscrete system) at a number
of grid points where the coefficients of the stencil equations are assumed to be unknown. These unknown
coefficients are determined by the minimization of the order of the local truncation error for each stencil
equation. This procedure includes a Taylor series expansion of the unknown exact solution at the grid points
and its substitution into the stencil equation. As a result, we obtain the local truncation error in the form of a
Taylor series. At this point, no information about partial differential equations is used. Then, the corresponding
partial differential equations are applied at the grid points in order to exclude some partial derivatives in the
expression for the local truncation error. Finally, the unknown coefficients of the stencil equation are calculated
from a small local system of algebraic equations obtained by equating to zero the lowest terms in the Taylor
series expansion of the local truncation error. The coefficients of the stencil equations are similarly calculated
for the regular stencils located far from the boundary and for the cut stencils located close to the boundary.
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Then, a fully discrete or semidiscrete global system can be easily solved. The main advantages of the new
approach are a high optimal accuracy and the simplicity of the formation of a discrete (semi-discrete) system
of equations for irregular domains. The order of accuracy of the new approach cannot be improved without
adding new grid points into the stencil equation. As a mesh, the grid points of a uniform rectangular (square)
Cartesian mesh as well as the points of the intersection of the boundary of a complex irregular domain with the
horizontal, vertical and diagonal grid lines of the uniform Cartesian mesh are used, i.e., in contrast to the finite
element meshes, a trivial mesh is used with the new approach. Changing the width of the stencil equations,
different linear and high-order numerical techniques can be developed.

We should mention that the OLTEM can be also used for the improvement of accuracy of the existing
numerical techniques. Usually, many known numerical techniques finally reduce to a system of algebraic
equations with respect to the unknown numerical solution at the grid points (or they can be often rewritten
in this form). The coefficients of the final system of algebraic equations are defined by the corresponding
numerical technique and in many cases do not yield the optimal accuracy. Therefore, the coefficients of the
stencil equations for the corresponding numerical techniques can be recalculated by the minimization of the
order of the local truncation error as described above. For example, using this idea, in [21,23,28] we have
improved the accuracyof the linear finite elements and the high-order isogeometric elements for time-dependent
and time-independent heat transfer problems on regular domains with uniform meshes. In [25,27] we have
developed 2-D 9-point and 25-point stencils for the time-dependent and time-independent elasticity on regular
domains with uniformmeshes that are similar to those for quadrilateral linear and quadratic finite elements. For
these problems, the 9-point stencils provide the optimal second order of accuracy, while the 25-point stencils
provide the 10th order of accuracy for the time-independent elasticity and the 6th order of accuracy for the
time-dependent elasticity.

In this paper, we present the development of the new numerical approach for the time-dependent wave and
heat equations as well as for the time-dependent Poisson equation in the general case of irregular domains in
the 1-D and 2-D cases. Wave propagation in an isotropic homogeneous medium is described by the following
scalar wave equation in domain �:

∂2u

∂t2
− c2∇2u = f. (1)

Similarly, the heat equation in domain � can be written as:

∂u

∂t
− a∇2u = f. (2)

The Poisson equation in domain � has the following form:

∇2u = f. (3)

In Eqs. (1)–(3), c is the wave velocity, a is the thermal diffusivity, f (x, t) is the loading (source) term, and u is
the field variable. The Neumann boundary conditions n ·�u = g1 on �t and the Dirichlet boundary conditions
u = g2 on �u are applied, where n is the outward unit normal on �t , and �t and �u denote the boundaries with
the Neumann and Dirichlet boundary conditions, respectively. The initial conditions are u(x, t = 0) = g3,
v(x, t = 0) = du

dt (x, t = 0) = g4 in � for the wave equation and u(x, t = 0) = g3 in � for the heat equation
where gi (i = 1, 2, 3, 4) are the given functions.

Remark 1 The time and the right-hand side in Eqs. (1) and (2) can be rescaled as t̄ = ct , f̄ = f/c2 and t̄ = at ,
f̄ = f/a, respectively. In this case, the material parameters c and a will not be presented in the rescaled
Eqs. (1) and (2). However, in order to keep the derivation of the right-hand side for the numerical technique
without confusions, we will use the original notations given by Eqs. (1) and (2). For the rescaled Eqs. (1)
and (2), the formulas presented below in the paper can be easily modified by putting c = a = 1.

According to the new approach, we assume that the stencil equation for the wave and heat equations after
the space discretization with a rectangular Cartesian mesh can be written as an ordinary differential equation:

L∑

i=1

(
h2mi

dnunumi

dtn
+ c̄ki u

num
i

)
= f̄ , (4)

where unumi and
dnunumi
dtn are the numerical solution for function u and its time derivative at the grid points, mi

and ki are the unknown coefficients to be determined, L is the number of the grid points included into a stencil,
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f̄ (t) is the discretized loading term (see the next sections), n = 2 and c̄ = c2 for the wave equation and n = 1
and c̄ = a for the heat equation, h is the mesh size along the x− axis. The stencil equation for the Poisson
equation after the space discretization can be written as an algebraic equation:

L∑

i=1

kiu
num
i = f̄ . (5)

Many numerical techniques such as the finite difference method, the finite element method, the finite volume
method, the isogeometric elements, the spectral elements, different meshless methods and others can be finally
reduced to Eqs. (4) and (5) with some specific coefficients mi and ki for the wave, heat and Poisson equations.
In order to demonstrate a new technique, below we will assume a 3-point stencil in the 1-D case and a 9-point
stencil in the 2-D case that correspond to the width of the stencils for the linear quadrilateral finite elements
on Cartesian meshes. However, the stencils with any width can be used with the suggested approach.

Let us introduce the local truncation error used with the new approach. The replacement of the numerical

values of the function unumi and its time derivatives
dnunumi
dtn at the grid points in Eq. (4) by the exact solution

ui and
dnui
dtn to the wave or heat equation, Eqs. (1) or (2), leads to the residual of this equation called the local

truncation error e in space for the semidiscrete equation, Eq. (4):

e =
L∑

i=1

(
h2mi

dnui
dtn

+ c̄ki ui

)
− f̄ . (6)

Calculating the difference between Eqs. (6) and (4), we can get

e =
L∑

i=1

{
h2mi

[
dnui
dtn

− dnunumi

dtn

]
+ c̄ki

[
ui − unumi

]} =
L∑

i=1

(
h2mi ē

v
i + c̄ki ēi

)
, (7)

where ēi = ui − unumi and ēv
i = dnui

dtn − dnunumi
dtn are the errors of function u and its time derivatives at the grid

points i . As can be seen from Eq. (7), the local truncation error e is a linear combination of the errors of the
function u and its time derivatives at the grid points i which are included into the stencil equation. The local
truncation error e for Eq. (5) can be obtained from Eqs. (4)–(7) with mi = 0 and c̄ = 1.

Remark 2 The analysis and improvement of the error in space, Eq. (6), is considered in the paper. Therefore,
for the numerical examples in Part II, a sufficiently small size of time steps is used for the time integration
of Eq. (4). In this case, the error in time can be neglected and the numerical error is related to the space-
discretization error only. However, Part II also includes a numerical example showing the effect of the size of
time increments on the total error for the new approach and for FEM (see Fig. 18 in Part II).

In Sect. 2 we consider the development of the new numerical approach for the 1-D wave equation that
also includes new high-order boundary conditions on conforming and non-conforming Cartesian meshes. In
Sect. 3 we extend it to irregular domains with Cartesianmeshes in the 2-D case. The new technique is uniformly
derived for the 2-D wave and heat equations. In Sect. 4 we show that along with the time-dependent wave and
heat equations, the new approach can be similarly developed for the time-independent Poisson equation. The
numerical examples are presented in Part 2 of the paper [12]. For the derivation of many analytical expressions
presented below,we use the computational program “Mathematica.”We should alsomention that the suggested
approach can be extended to the 3-D case (see [24,30]) as well as to other partial differential equations (see
[26,27,29]).

2 A new numerical approach for the 1-D wave equation (with zero load f = 0 in Eq. (1))

In the 1-D case, we consider the wave equation only. The derivations and the coefficients of the stencil equation
for the heat equation are exactly the same as those for the wave equation (this is explicitly demonstrated in the
2-D case).
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u1 u2 u3
ξh

u4
h h

h

Fig. 1 The spatial locations of the degrees of freedom ui (i = 1, 2, 3, 4, . . .) for a non-conforming uniform mesh in the vicinity
of the left end of the 1-D domain

2.1 The determination of the coefficients of the stencil equation

Let us consider a 1-D bounded domain and a Cartesian mesh with a mesh size h. In the case of non-
conforming uniform grids when the grid points do not coincide with the boundary, the first grid points that are
located outside the physical domain are moved to the boundary of the physical domain. Therefore, the size of
the first and the last cells of the mesh can be different from the sizes of other cells, e.g., see the first four grid
points in the vicinity of the left end of the 1-D domain in Fig. 1. For example, the size of the first cell in Fig. 1
equals ξh where the coefficient 0 ≤ ξ ≤ 1 is defined by the location of the physical domain with respect to
the Cartesian mesh. A 3-point stencil is assumed. In this case, Eq. (4) can be explicitly rewritten as follows:

h2
(
m1ü

num
A−1 + m2ü

num
A + m3ü

num
A+1

) + c2
(
k1u

num
A−1 + k2u

num
A + k3u

num
A+1

) = 0, (8)

where the case of zero loading f = f̄ = 0 is considered, A = 2, 3, . . . , N − 1 (N is the total number of the
grid points), the coefficients mi and ki (i = 1, 2, 3) are to be determined from the minimization of the local
truncation error. It is sufficient to derive the coefficients of the stencil for the degree of freedom u2 (A = 2)
because the coefficients of the stencils for other degrees of freedom can be obtained from the formulas for
A = 2 (just changing the value of the coefficient ξ related to the length of the first cell; see Fig. 1). To derive
the coefficients mi and ki (i = 1, 2, 3) in Eq. (8) at A = 2, let us expand the exact solution ui and its time

derivative ∂2ui
∂t2

at the grid point i (i = A − 1, A + 1) into a Taylor series at small h � 1 as follows (see Fig. 1
for the locations of ui ):

wA−1 = wA − ∂wA

∂x
ξh + ∂2wA

∂x2
(ξh)2

2! − ∂3wA

∂x3
(ξh)3

3! + ∂4wA

∂x4
(ξh)4

4! + · · · . (9)

wA+1 = wA + ∂wA

∂x
h + ∂2wA

∂x2
h2

2! + ∂3wA

∂x3
h3

3! + ∂4wA

∂x4
h4

4! + · · · , (10)

where w = u and w = ∂2u
∂t2

. The exact solution to Eq. (1) also meets the following equations at point A with
the coordinates x = xA and y = yA:

∂2uA

∂t2
− c2

∂2uA

∂x2
= 0, (11)

∂ j+2uA

∂x j∂t2
− c2

∂ j+2uA

∂x j+2 = 0, (12)

where the case of zero loading f = 0 is considered and j = 1, 2, 3, 4, . . .. Equation (12) is obtained by the
differentiation of Eq. (11) with respect to x j . Replacing the numerical solution in Eq. (8) by the exact solution
(similar to Eq. (6)) and using Eqs. (9)–(10) withw = u andw = ∂2u

∂t2
as well as Eqs. (11)–(12), we get a Taylor

series of the local truncation error in space for the new approach:

e = c2
[
uA(k1 + k2 + k3) − h

∂uA

∂x
(−ξk1 + k3) + 1

2
h2

∂2uA

∂x2
(
ξ2k1 + k3 + 2(m1 + m2 + m3)

)

−1

6
h3

∂3uA

∂x3
(−ξ3k1 + k3 + 6(−ξm1 + m3)

) + 1

24
h4

∂4uA

∂x4
(
ξ4k1 + k3 + 12(ξ2m1 + m3)

)

+ 1

120
h5

∂5uA

∂x5

(
−ξ5k1 + k3 + 20(−ξ3m1 + m3)

)
+ 1

720
h6

∂6uA

∂x6
(
ξ6k1 + k3 + 30(ξ4m1 + m3)

)

+ 1

5040
h7

∂7uA

∂x7

(
−ξ7k1 + k3 + 42(−ξ5m1 + m3)

)]
+ O

(
h8

)
. (13)
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Due to the use of Eqs. (11) and (12), the local truncation error in Eq. (13) does not include the time derivatives.
Equating the first five coefficients with the smallest orders of h in Eq. (13) to zero, we get a linear system of
five algebraic equations:

k1 + k2 + k3 = 0, −ξk1 + k3 = 0, ξ2k1 + k3 + 2(m1 + m2 + m3) = 0,

−ξ3k1 + k3 + 6(−ξm1 + m3) = 0, ξ4k1 + k3 + 12(ξ2m1 + m3) = 0.

Solving this system, we can find the following coefficients mi and ki (i = 1, 2, 3) of the stencil Eq. (8) that
yield the minimum local truncation error:

m1 = − (−1 + ξ + ξ2)

(1 + ξ)(1 + 3ξ + ξ2)
a1, m2 = a1, m3 = ξ(1 + ξ − ξ2)

(1 + ξ)(1 + 3ξ + ξ2)
a1,

k1 = − 12a1
1 + 4ξ + 4ξ2 + ξ3

, k2 = 12a1
1 + 3ξ + ξ2

, k3 = − 12ξa1
1 + 4ξ + 4ξ2 + ξ3

, (14)

where a1 is an arbitrary coefficient. For the other degrees of freedomwith A = 3, 4, . . . , N −2 that correspond
to the uniform grid, the coefficientsmi and ki (i = 1, 2, 3) of the stencil equations can be obtained fromEq. (14)
at ξ = 1 and they are:

m1 = a1
10

, m2 = a1 , m3 = a1
10

,

k1 = −6a1
5

, k2 = 12a1
5

, k3 = −6a1
5

. (15)

Inserting the coefficients mi and ki (i = 1, 2, 3) for the new approach (see Eq. (14)) into Eq. (13), we get the
following local truncation error:

enew = − (−1 + ξ)ξ(2 + ξ)(1 + 2ξ)c2h5a1
∂5uA
∂x5

30(1 + ξ(3 + ξ))
+ ξ(3 + (−1 + ξ)ξ(2 + ξ)(−1 + 3ξ))c2h6a1

∂6uA
∂x6

120(1 + ξ(3 + ξ))

− (−1 + ξ)ξ(1 + (−1 + ξ)ξ)(5 + ξ(12 + 5ξ))c2h7a1
∂7uA
∂x7

840(1 + ξ(3 + ξ))
+ O(h8) (16)

for the stencil equation for the degree of freedom u2 (A = 2) located close to the boundary with the coefficient
ξ that can be different from unity, and

eunifnew = c2a1
20

∂6uA

∂x6
h6 + O(h8) (17)

for the regular stencil equations for the grid points located far from the boundarywith ξ = 1 (A = 3, 4, . . . , N−
2). It should be mention that small distances from the grid points to the boundary (or small ξ � 1) do not
decrease the accuracy of the new approach. Moreover, at small ξ � 1, the accuracy is higher than that at
ξ ≈ 0.5; see Fig. 2 for the variation of the leading term of the local truncation error in Eq. (16) as a function
of ξ .

In the final semidiscrete system, there are only two stencils (Eq. (8) at A = 2 and A = N − 1) with the
5th order of the local truncation error, see Eq. (16), and N − 4 stencils (Eq. (8) at A = 3, 4, . . . , N − 2) with
the 6th order of the local truncation error, see Eq. (17). These stencils provide the 4th order of accuracy of the
entire numerical solution at mesh refinement for a large number N of the grid points.

It is interesting to mention that for the conventional linear finite elements that also have a 3-point stencil,
the local truncation error is:

eFE = c2(1 + 3ξ2)h4

12

∂4uA

∂x4
+ O(h5) (18)

for a degree of freedom u2 of a non-uniform mesh shown in Fig. 1. As can be seen from Eq. (18), the local
truncation errors for the linear finite elements have the same orders on non-uniform (ξ �= 1) and uniform
(ξ = 1) meshes. These stencils provide the second order of accuracy of the entire finite element solution at
mesh refinement for a large number N of the grid points.
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Fig. 2 The variation of the leading term Coef1 = − (−1+ξ)ξ(2+ξ)(1+2ξ)
30(1+ξ(3+ξ))

in Eq. (16) as a function of ξ (see Fig. 1)

2.2 Boundary conditions

The application of the boundary conditions at the left and right ends of the 1-D domain is similar. Therefore,
we show this application for the left end only.

2.2.1 Dirichlet boundary conditions

The application of the Dirichlet boundary conditions in the new approach is trivial and similar to that for the
finite elements. We simply use unum1 = g2(t) (and, as a consequence, ünum1 = g̈2(t)) in the stencil equation,
Eq. (8), at A = 2, i.e., the Dirichlet boundary conditions are exactly imposed. Here, g2(t) is a given function
of time t that describes the Dirichlet boundary conditions. The final semidiscrete system of equations includes
N − 2 equations given by Eq. (8) with A = 2, . . . , N − 1 and the two Dirichlet boundary conditions for the
degrees of freedom unum1 and unumN .

2.2.2 Neumann boundary conditions (with the inclusion of boundary degrees of freedom)

For the imposition of the Neumann boundary conditions, we will show two possible approaches. The first
approach is based on an additional stencil equation for the boundary grid point u1, and the degree of freedom
u1 is included into the stencil equation. We assume that this stencil has the same form as that for the grid point
u2 given by Eq. (8) at A = 2 with nonzero right-hand side term f1:

h2
(
m1ü

num
1 + m2ü

num
2 + m3ü

num
3

) + c2
(
k1u

num
1 + k2u

num
2 + k3u

num
3

) = f1, (19)

where f1 is the load term for the Neumann boundary conditions that will be defined later. The difference in the
derivation of the coefficients mi and ki of the stencil Eqs. (8) and (19) consists in the fact that for the stencil
Eq. (19) we use a Taylor series for u2 and u3 as well as for their time derivatives in the vicinity of the first grid
point (in contrast to Eqs. (9)–(12)):

w2 = w1 + ∂w1

∂x
ξh + ∂2w1

∂x2
(ξh)2

2! + ∂3w1

∂x3
(ξh)3

3! + ∂4w1

∂x4
(ξh)4

4! + · · · . (20)

w3 = w1 + ∂w1

∂x
(ξ + 1)h + ∂2w1

∂x2
[(ξ + 1)h]2

2! + ∂3w1

∂x3
[(ξ + 1)h]3

3! + ∂4w1

∂x4
[(ξ + 1)h]4

4! + · · · , (21)

where w = u and w = ∂2u
∂t2

. For a sufficiently smooth solution, the exact solution u1(x = x1, t) to Eq. (1) at
the boundary also meets Eqs. (11) and (12) with A = 1. Replacing the numerical solution in Eq. (19) by the
exact solution (similar to Eq. (6)) and using Eqs. (20)–(21) with w = u and w = ∂2u

∂t2
as well as Eqs. (11)–(12)

with A = 1, we get a Taylor series of the local truncation error in space for the new approach:

e = c2
{[

u1(k1 + k2 + k3) + 1

2
h2

∂2u1
∂x2

(ξ2(k2 + k3) + 2ξk3 + k3 + 2(m1 + m2 + m3))

+ 1

24
h4

∂4u1
∂x4

(ξ4k2 + 12ξ2m2 + (ξ + 1)4k3 + 12(ξ + 1)2m3)

+ 1

720
h6

∂6u1
∂x6

(ξ6k2 + 30ξ4m2 + (ξ + 1)6k3 + 30(ξ + 1)4m3)
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+h8 ∂8u1
∂x8

(ξ8k2 + 56ξ6m2 + (ξ + 1)8k3 + 56(ξ + 1)6m3)

40320

+h10 ∂10u1
∂x10

(ξ10k2 + 90ξ8m2 + (ξ + 1)10k3 + 90(ξ + 1)8m3)

3628800

⎤

⎦

+
[
h(ξ(k2 + k3) + k3)

∂u1
∂x

+ 1

6
h3

∂3u1
∂x3

(ξ3(k2 + k3) + 3ξ2k3 + 3ξ(k3 + 2(m2 + m3)) + k3 + 6m3)

+ 1

120
h5

∂5u1
∂x5

(ξ5k2 + 20ξ3m2 + (ξ + 1)5k3 + 20(ξ + 1)3m3)

+h7 ∂7u1
∂x7

(ξ7k2 + 42ξ5m2 + (ξ + 1)7k3 + 42(ξ + 1)5m3)

5040

+h9 ∂9u1
∂x9

(ξ9k2 + 72ξ7m2 + (ξ + 1)9k3 + 72(ξ + 1)7m3)

362880
− f1/c

2

⎤

⎦

⎫
⎬

⎭ + O
(
h11

)
. (22)

Due to the use of Eqs. (11) and (12), the local truncation error in Eq. (22) does not include the time derivatives.
From now, we will use the Neumann boundary conditions at the left boundary:

∂u1
∂x

(x1, t) = g1(t), (23)

where g1(t) is a given function of time t . Taking the even derivatives of Eq. (23) with respect to time, we can
express the odd spatial derivatives of the solution u1(x1, t) with respect to x at the left boundary in terms of
the known boundary conditions g1(t). For example,

uxtt (x1, t) = c2uxxx (x1, t) = (g1)t t (t), (24)

where for the first equality in Eq. (24), the second derivative with respect to time is replaced by the second
derivative with respect to space using the partial differential equation, Eq. (1), indices x and t designate the
corresponding partial derivatives with respect to x and t . Equating to zero the expression in the second square
brackets of Eq. (22), we define the load vector f1 for the stencil equation, Eq. (19), that can be expressed in
terms of the given Neumann boundary conditions at the left boundary as follows:

f1 = c2
[
h(ξ(k2 + k3) + k3)

∂u1
∂x

+1

6
h3

∂3u1
∂x3

(
ξ3(k2 + k3) + 3ξ2k3 + 3ξ(k3 + 2(m2 + m3)) + k3 + 6m3

)

+ 1

120
h5

∂5u1
∂x5

(
ξ5k2 + 20ξ3m2 + (ξ + 1)5k3 + 20(ξ + 1)3m3

)

+h7 ∂7u1
∂x7

(
ξ7k2 + 42ξ5m2 + (ξ + 1)7k3 + 42(ξ + 1)5m3

)

5040

+h9 ∂9u1
∂x9

(
ξ9k2 + 72ξ7m2 + (ξ + 1)9k3 + 72(ξ + 1)7m3

)

362880

⎤

⎦

= c2h(ξ(k2 + k3) + k3)g1(t)

+1

6
h3

d2g1(t)

dt2
(
ξ3(k2 + k3) + 3ξ2k3 + 3ξ(k3 + 2(m2 + m3)) + k3 + 6m3

)

+ 1

120c2
h5

d4g1(t)

dt4

(
ξ5k2 + 20ξ3m2 + (ξ + 1)5k3 + 20(ξ + 1)3m3

)

+h7 d
6g1(t)
dt6

(
ξ7k2 + 42ξ5m2 + (ξ + 1)7k3 + 42(ξ + 1)5m3

)

5040c4
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+h9 d
8g1(t)
dt8

(
ξ9k2 + 72ξ7m2 + (ξ + 1)9k3 + 72(ξ + 1)7m3

)

362880c6
. (25)

Now, equating to zero the first five coefficients in the first square brackets of Eq. (22) with the smallest even
orders of h, we get a linear system of five algebraic equations. Solving this system, we can find the following
coefficients mi and ki (i = 1, 2, 3) of the stencil equation, Eq. (19), for the new approach:

m1 = a1, m2 = − (ξ + 1)4(4ξ2 + 26ξ + 13)a1
(2ξ + 1)(48ξ4 + 96ξ3 − 212ξ2 − 260ξ − 65)

,

m3 = ξ4(4ξ2 − 18ξ − 9)a1
(2ξ + 1)(48ξ4 + 96ξ3 − 212ξ2 − 260ξ − 65)

,

k1 = 12(32ξ6 + 96ξ5 + 8ξ4 − 144ξ3 − 166ξ2 − 78ξ − 13)a1
ξ2(ξ + 1)2(48ξ4 + 96ξ3 − 212ξ2 − 260ξ − 65)

,

k2 = − 12(ξ + 1)4(29ξ2 − 26ξ − 13)a1
ξ2(2ξ + 1)(48ξ4 + 96ξ3 − 212ξ2 − 260ξ − 65)

,

k3 = 12ξ4(29ξ2 + 84ξ + 42)a1
(ξ + 1)2(2ξ + 1)(48ξ4 + 96ξ3 − 212ξ2 − 260ξ − 65)

, (26)

where a1 is an arbitrary coefficient. Inserting the coefficientsmi and ki (i = 1, 2, 3) fromEq. (26) into Eqs. (25)
and (22), we get the following load term f1 and local truncation error enew for the stencil, Eq. (19), related to
the Neumann boundary conditions with the new approach:

f1 = a1

[
−12(7ξ(ξ + 1)(5ξ(ξ + 1)(ξ2 + ξ − 4) − 13) − 13)c2hg1(t)

ξ(ξ + 1)(2ξ + 1)(4ξ(ξ + 1)(12ξ(ξ + 1) − 65) − 65)

−ξ(ξ + 1)(5ξ(ξ + 1)(2ξ(ξ + 1) − 13) − 13)h3 d
2g1(t)
dt2

(2ξ + 1)(4ξ(ξ + 1)(12ξ(ξ + 1) − 65) − 65)

+ ξ3(ξ + 1)3(3ξ(ξ + 1) − 26)h5 d
4g1(t)
dt4

30(2ξ + 1)(4ξ(ξ + 1)(12ξ(ξ + 1) − 65) − 65)c2

− ξ4(ξ + 1)4(2ξ(ξ + 1) − 21)h7 d
6g1(t)
dt6

840(2ξ + 1)(4ξ(ξ + 1)(12ξ(ξ + 1) − 65) − 65)c6

+ ξ4(ξ + 1)4(5(ξ − 3)ξ(ξ + 1)(ξ + 4) − 12)h9 d
8g1(t)
dt8

30240(2ξ + 1)(4ξ(ξ + 1)(12ξ(ξ + 1) − 65) − 65)c10

⎤

⎦ (27)

and

enew = ξ4(ξ + 1)4(4ξ(ξ + 1)(4ξ(ξ + 1) − 51) − 51)c2h10a1
∂10u1
∂x10

604800(4ξ(ξ + 1)(12ξ(ξ + 1) − 65) − 65)
+ O(h11), (28)

i.e., the local truncation error in space for the stencil, Eq. (19), related to the Neumann boundary conditions
is even smaller than that for the regular 3-point stencils of the internal degrees of freedom considered in the
previous Sect. 2.1 (see Eq. (17)). It should be mention that small distances from the grid points to the boundary
(or small ξ � 1) do not decrease the accuracy of the new approach. Moreover, at small ξ � 1, the accuracy
is higher than that at ξ close to 1; see Fig. 3 for the variation of the leading term of the local truncation error
in Eq. (28) as a function of ξ .

Thefinal semidiscrete systemof equations includes N−2 equations given byEq. (8)with A = 2, . . . , N−1,
Eq. (19) for the left end and the equation similar to Eq. (19) for the right end. (These last two equations include
the Neumann boundary conditions.)

Remark 3 Due to Eqs. (26) and (27), the same multiplier a1 included into the left- and right-hand sides of the
stencil equation, Eq. (19), can be canceled (or it can be taken a1 = 1).
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Fig. 3 The variation of the leading term Coef2 = ξ4(ξ+1)4(4ξ(ξ+1)(4ξ(ξ+1)−51)−51)
604800(4ξ(ξ+1)(12ξ(ξ+1)−65)−65) in Eq. (28) as a function of ξ (see Fig. 1)

2.2.3 Neumann boundary conditions (without the inclusion of boundary degrees of freedom)

In contrast to the approach for the Neumann boundary conditions described in Sect. 2.2.2, the second approach
is based on a uniform mesh without the inclusion of the boundary degrees of freedom into stencil equations.
This technique can be derived from the previous technique in Sect. 2.2.2 as follows. The boundary degree of
freedom u1 is not included in calculations. Instead of the two stencil equations, Eq. (8) at A = 2 and Eq. (19),
we will use just one stencil equation, Eq. (19), with m1 = k1 = 0. Repeating the derivations presented in
the previous Sect. 2.2.2 with m1 = k1 = 0 and equating to zero the first three coefficients in the first square
brackets of Eq. (22) with the smallest even orders of h, we get a linear system of three algebraic equations.
Solving this system, we can find the following coefficientsmi and ki (i = 2, 3) of the stencil equation, Eq. (19),
for the new approach:

m1 = 0, m2 = a1, m3 = (−4ξ2 + 2ξ + 1)a1
4ξ2 + 10ξ + 5

,

k1 = 0, k2 = 12a1
4ξ2 + 10ξ + 5

, k3 = − 12a1
4ξ2 + 10ξ + 5

, (29)

where a1 is an arbitrary coefficient. Inserting the coefficientsmi and ki (i = 1, 2, 3) fromEq. (29) into Eqs. (25)
and (22), we get the following load term f1 and local truncation error enew for the stencil Eq. (19) related to
the Neumann boundary conditions with the new approach:

f1 = a1

⎡

⎣− 12c2hg1(t)

2ξ(2ξ + 5) + 5
− (2ξ(ξ + 1) − 1)h3 d

2g1(t)
dt2

2ξ(2ξ + 5) + 5
+ (2 − 5ξ(ξ(3ξ(ξ + 2) + 1) − 2))h5 d

4g1(t)
dt4

30(2ξ(2ξ + 5) + 5)c2

− (1 − 7ξ(ξ + 1)(ξ2 + a − 1)(2ξ(ξ + 1) + 1))h7 d
6g1(t)
dt6

168(2ξ(2ξ + 5) + 5)c6

(1 − 3ξ(ξ(7ξ(ξ2(ξ + 2)(ξ(ξ + 2) + 2) − 2) − 10) − 3))h9 d
8g1(t)
dt8

6048(2ξ(2ξ + 5) + 5)c10

⎤

⎦ (30)

and

enew = (2ξ + 1)(4ξ(ξ(4ξ(ξ + 2) + 1) − 3) − 3)c2h6a1
∂6u1
∂x6

120(2ξ(2ξ + 5) + 5)
+ O(h7), (31)

i.e., the order of the local truncation error in space for the stencil Eq. (19) related to the Neumann boundary
conditions and given by Eq. (31) is comparable with that for the 3-point stencils of the internal degrees of
freedom considered in Sect. 2.1 (see Eq. (17)). It should be mention that small distances from the grid points to
the boundary (or small ξ � 1) do not decrease the accuracy of the new approach. Moreover, at small ξ � 1,
the accuracy is higher than that at ξ close to 1; see Fig. 4 for the variation of the leading term of the local
truncation error in Eq. (31) as a function of ξ .

The final semidiscrete system of equations includes N − 4 stencil equations given by Eq. (8) with A =
3, . . . , N − 2, Eq. (19) for the left end and the equation similar to Eq. (19) for the right end. (These last
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Fig. 4 The variation of the leading term Coef3 = (2ξ+1)(4ξ(ξ(4ξ(ξ+2)+1)−3)−3)
120(2ξ(2ξ+5)+5) in Eq. (31) as a function of ξ (see Fig. 1)

Fig. 5 The spatial locations of the degrees of freedom ui, j (i = A − 1, A, A + 1, j = B − 1, B, B + 1) that contribute to the
9-point uniform stencil for the internal degree of freedom uA,B located far from the boundary

Fig. 6 The spatial locations of the degrees of freedom ui, j (i = A − 1, A, A + 1, j = B − 1, B, B + 1) that contribute to the
9-point non-uniform stencil for the internal degree of freedom uA,B located close to the boundary with the Dirichlet boundary
conditions

two equations include the Neumann boundary conditions.) The degrees of freedom unum1 and unumN are not
included in the final global system. The values of the unknown function at these grid points can be found by
an extrapolation after the solution of the final system of equations.

Remark 4 Due to Eqs. (29) and (30), the same multiplier a1 included into the left- and right-hand sides of the
stencil equation, Eq. (19), can be canceled (or it can be taken a1 = 1).

3 A new numerical approach for the 2-D wave and heat equations

3.1 Zero load f = 0 in Eqs. (1) and (2)
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Here, we present 9-point uniform stencils that will be used for the internal grid points located far from the
boundary and 9-point non-uniform stencils that will be used for the grid points located close to the boundary
with the Dirichlet boundary conditions. (The case of the Neumann boundary conditions will be considered
separately in Sect. 3.3.2.) Let us consider a 2-D bounded domain and a rectangular Cartesian mesh with a mesh
size h where h is the size of the mesh along the x-axis and byh is the size of the mesh along the y-axis (by is
the aspect ratio of the mesh); see Figs. 5 and 6. The 9-point stencil considered here is similar to that for the
2-D linear quadrilateral finite elements. The spatial locations of the 8 degrees of freedom that are close to the
internal degree of freedom uA,B and contribute to the 9-point stencil for this degree of freedom are shown in
Fig. 5 for the case when the boundary and the Cartesian mesh are matched or when the degree of freedom uA,B
is located far from the boundary. In the case of non-conforming grids when the grid points do not coincide with
the boundary, the first grid points that are located outside the physical domain are moved to the boundary of the
physical domain as shown in Fig. 6. In order to find the boundary points that are included into the stencil for
the degree of freedom uA,B (see Fig. 6), we join the central point uA,B with the 8 closest grid points, i.e., we
have eight straight lines along the x− and y−axes and along the diagonal directions (the dashed lines) of the
grid; see Fig. 6. If any of these lines intersects the boundary of the domain, then the corresponding grid point
(designated as ◦) should be moved to the boundary. (The new location is designated as •.) This means that
for all internal points located within the domain, we use the 9-point uniform (see Fig. 5) or non-uniform (see
Fig. 6) stencil. To describe the coordinates of the boundary points shown in Fig. 6 we introduce 8 coefficients
0 ≤ di ≤ 1 (i = 1, 2, . . . , 8) as follows (see also Fig. 6):

xA−1,B−1 = xA,B − d1h, yA−1,B−1 = yA,B − d1byh,

xA,B−1 = xA,B, yA,B−1 = yA,B − d2byh,

xA+1,B−1 = xA,B + d3h, yA+1,B−1 = yA,B − d3byh,

xA−1,B = xA,B − d4h, yA−1,B = yA,B,

xA+1,B = xA,B + d5h, yA+1,B = yA,B,

xA−1,B+1 = xA,B − d6h, yA−1,B+1 = yA,B + d6byh,

xA,B+1 = xA,B, yA,B+1 = yA,B + d7byh,

xA+1,B+1 = xA,B + d8h, yA+1,B+1 = yA,B + d8byh. (32)

If for a specific geometry of the domain some grid points designated in Fig. 6 as ◦ are located inside the
domain, then these grid points should not be moved and the coordinates of these points can be also determined
by Eq. (32) with the corresponding coefficients di equal to unity (di = 1). Equation (4) for the 9-point uniform
(see Fig. 5) or non-uniform (see Fig. 6) stencil can be explicitly rewritten as follows:

h2
{
m1

dnunum(A−1),(B−1)

dtn
+ m2

dnunumA,(B−1)

dtn
+ m3

dnunum(A+1),(B−1)

dtn
+ m4

dnunum(A−1),B

dtn
+ m5

dnunumA,B

dtn

+m6
dnunum(A+1),B

dtn
+ m7

dnunum(A−1),(B+1)

dtn
+ m8

dnunumA,(B+1)

dtn
+ m9

dnunum(A+1),(B+1)

dtn

}

+c̄
{
k1u

num
(A−1),(B−1) + k2u

num
A,(B−1) + k3u

num
(A+1),(B−1) + k4u

num
(A−1),B + k5u

num
A,B

+k6u
num
(A+1),B + k7u

num
(A−1),(B+1) + k8u

num
A,(B+1) + k9u

num
(A+1),(B+1)

}
= f̄ A,B, (33)

where f̄ A,B = 0 in the case of zero load f = 0 in Eqs. (1) and (2), the unknown coefficients mi and ki
(i = 1, 2, . . . , 9) are to be determined from the minimization of the local truncation error, the superscript n in
the time derivative in Eq. (33) and the material parameter c̄ are n = 1 and c̄ = a for the heat equation as well
as n = 2 and c̄ = c2 for the wave equation. For the calculation of the local truncation error, let us expand the
exact solution u j,l ( j = A− 1, A, A+ 1 and l = B − 1, B, B + 1) and its time derivatives into a Taylor series
at small h � 1 as follows:

wA+i,B+ j = wA,B + ∂wA,B

∂x
(ihdi j ) + ∂wA,B

∂y
( jhdi j ) + ∂2wA,B

∂x2
(ihdi j )2

2!
+∂2wA,B

∂x∂y

(ihdi j )( jhdi j )

2! + ∂2wA,B

∂y2
( jhdi j )2

2!
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+∂3wA,B

∂x3
(ihdi j )3

3! + ∂3wA,B

∂y∂x2
(ihdi j )2( jhdi j )

3!
+∂3wA,B

∂y2∂x

(ihdi j )( jhdi j )2

3! + ∂3wA,B

∂y3
( jhdi j )3

3! + · · · (34)

where w = u and w = ∂nu
∂tn as well as i, j = −1, 0, 1, and there is no summation over the repeated indexes

i and j in Eq. (34). For convenience, the coefficients di (i = 1, 2, . . . , 8) in Eq. (32) are designated as di j
(i, j = −1, 0, 1) in Eq. (34) with the following correspondence between di and di j :

d−1,−1 = d1, d0,−1 = d2, d1,−1 = d3, d−1,0 = d4, (35)

d1,0 = d5, d−1,1 = d6, d0,1 = d7, d1,1 = d8.

The exact solution uA,B to Eqs. (1) or (2) meets the following equations:

∂nuA,B

∂tn
− c̄∇2uA,B = 0, (36)

∂ i+ j+nuA,B

∂xi∂y j∂tn
− c̄

∂ i+ j∇2uA,B

∂xi∂y j
= 0, (37)

with i, j = 0, 1, 2, 3, 4, . . .. Replacing the numerical solution in Eq. (33) by the exact solution (similar to
Eq. (6)) and using Eq. (34) with w = u and w = ∂nu

∂tn as well as Eqs. (35)–(37), we get a Taylor series of the
local truncation error in space for the new approach:

e = c̄

{
b1uA,B + h

(
b2

∂uA,B

∂x
+ b3

∂uA,B

∂y

)
+ h2

2

(
b4

∂2uA,B

∂x2
+ b5

∂2uA,B

∂x∂y
+ b6

∂2uA,B

∂y2

)

+h3

6

(
b7

∂3uA,B

∂x3
+ b8

∂3uA,B

∂x2∂y
+ b9

∂3uA,B

∂x∂y2
+ b10

∂3uA,B

∂y3

)

+h4

24

(
b11

∂4uA,B

∂x4
+ b12

∂4uA,B

∂x3∂y
+ b13

∂4uA,B

∂x2∂y2
+ b14

∂4uA,B

∂x∂y3
+ b15

∂4uA,B

∂y4

)

+ h5

120

(
b16

∂5uA,B

∂x5
+ b17

∂5uA,B

∂x4∂y
+ b18

∂5uA,B

∂x3∂y2
+ b19

∂5uA,B

∂x2∂y3
+ b20

∂5uA,B

∂x∂y4
+ b21

∂5uA,B

∂y5

)

+ h6

720

(
b22

∂6uA,B

∂x6
+ b23

∂6uA,B

∂x5∂y
+ b24

∂6uA,B

∂x4∂y2
+ b25

∂6uA,B

∂x3∂y3
+ b26

∂6uA,B

∂x2∂y4

+b27
∂6uA,B

∂x∂y5
+ b28

∂6uA,B

∂y6

)}
+ O(h7) (38)

with the coefficients bp (p = 1, 2, . . . , 28) given in “Appendix A.” Due to the use of Eqs. (36) and (37), the
local truncation error in Eq. (38) does not include the time derivatives. In order to improve the order of the
local truncation error in Eq. (38) at small h � 1, we will equate to zero the coefficients bp in Eq. (38) for the
smallest orders of h. If we equate to zero the first 15 coefficients bp = 0 (p = 1, 2, . . . , 15) in Eq. (38), then, at
least, we could obtain the fifth order of the local truncation error. However, for a rectangular mesh with by �= 1,
the corresponding system of 15 algebraic equations for some particular cases (e.g., when three or four points
of the 9-point regular stencil are located outside the physical domain and we have a non-uniform stencil with
d4 �= 1, d6 �= 1, d7 �= 1 and d8 �= 1, see Fig. 6) can be analytically solved with the help of Mathematica. These
solutions show that all coefficients ki in this stencil equation are zeros, i.e., these solutions are inappropriate.
Therefore, the maximum possible order of the local truncation error for a non-uniform stencil, Eq. (38), on a
rectangular mesh corresponds to the fourth order. (This can be done by equating to zero the first 10 coefficients
bp = 0 (p = 1, 2, . . . , 10) in Eq. (38).) Fortunately, for square meshes with by = 1, the solutions of the
system of 14 algebraic equations bp = 0 (p = 1, 2, . . . , 11, 13, 14, 15) for the cases when five points of the
9-point regular stencil are located outside the physical domain (e.g., for non-uniform stencils with d4 �= 1,
d5 �= 1, d6 �= 1, d7 �= 1, d8 �= 1 or d1 �= 1, d4 �= 1, d6 �= 1, d7 �= 1, d8 �= 1; see Fig. 6) can be analytically
solved with the help of Mathematica. The substitution of these solutions in the expression for coefficient b12
(see “Appendix A”) yields b12 = 0, i.e., all 15 coefficients bp = 0 (p = 1, 2, . . . , 15) are zero in these cases.
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Therefore, for square meshes the new approach with the non-uniform stencils for a very general geometry (the
five points of the 9-point regular stencil can be located outside the physical domain) yields, at least, the fifth
order of the local truncation error. The case of square Cartesian meshes with by = 1 will be considered below
for the wave and heat equations.

In order to zero the coefficients bp (p = 1, 2, . . . , 15) and minimize the values of the coefficients bp
(p = 16, 17, . . . , 21) for the fifth and sixth orders of the local truncation error, we use the following procedure.
First, let us zero the following coefficients bp:

bp = 0, p = 1, 2, . . . , 11, 13, 15, (39)

and

b12 + b14 = 0, (40)

The use of Eq. (40) instead of equating a single coefficient bp (as in Eq. (39)) allows a symmetric form of the
local truncation error in Eq. (38) with respect to x and y.

Then, for the coefficients bp related to the fifth and sixth orders of the local truncation error, we use the
least square method with the following residual R:

R =
21∑

p=16

b2p + h1

28∑

p=22

b2p, (41)

where h1 is theweighting factor to be selected (e.g., the numerical experiments show that h1 = 1 yields accurate
results). The inclusion of the sixth-order terms is explained by the fact that for uniform square meshes, the
fifth-order terms do not provide a sufficient number of equations for the calculation of the coefficients mi and
ki (i = 1, 2, . . . , 9). In order to minimize the residual R with the constraints given by Eqs. (39)–(40), we can
form a new residual R̄ with the Lagrange multipliers λp:

R̄ =
21∑

p=16

b2p + h1

28∑

p=22

b2p +
11∑

p=1

λpbp + λ12(b12 + b14) + λ13b13 + λ14b15. (42)

The residual R̄ is a quadratic function of coefficients mi and ki (i = 1, 2, . . . , 9) and a linear function of
the Lagrange multipliers λp, i.e., R̄ = R̄(mi , ki , λp). In order to minimize the residual R̄(mi , ki , λp), the
following equations based on the least square method for the residual R̄ can be written down:

∂R

∂mi
= 0,

∂R

∂ki
= 0, i = 1, 2, . . . , 9, (43)

∂R

∂λp
= 0, p = 1, 2, . . . , 14, (44)

where equation ∂R
∂m5

= 0 should be replaced by m5 = 1 (because for the homogeneous stencil equation,

Eq. (33), with f̄ A,B = 0 one of the coefficients mi and ki (i = 1, 2, . . . , 9) can be arbitrary selected, e.g.,
m5 = 1). Equations (43) and (44) form a system of 32 linear algebraic equations with respect to 18 unknown
coefficients mi and ki (i = 1, 2, . . . , 9) and 14 Lagrange multipliers λp (p = 1, 2, . . . , 14). Solving these
linear algebraic equations numerically, we can find the coefficients mi , ki (i = 1, 2, . . . , 9) for the 9-point
non-uniform stencils.

Remark 5 To estimate the computation costs of the solution of 32 linear algebraic equations formedbyEqs. (43)
and (44), we solved 106 such systems with the general MATLAB solver on a simple student laptop computer
(Processor: Intel (R) Core(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz). The computation ’wall’ time was
T = 1216s for 106 systems or the average time for one system was 0.001216s. Because the coefficients mi
and ki (i = 1, 2, . . . , 9) are independently calculated for different non-uniform stencils, the computation time
of their calculation for different grid points can be significantly reduced on modern parallel computers. This
means that for large global systems of equations, the computation time for the calculation of the coefficients
mi and ki (i = 1, 2, . . . , 9) is very small compared to that for the solution of the global system of equations.
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Remark 6 The coefficientsmi and ki (i = 1, 2, . . . , 9) calculated according to the above-mentioned procedure
lead to a non-symmetric global system of semidiscrete equations. Non-symmetric global matrices are also
reported for other numerical techniques with Cartesian meshes on irregular domains, e.g., see [6].

For the limit case of uniform stencils with di = 1 (i = 1, 2, . . . , 8) and square meshes, the coefficients
mi and ki (i = 1, 2, . . . , 9) can be calculated analytically with the help of Mathematica and are equal to those
obtained by the modified integration rule technique for uniform stencils in [23,59]:

m1 = m3 = m7 = m9 = a1/100, m2 = m4 = m6 = m8 = a1/10, m5 = a1,

k1 = k3 = k7 = k9 = −6a1/25, k2 = k4 = k6 = k8 = −24a1/25, k5 = 24a1/5, (45)

where a1 is an arbitrary coefficient.
By the substitution of mi and ki (i = 1, 2, . . . , 9) from Eq. (45) for the uniform stencil in the formulas for

the coefficients bp (see “Appendix A”), we can find that bp = 0 for p = 1, 2, . . . , 21 and the local truncation
error for the uniform stencil on square meshes is:

enew = 3a1c̄h6

500

[
∂6uA,B

∂x6
+ ∂6uA,B

∂y6

]
+ O(h7). (46)

The new approach with square Cartesian meshes provides the fifth order of the local truncation error for the
non-uniform stencils and the sixth order of the local truncation error for the uniform stencils (see Eq. (46)).
For the conventional linear finite elements on uniform square meshes, the local truncation error is (see [23])

elinconv = c̄h4

12

(
∂4uA,B

∂x4
+ ∂4uA,B

∂y4

)
+ O(h6), (47)

i.e., for the 9-point stencils the new approach improves the local truncation error in space by two orders
compared to that for the conventional linear elements on uniform square meshes.

3.2 Nonzero load f �= 0 in Eqs. (1) and (2)

The inclusion of nonzero loading term f in the partial differential equations, Eqs. (1) and (2), leads to the
nonzero term f̄ A,B in the stencil equation, Eq. (33) (similar to Eq. (4)). The expression for the term f̄ A,B can
be calculated from the procedure used for the derivation of the local truncation error in the case of zero loading
function.

In case of nonzero loading function ( f (x, t) �= 0), Eqs. (36) and (37) for the exact solution at x = xA and
y = yB can be modified as follows:

∂nuA,B

∂tn
− c̄∇2uA,B = f (xA, yB, t), (48)

∂(i+ j+n)uA,B

∂xi∂y j∂tn
− c̄

∂(i+ j)∇2uA,B

∂xi∂y j
= ∂(i+ j) f (xA, yB, t)

∂xi∂y j
. (49)

Then, replacing the numerical solution in Eq. (33) with nonzero f̄ A,B by the exact solution (similar to Eq. (6))
and using Eq. (34) with w = u and w = ∂nu

∂tn as well as Eqs. (35), (48) and (49), we get a Taylor series of the
local truncation error in space e f for the new approach:

e f = e − [
f̄ A,B − {

h2 f A,B(m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9)

+h3
(
by

∂ f A,B

∂y
(−d1m1 − d2m2 − d3m3 + d6m7 + d7m8 + d8m9)

+∂ f A,B

∂x
(−d1m1 + d3m3 − d4m4 + d5m6 − d6m7 + d8m9)

)

+1

2
h4

(
b2y

∂2 f A,B

∂y2
(
d21m1 + d22m2 + d23m3 + d26m7 + d27m8 + d28m9

)
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+∂2 f A,B

∂x2
(
d21m1 + d23m3 + d24m4 + d25m6 + d26m7 + d28m9

)

+2by
∂2 f A,B

∂x∂y

(
d21m1 − d23m3 − d26m7 + d28m9

))

+1

6
h5

(
b3y

∂3 f A,B

∂y3
(
d31 (−m1) − d32m2 − d33m3 + d36m7 + d37m8 + d38m9

)

+∂3 f A,B

∂x3
(
d31 (−m1) + d33m3 − d34m4 + d35m6 − d36m7 + d38m9

)

+3by

(
by

∂3 f A,B

∂x∂y2
(d31 (−m1) + d33m3 − d36m7 + d38m9)

+∂3 f A,B

∂x2∂y

(
d31 (−m1) − d33m3 + d36m7 + d38m9

)))

+ 1

24
h6

(
b4y

∂4 f A,B

∂y4
(
d41m1 + d42m2 + d43m3 + d46m7 + d47m8 + d48m9

)

+∂4 f A,B

∂x4
(
d41m1 + d43m3 + d44m4 + d45m6 + d46m7 + d48m9

)

+4b3y
∂4 f A,B

∂x∂y3
(
d41m1 − d43m3 − d46m7 + d48m9

)

+6b2y
∂4 f A,B

∂x2∂y2
(
d41m1 + d43m3 + d46m7 + d48m9

)

+4by
∂4 f A,B

∂x3∂y

(
d41m1 − d43m3 − d46m7 + d48m9

)) + · · ·
}]

, (50)

where e is the local truncation error in space given by Eq. (38) for zero loading function, f A,B designates
function f (x, y, t) calculated at x = xA and y = yB . Equating to zero the expression in the square brackets
in the right-hand side of Eq. (50), we will get the expression for f̄ A,B :

f̄ A,B = h2 f A,B(m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9)

+h3(by
∂ f A,B

∂y
(−d1m1 − d2m2 − d3m3 + d6m7 + d7m8 + d8m9)

+∂ f A,B

∂x
(−d1m1 + d3m3 − d4m4 + d5m6 − d6m7 + d8m9))

+1

2
h4(b2y

∂2 f A,B

∂y2
(d21m1 + d22m2 + d23m3 + d26m7 + d27m8 + d28m9)

+∂2 f A,B

∂x2
(d21m1 + d23m3 + d24m4 + d25m6 + d26m7 + d28m9)

+2by
∂2 f A,B

∂x∂y
(d21m1 − d23m3 − d26m7 + d28m9))

+1

6
h5(b3y

∂3 f A,B

∂y3
(d31 (−m1) − d32m2 − d33m3 + d36m7 + d37m8 + d38m9)

+∂3 f A,B

∂x3
(d31 (−m1) + d33m3 − d34m4 + d35m6 − d36m7 + d38m9)

+3by(by
∂3 f A,B

∂x∂y2
(d31 (−m1) + d33m3 − d36m7 + d38m9)

+∂3 f A,B

∂x2∂y
(d31 (−m1) − d33m3 + d36m7 + d38m9))) + 1

24
h6(b4y

∂4 f A,B

∂y4
(d41m1 + d42m2 + d43m3

+d46m7 + d47m8 + d48m9)
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+∂4 f A,B

∂x4
(d41m1 + d43m3 + d44m4 + d45m6 + d46m7 + d48m9)

+4b3y
∂4 f A,B

∂x∂y3
(d41m1 − d43m3 − d46m7 + d48m9)

+6b2y
∂4 f A,B

∂x2∂y2
(d41m1 + d43m3 + d46m7 + d48m9)

+4by
∂4 f A,B

∂x3∂y
(d41m1 − d43m3 − d46m7 + d48m9)) + · · · (51)

as well as we get the same local truncation errors e f = e for zero and nonzero loading functions. This means
that the coefficients mi and ki of the stencil equations are first calculated for zero load f = 0 as described in
Sect. 3.1. Then, the nonzero loading term f̄ A,B given by Eq. (51) is used in the stencil equation, Eq. (33).

3.3 Boundary conditions

3.3.1 Dirichlet boundary conditions

Similar to the 1-D case in Sect. 2.2.1, the application of the Dirichlet boundary conditions in the new approach
is trivial and similar to that for the finite elements. We simply equate the boundary degrees of freedom of
the uniform and non-uniform stencils (see Figs. 5 and 6) to the values of a given function g2(x, y, t) at the
corresponding boundary points, i.e., the Dirichlet boundary conditions are exactly imposed. Here, g2(x, y, t)
describes the Dirichlet boundary conditions. The final global discrete system of equations includes the 9-point
uniform and non-uniform stencil equations (see Figs. 5 and 6) for all internal grid points that are located inside
the domain as well as the Dirichlet boundary conditions at the boundary points.

Remark 7 The imposition of the Dirichlet boundary conditions at any boundary point means that the stencil
coefficients at this boundary point are multiplied by the known values of function u and its time derivatives and
are moved to the right-hand side of the stencil equation. Therefore, the left-hand side of the stencil equation
in this case includes the unknown function u and its time derivative at the Cartesian grid points. (There are
no unknowns at the boundary points, and the boundary points contribute to the right-hand side of the stencil
equation only.) This also means that the 9-point non-uniform stencils shown in Fig. 6 actually include less
than 9 Cartesian grid points.

Remark 8 The proposed technique yields accurate results for the non-uniform stencils even with very small
coefficients di � 1; see the numerical examples in Part II. However, the new technique allows also to exclude
very small coefficients di � 1 from calculations. For example, if di � tol for some internal point (see Fig. 6)
where tol is a small tolerance (e.g., tol = 10−3), then the non-uniform stencil for this internal point can be
removed from the global system of equations and this point can be moved to the boundary and treated as the
boundary point for other stencils. In this case, the corresponding coefficients di for this point in other stencils
can be slightly greater than one. According to the derivations in the previous section, all equations will be valid
also for di > 1. The numerical experiments with a small tolerance tol = 10−3 show that if the point with very
small coefficients di � 1 is moved to the boundary, then the coefficients di for this point in other stencils can
be taken as di = 1 without introducing any significant errors.

3.3.2 Neumann boundary conditions (with no inclusion of boundary degrees of freedom)

In this section, we show that a high accuracy of the new approach with the Neumann boundary conditions in
the 2-D case can be developed with a cut stencil that includes less than 9 grid points. Here, we show that the
8-point cut stencil can be used for the imposition of the Neumann boundary conditions at the upper boundary.
(The cases of the left, lower and right boundaries can be considered by the rotation of this stencil through
angles 90o, 180o and 270o, respectively.) This stencil includes the internal grid points of a uniform Cartesian
mesh only. Similar to the Neumann boundary conditions in the 1-D case presented in Sect. 2.2.3, the boundary
points with the Neumann boundary conditions are included into the right-hand side of the 8-point cut stencil.
For the time-dependent wave and heat equations, we use three boundary points with the coordinates xi , yi ,
i = 1, 2, 3 (see Fig. 7 and Eq. (52) ). The stencil equations should be formed for all grid points located within
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Fig. 7 The spatial locations of the degrees of freedom ui, j (i = A − 1, A, A + 1, j = B − 1, B, B + 1) that contribute to
the 8-point cut stencils for the internal degrees of freedom uA,B and uA,B+1 located close to the boundary with the Neumann
boundary conditions. • designates the 8 points contributing to the stencil equation

the actual domain. For any internal grid point located far from the boundary, we use the 9-point stencil; see
Fig. 5. For the 9-point regular stencil for the grid point uA,B shown in Fig. 7 and located close to the boundary,
one grid point uA−1,B+1 is cut by the boundary. Therefore, for this grid point, we use the 8-point stencil shown
in Fig. 7. The case when the boundary cuts the grid point uA+1,B+1 (instead of the grid point uA−1,B+1) can be
treated similarly. For the 9-point regular stencil for the grid point uA,B+1 shown in Fig. 7 and located close to
the boundary, the boundary cuts four grid points uA−1,B+1, uA−1,B+2, uA,B+2 and uA+1,B+2. In this case, for
the grid point uA,B+1, we use the same 8-point stencil as that for the grid point uA,B . However, in order to have
linear independent stencil equations for the grid points uA,B+1 and uA,B , we will select different locations of
the boundary points used for these stencils (with the different coordinates xi , yi , i = 1, 2, 3). If for the 9-point
regular stencil for the grid point uA,B+1 the boundary cuts one grid point uA,B+2, or two grid points uA−1,B+2
and uA,B+2, or three grid points uA−1,B+2, uA,B+2 and uA+1,B+2 (or three grid points uA−1,B+1, uA−1,B+2
and uA,B+2), then the same 8-point stencil as that for the grid point uA,B+1 shown in Fig. 7 is used, i.e., the
8-point stencils will be used for all grid points close to the boundary where the boundary cuts the grid points of
the 9-point regular stencil. Equation (4) for the 8-point stencil (see Fig. 7) can be explicitly written as follows:

h2
{
m1

dnunum(A−1),(B−1)

dtn
+ m2

dnunumA,(B−1)

dtn
+ m3

dnunum(A+1),(B−1)

dtn
+ m4

dnunum(A−1),B

dtn
+ m5

dnunumA,B

dtn

+m6
dnunum(A+1),B

dtn
+ m8

dnunumA,(B+1)

dtn
+ m9

dnunum(A+1),(B+1)

dtn

}

+ c̄
{
k1u

num
(A−1),(B−1) + k2u

num
A,(B−1) + k3u

num
(A+1),(B−1) + k4u

num
(A−1),B + k5u

num
A,B

+k6u
num
(A+1),B + k8u

num
A,(B+1) + k9u

num
(A+1),(B+1)

}

= [c̄h(l1g1(x1, y1, t) + l2g1(x2, y2, t) + l3g1(x3, y3, t))] + f̄ A,B, (52)

where f̄ A,B = 0 in the case of zero load f = 0 in Eqs. (1) and (2), the unknown coefficients mi , ki
(i = 1, 2, . . . , 6, 8, 9) and li (i = 1, 2, 3) are to be determined from the minimization of the local truncation
error, the expression in the square brackets in the right-hand side of Eq. (52) represents the Neumann boundary
conditions at three boundary points with the coordinates xi , yi , i = 1, 2, 3 (xA−1,B+1 ≤ xi ≤ xA+1,B+1, see
Fig. 7), the superscript n for the time derivative in Eq. (52) and the material parameter c̄ are n = 1 and c̄ = a
for the heat equation as well as n = 2 and c̄ = c2 for the wave equation. For convenience, the left-hand side
of Eq. (52) is written similar to that of Eq. (33) with k7 = m7 = 0.

Remark 9 Only 18 out of the 19 coefficients mi , ki (i = 1, 2, . . . , 6, 8, 9) and li (i = 1, 2, 3) in Eq. (52)
can be considered as unknown coefficients. This can be explained as follows: In the case of zero load f = 0
and f̄ A,B = 0, Eq. (52) can be rescaled by the division of the left and right sides of Eq. (52) by any scalar
a1. For example, let us select a1 = m5. In this case, the rescaled coefficients m̄i , k̄i (i = 1, 2, . . . , 6, 8, 9)
and l̄i (i = 1, 2, 3) of the stencil equation are: m̄i = mi/m5 (i = 1, 2, 3, 4, 6, 8, 9), m̄5 = 1, k̄i = ki/m5
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(i = 1, 2, . . . , 6, 8, 9) and l̄i = li/m5 (i = 1, 2, 3), i.e., there are only 18 unknown rescaled coefficients.
The case of nonzero load f̄ A,B �= 0 can be similarly treated because the term f̄ A,B is a linear function of the
coefficients mi (see Eq. (51)).

Remark 10 In the numerical simulations in Part 2 of the paper, we use the uniform spacing h1 = h/32 for the
boundary points along the x-axis (xi+1 = xi + h1 with i = 1, 2; see Fig. 7) with the following x-coordinate
of the first point: (a) x1 = xA−1,B + h1 in the case when the boundary cuts one grid point uA−1,B+1; (b)
x1 = xA,B − h1 in the case when the boundary cuts one grid point uA,B+2 or three grid points uA−1,B+2,
uA,B+2 and uA+1,B+2 as well as in the case of the conforming mesh; (c) x1 = (xA,B + xA+1,B)/2− h1 in the
case when the boundary cuts four grid points uA−1,B+1, uA−1,B+2, uA,B+2 and uA+1,B+2 or three grid points
uA−1,B+1, uA−1,B+2 and uA,B+2 or two grid points uA−1,B+2 and uA,B+2. The numerical results show that
with this selection of the boundary points we have stable numerical solutions.

The local truncation error of the stencil equation, Eq. (52), at any time t can be written down by the
replacement of the numerical solution in Eq. (52) by the exact solution as follows:

e = h2
{
m1

dnu(A−1),(B−1)

dtn
+ m2

dnuA,(B−1)

dtn
+ m3

dnu(A+1),(B−1)

dtn
+ m4

dnu(A−1),B

dtn
+ m5

dnuA,B

dtn

+m6
dnu(A+1),B

dtn
+ m8

dnuA,(B+1)

dtn
+ m9

dnu(A+1),(B+1)

dtn

}

+ c̄
{
k1u(A−1),(B−1) + k2uA,(B−1) + k3u(A+1),(B−1) + k4u(A−1),B + k5uA,B

+ k6u(A+1),B + k8uA,(B+1) + k9u(A+1),(B+1)
}

−
[
c̄h

(
l1

(
n11

∂u(x1, y1)

∂x
+ n21

∂u(x1, y1)

∂y

)
+ l2

(
n12

∂u(x2, y2)

∂x
+ n22

∂u(x2, y2)

∂y

)

+ l3

(
n13

∂u(x3, y3)

∂x
+ n23

∂u(x3, y3)

∂y

))]
, (53)

where n1i and n2i (i = 1, 2, 3) are the x- and y-components of the unit normal vector ni at the boundary
point i (see Fig. 7), function u(x, y, t) in Eq. (53) corresponds to the exact solution, the Neumann boundary
conditions in the right-hand side of Eq. (52) are expressed in terms of the function u(x, y, t) and are moved to
the left-hand side of Eq. (53). Next, using the following notations for the coordinates of the boundary points
(see Fig. 7):

xi = xA,B + αi h, yi = yA,B + βi h, (54)

with the coefficients αi (−1 ≤ αi ≤ 1), βi , i = 1, 2, 3, let us expand the expression in the square brackets
of Eq. (53) (that corresponds to the Neumann boundary conditions) into a Taylor series at small h � 1 as
follows:

∂u(xA,B + αi h, yA,B + βi h)

∂z
= ∂uA,B

∂z
+ ∂2uA,B

∂z∂x
(αi h)

+∂2uA,B

∂z∂y
(βi h) + ∂3uA,B

∂z∂x2
(αi h)2

2! + ∂3uA,B

∂z∂x∂y

(αi h)(βi h)

2!
+∂3uA,B

∂z∂y2
(βi h)2

2! + ∂4uA,B

∂z∂x3
(αi h)3

3! + ∂4uA,B

∂z∂y∂x2
(αi h)2(βi h)

3!
+ ∂4uA,B

∂z∂y2∂x

(αi h)(βi h)2

3! + ∂4uA,B

∂z∂y3
(βi h)3

3! + · · · (55)

with ∂u
∂z = ∂u

∂x ,
∂u
∂z = ∂u

∂y . Using Eq. (34) with w = u, w = ∂nu
∂tn and di j = 1, Eqs. (36), (37), (55), we get the

following form of the local truncation error in space e from Eq. (53):

e = c̄

{
b1uA,B + h

(
b2

∂uA,B

∂x
+ b3

∂uA,B

∂y

)
+ h2

2

(
b4

∂2uA,B

∂x2
+ b5

∂2uA,B

∂x∂y
+ b6

∂2uA,B

∂y2

)

+ h3

6

(
b7

∂3uA,B

∂x3
+ b8

∂3uA,B

∂x2∂y
+ b9

∂3uA,B

∂x∂y2
+ b10

∂3uA,B

∂y3

)
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+ h4

24

(
b11

∂4uA,B

∂x4
+ b12

∂4uA,B

∂x3∂y
+ b13

∂4uA,B

∂x2∂y2
+ b14

∂4uA,B

∂x∂y3
+ b15

∂4uA,B

∂y4

)

+ h5

120

(
b16

∂5uA,B

∂x5
+ b17

∂5uA,B

∂x4∂y
+ b18

∂5uA,B

∂x3∂y2
+ b19

∂5uA,B

∂x2∂y3
+ b20

∂5uA,B

∂x∂y4
+ b21

∂5uA,B

∂y5

)

+ h6

720

(
b22

∂6uA,B

∂x6
+ b23

∂6uA,B

∂x5∂y
+ b24

∂6uA,B

∂x4∂y2
+ b25

∂6uA,B

∂x3∂y3
+ b26

∂6uA,B

∂x2∂y4
+ b27

∂6uA,B

∂x∂y5
+ b28

∂6uA,B

∂y6

)}
(56)

with the coefficients bp (p = 1, 2, . . . , 28) given in “Appendix A.” Due to the use of Eqs. (36) and (37), the
local truncation error in Eq. (56) does not include the time derivatives. In order to improve the order of the local
truncation error in Eq. (56) at small h � 1, we equate to zero the coefficients bp in Eq. (56) for the smallest
orders of h. The stencil equation, Eq. (52), includes 19 unknown coefficients mi , ki (i = 1, 2, . . . , 6, 8, 9) and
li (i = 1, 2, 3), but only 18 of them can be considered as unknown coefficients; see Remark 9. Therefore, we
can zero 18 coefficients bp in Eq. (56). As can be seen from Eq. (56), this will lead to the fifth order of the
local truncation error. In order to minimize the leading terms of the local truncation error, we use the following
procedure. First, we can zero the first 15 coefficients bp = 0 (p = 1, 2, . . . , 15) in Eq. (56) (this provides the
fifth order of the local truncation error), and then,we canminimize the coefficients bp (p = 16, 17, . . . , 21) that
define the leading terms of the local truncation error. From this procedure, we can find the unknown coefficients
mi , ki (i = 1, 2, . . . , 6, 8, 9) and li (i = 1, 2, 3) of the stencil equation, Eq. (52). Symbolic computations with
the Mathematica software show that the 14 algebraic equations bp = 0 (p = 1, 2, . . . , 11, 13, 14, 15) can
be analytically solved for ki (i = 1, 2, . . . , 6, 8, 9) and mi (i = 2, 3, . . . , 6, 8, 9) in terms of m1, m5 and li
(i = 1, 2, 3) and are given in the attached file ’m-k-coeff.pdf’ where the coefficientsm5 can be taken asm5 = 1
after rescaling; see Remark 9. The remaining unknown coefficients m1 and li (i = 1, 2, 3) can be found from
the minimization of the leading terms of the local truncation error at the constraint b12 = 0. Let us consider
the least square method with the following residual:

R = b216 + b217 + b218 + b219 + b220 + b221 + λb12, (57)

whereλ is the Lagrangemultiplier.With the help of the formulas given in “AppendixA” and the attached file ’m-
k-coeff.pdf’, the right-hand side of Eq. (57) can be expressed as a quadratic function of m1 and li (i = 1, 2, 3)
and a linear function of λ, i.e., R = R(m1, l1, l2, l3, λ). In order to minimize the residual R(m1, l1, l2, l3, λ),
the following five equations based on the least square method for the residual R can be written down:

∂R

∂m1
= 0,

∂R

∂l1
= 0,

∂R

∂l2
= 0,

∂R

∂l3
= 0,

∂R

∂λ
= 0, (58)

where the explicit form of these linear algebraic equations is given in the attached file ’Derivatives.pdf.’ Solving
the 5 linear algebraic equations (see Eq. (58)), we can find the coefficients m1, li (i = 1, 2, 3) as well as the
coefficients ki (i = 1, 2, . . . , 6, 8, 9) and mi (i = 2, 3, . . . , 6, 8, 9) with the help of the formulas given in the
attached files ’m-k-coeff.pdf’ and ’Derivatives.pdf.’ As can be seen, the 8-point cut stencil with the Neumann
boundary conditions yields the same fifth order of the local truncation error as the non-uniform 9-point stencil
with the Dirichlet boundary conditions in Sect. 3.1.

Remark 11 For some simple cases, the 5 linear algebraic equations (see Eq. (58)) can be solved analytically.
In this case, the leading terms bp (p = 16, 17, . . . , 21) of the local truncation error are the rational functions
of the xi and yi coordinates (i = 1, 2, 3) of the boundary points and the components of the unit normal
vectors n1i (i = 1, 2, 3) for the boundary points. (The components n2i can be expressed in terms of n1i .)
If the denominators of these rational functions are nonzero for all xi , yi and n1i , then the leading terms bp
(p = 16, 17, . . . , 21) are bounded. The numerical results show that in this case we have stable numerical
solutions. A more comprehensive study of the imposition of the optimal boundary conditions (including the
number and location of the boundary points) will be considered in the future. We should also mention that a
simpler way of the imposition of the Neumann boundary conditions is considered in our papers [29,30].
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4 A new numerical approach for the 2-D Poisson equation

4.1 Zero load f = 0 in Eq. (3)

The derivation of the new approach for the Poisson equation is similar to that for the wave and heat equations in
Sect. 3. The 9-point uniform and non-uniform stencils introduced in Section 3.1 (see Figs. 5 and 6) will be used
with the new approach for the internal grid points located far from the boundary and for the grid points located
close to the boundary with the Dirichlet boundary conditions. (The case of the Neumann boundary conditions
will be considered separately in Sect. 4.3.2.) The stencil equation for the degree of freedom unumA,B of the time-
independent Poisson equation can be obtained from Eq. (33) with c̄ = 1 and mi = 0 for i = 1, 2, . . . , 9) as
follows:

k1u
num
(A−1),(B−1) + k2u

num
A,(B−1) + k3u

num
(A+1),(B−1) + k4u

num
(A−1),B + k5u

num
A,B

+k6u
num
(A+1),B + k7u

num
(A−1),(B+1) + k8u

num
A,(B+1) + k9u

num
(A+1),(B+1) = f̄ A,B, (59)

where f̄ A,B = 0 in the case of zero load f = 0 in Eq. (3), the unknown coefficients ki (i = 1, 2, . . . , 9) are
to be determined from the minimization of the local truncation error. The exact solution uA,B to the Poisson
equation, Eq. (3), with f = 0 at x = xA and y = yB meets the following equations:

∂2uA,B

∂x2
= −∂2uA,B

∂y2
, (60)

∂(i+2 j)uA,B

∂yi∂x2 j
= (−1) j

∂(i+2 j)uA,B

∂y(i+2 j)
, (61)

∂(i+2 j−1)uA,B

∂yi∂x (2 j−1)
= (−1) j

∂(i+2 j−1)uA,B

∂y(i+2 j−1)∂x
, (62)

with i = 0, 1, 2, 3, 4, . . . and j = 1, 2, 3, 4, . . .. The right-hand sides of Eqs. (61) and (62) are obtained by the
replacement of the second x-derivative in the left-hand sides of Eqs. (61) and (62) by the second y-derivative
using Eq. (60). For the calculation of the local truncation error, we also use Eq. (32) with Eqs. (34) and (35).
Replacing the numerical solution in Eq. (59) by the exact solution (similar to Eq. (6)) and using Eq. (34) with
w = u as well as Eqs. (60)–(62), we get a Taylor series of the local truncation error in space for the new
approach:

e = b1uA,B + h

(
b2

∂uA,B

∂x
+ b3

∂uA,B

∂y

)
+ h2

2

(
b4

∂2uA,B

∂x∂y
+ b5

∂2uA,B

∂y2

)

+h3

6

(
b6

∂3uA,B

∂x∂y2
+ b7

∂3uA,B

∂y3

)
+ h4

24

(
b8

∂4uA,B

∂x∂y3
+ b9

∂4uA,B

∂y4

)

+ h5

120

(
b10

∂5uA,B

∂x∂y4
+ b11

∂5uA,B

∂y5

)
+ h6

720

(
b12

∂6uA,B

∂x∂y5
+ b13

∂6uA,B

∂y6

)
+ O(h7) (63)

with the coefficients bp (p = 1, 2, . . . , 13) given in “Appendix A.” Due to the use of Eqs. (60)–(62), the local
truncation error in Eq. (63) does not include the second- and higher-order partial derivatives with respect to x .
In order to improve the order of the local truncation error in Eq. (63) at small h � 1, we equate to zero the
coefficients bp in Eq. (63) for the smallest orders of h. The stencil equation, Eq. (59), includes 9 coefficients
ki (i = 1, 2, . . . , 9), but only 8 of them can be considered as unknown coefficients; the explanation is similar
to that for the wave (heat) equation in Remark 9. Therefore, we zero 8 coefficients bp (p = 1, 2, . . . , 7, 9)
in Eq. (63). Taking the scaling coefficient k5 = a1 = 1, from the 8 linear algebraic equations bp = 0
(p = 1, 2, . . . , 7, 9), all coefficients ki (i = 1, 2, . . . , 9) of the stencil equation, Eq. (59), can be numerically
found for the new approach. As can be seen from Eq. (63), this leads to the fourth order of the local truncation
error for rectangular meshes with by �= 1. However, we would like to mention that for square meshes with
by = 1, the coefficient b8 = 0; see “Appendix A” and the attached file ’b-coeff.pdf.’ This means that the
order of the local truncation error on square meshes is five (see Eq. (63) with bp = 0 for p = 1, 2, . . . , 9)
and is one order higher than that on rectangular meshes. Below, we present the analytical solution of a system
of algebraic equations bp = 0 for p = 1, 2, . . . , 7, 9 in the case of the 9-point uniform stencil with di = 1
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(i = 1, 2, . . . , 8). In this case, the coefficients ki (i = 1, 2, . . . , 9) of the stencil equation, Eq. (59), and the
local truncation error e (see Eq. (63)) are:

k1 = − a1
20

, k2 =
(
b2y − 5

)
a1

10
(
b2y + 1

) , k3 = − a1
20

, k4 =
(
1 − 5b2y

)
a1

10
(
b2y + 1

) , k5 = a1,

k6 =
(
1 − 5b2y

)
a1

10
(
b2y + 1

) , k7 = − a1
20

, k8 =
(
b2y − 5

)
a1

10
(
b2y + 1

) , k9 = − a1
20

(64)

and

e = a1

[
h6

400
b2y

(
−1 + b2y

) ∂6uA,B

∂y6
+ h8

100800
b2y

(
11 − 32b2y + 11b4y

) ∂8uA,B

∂y8

]
+ O(h10), (65)

where a1 is an arbitrary coefficient (we can take a1 = 1). As can be seen from Eq. (65), on the square meshes
with by = 1, the local truncation error for the 9-point uniform stencil is two orders higher than that on
rectangular meshes (see also our paper [23]).

For the conventional linear finite elements on uniform rectangular meshes, the local truncation error is
(e.g., see [23]):

elinconv =
(
by + b3y

)
h4

12

∂4uA,B

∂y4
+

by
(
−1 + b4y

)
h6

90

∂6uA,B

∂y6

+
by

(
1 + b2y

) (
25 − 67b2y + 25b4y

)
h8

60480

∂8uA,B

∂y8
+ O(h10). (66)

As can be seen from Eq. (66), the order of the local truncation error for the linear finite elements is four on
rectangular and square meshes, i.e., compared to conventional linear elements, the new approach improves the
local truncation error in space by two orders on uniform rectangular meshes and by four orders on uniform
square meshes.

4.2 Nonzero load f �= 0 in Eq. (3)

The inclusion of nonzero loading term f in the partial differential equation, Eq. (3), leads to the nonzero
term f̄ A,B in the stencil Eq. (59) (similar to Eq. (5)). The expression for the term f̄ A,B can be calculated
from the procedure similar to that for the wave (heat) equation in Sect. 3.2 and is given in the attached file
’RHS-Poisson.pdf.’ Similar to Sect. 4.1, the coefficients of the stencil equations are first calculated for zero
load f = 0. Then, the nonzero loading term f̄ A,B given in the attached file ’RHS-Poisson.pdf’ is used in the
stencil equation, Eq. (59). The expressions for the local truncation error are the same for zero and nonzero
loading functions.

4.3 Boundary conditions

4.3.1 Dirichlet boundary conditions

Similar to Sect. 3.3.1, the application of the Dirichlet boundary conditions in the new approach is trivial and
similar to that for the finite elements. We simply equate the boundary degrees of freedom of the uniform and
non-uniform stencils (see Figs. 5 and 6) to the values of a given function g2(x, y) at the corresponding boundary
points, i.e., the Dirichlet boundary conditions are exactly imposed; see also Remark 7 in Sect. 3.3.1. Here,
g2(x, y) describes the Dirichlet boundary conditions. The final global discrete system of algebraic equations
includes the 9-point uniform and non-uniform stencil equations (see Figs. 5 and 6) for all internal grid points
that are located inside the domain as well as the Dirichlet boundary conditions at the boundary points.
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4.3.2 Neumann boundary conditions (with no inclusion of boundary degrees of freedom)

Here, we show that the 8-point cut stencil used in Sect. 3.3.2 for the grid points close to the boundary in the
case of the wave (heat) equation can be also used for the imposition of the Neumann boundary conditions for
the Poisson equation. Similar to Sect. 3.3.2, we consider this stencil at the upper boundary (the stencils at the
left, lower and right boundaries can be considered by the rotation of this stencil through angles 90◦, 180◦ and
270◦, respectively). Similar to Sect. 3.3.2, the boundary points with the Neumann boundary conditions are
included into the right-hand side of the 8-point cut stencil. For the time-independent Poisson equation, we use
four boundary points with the coordinates xi , yi , i = 1, 2, 3, 4 (see Fig. 7 and Eq. (67) below). The stencil
equations should be formed for all grid points located within the actual domain. For any internal grid point
located far from the boundary, we use the 9-point stencil; see Fig. 5. For the 9-point regular stencil for the grid
point uA,B shown in Fig. 7 and located close to the boundary, one grid point uA−1,B+1 is cut by the boundary.
Therefore, for this grid point, we use the 8-point stencil shown in Fig. 7. The case when the boundary cuts the
grid point uA+1,B+1 (instead of the grid point uA−1,B+1) can be treated similarly. For the 9-point regular stencil
for the grid point uA,B+1 shown in Fig. 7 and located close to the boundary, the boundary cuts four grid points
uA−1,B+1, uA−1,B+2, uA,B+2 and uA+1,B+2. In this case, for the grid point uA,B+1, we use the same 8-point
stencil as that for the grid point uA,B . However, in order to have linear independent stencil equations for the
grid points uA,B+1 and uA,B , we select different locations of the boundary points used for these stencils (with
the different coordinates xi , yi , i = 1, 2, 3, 4). If for the 9-point regular stencil for the grid point uA,B+1 the
boundary cuts one grid point uA,B+2, or two grid points uA−1,B+2 and uA,B+2, or three grid points uA−1,B+2,
uA,B+2 and uA+1,B+2 (or three grid points uA−1,B+1, uA−1,B+2 and uA,B+2), then the same 8-point stencil
as that for the grid point uA,B+1 shown in Fig. 7 is used, i.e., the 8-point stencils are used for all grid points
close to the boundary where the boundary cuts the grid points of the 9-point regular stencil. Equation (4) for
the 8-point stencil (see Fig. 7) can be explicitly written as follows:

k1u
num
(A−1),(B−1) + k2u

num
A,(B−1) + k3u

num
(A+1),(B−1) + k4u

num
(A−1),B + k5u

num
A,B

+ k6u
num
(A+1),B + k8u

num
A,(B+1) + k9u

num
(A+1),(B+1)

= [h(l1g1(x1, y1) + l2g1(x2, y2) + l3g1(x3, y3) + l4g1(x4, y4)] + f̄ A,B, (67)

where f̄ A,B is zero f̄ A,B = 0 in the case of zero load f = 0 in Eq. (3), the unknown coefficients ki
(i = 1, 2, . . . , 6, 8, 9) and li (i = 1, 2, 3, 4) are to be determined from the minimization of the local truncation
error, the expression in the square brackets in the right-hand side of Eq. (67) represents the Neumann boundary
conditions at four boundary points with the coordinates xi , yi , i = 1, 2, 3, 4 (xA−1,B+1 ≤ xi ≤ xA+1,B+1, see
Fig. 7). For convenience, the left-hand side of Eq. (67) is written similar to that of Eq. (59) with k7 = 0.

Remark 12 Only 11 out of 12 coefficients ki (i = 1, 2, . . . , 6, 8, 9) and li (i = 1, 2, 3, 4) in Eq. (67) can be
considered as unknown coefficients with the rescaled coefficient k5 = 1. This can be explained similar to that
in Remark 9.

Remark 13 In the numerical simulations in Part 2 of the paper, we use the uniform spacing h1 = h/32 for the
boundary points along the x-axis (xi+1 = xi + h1 with i = 1, 2, 3; see Fig. 7) with the following x-coordinate
of the first point: a) x1 = xA−1,B + h1 in the case when the boundary cuts one grid point uA−1,B+1; b)
x1 = xA,B − 1.5h1 in the case when the boundary cuts one grid point uA,B+2 or three grid points uA−1,B+2,
uA,B+2 and uA+1,B+2 as well as in the case of the conforming mesh; c) x1 = (xA,B + xA+1,B)/2 − 1.5h1
in the case when the boundary cuts four grid points uA−1,B+1, uA−1,B+2, uA,B+2 and uA+1,B+2 or three grid
points uA−1,B+1, uA−1,B+2 and uA,B+2 or two grid points uA−1,B+2 and uA,B+2. The numerical results show
that with this selection of the boundary points we have stable numerical solutions.

The local truncation error of the stencil equation, Eq. (67), can be written down by the replacement of the
numerical solution in Eq. (67) by the exact solution as follows:

e = k1u(A−1),(B−1) + k2uA,(B−1) + k3u(A+1),(B−1) + k4u(A−1),B + k5uA,B

+ k6u(A+1),B + k8uA,(B+1) + k9u(A+1),(B+1)

− h

[
l1

(
n11

∂u(x1, y1)

∂x
+ n21

∂u(x1, y1)

∂y

)
+ l2

(
n12

∂u(x2, y2)

∂x
+ n22

∂u(x2, y2)

∂y

)

+ l3

(
n13

∂u(x3, y3)

∂x
+ n23

∂u(x3, y3)

∂y

)
+ l4(n14

∂u(x4, y4)

∂x
+ n24

∂u(x4, y4)

∂y
)

]
, (68)
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where n1i and n2i (i = 1, 2, 3, 4) are the x- and y-components of the unit normal vector ni at the boundary
point i (see Fig. 7), function u(x, y) in Eq. (68) corresponds to the exact solution, the Neumann boundary
conditions in the right-hand side of Eq. (67) are expressed in terms of the function u(x, y) and are moved to
the left-hand side of Eq. (68).

Using Eq. (34) with w = u and di j = 1, Eqs. (60)–(62), we get the following form of the local truncation
error in space e from Eq. (68):

e = b1uA,B + h

(
b2

∂uA,B

∂x
+ b3

∂uA,B

∂y

)

+h2

2

(
b4

∂2uA,B

∂x∂y
+ b5

∂2uA,B

∂y2

)

+h3

6

(
b6

∂3uA,B

∂x∂y2
+ b7

∂3uA,B

∂y3

)
+ h4

24

(
b8

∂4uA,B

∂x∂y3

+b9
∂4uA,B

∂y4

)

+ h5

120

(
b10

∂5uA,B

∂x∂y4
+ b11

∂5uA,B

∂y5

)
+ h6

720

(
b12

∂6uA,B

∂x∂y5

+b13
∂6uA,B

∂y6

)
+ O(h7) (69)

with the coefficients bp (p = 1, 2, . . . , 13) given in “Appendix A.” For the derivation of Eq. (69), we also
used Eqs. (54) and (55) with ∂u

∂z = ∂u
∂x and ∂u

∂z = ∂u
∂y . Due to the use of Eqs. (60)–(62), the local truncation

error in Eq. (69) does not include the second- and higher-order partial derivatives with respect to x .
In order to improve the order of the local truncation error in Eq. (69) at small h � 1, we equate to zero the

coefficients bp in Eq. (69) for the smallest orders of h. The stencil equation, Eq. (67), includes 12 coefficients
ki (i = 1, 2, . . . , 6, 8, 9) and li (i = 1, 2, 3, 4), but only 11 of them can be considered as unknown coefficients;
see Remark 12. Therefore, we zero 11 coefficients bp (i = 1, 2, . . . , 11) in Eq. (69). Taking the scaling
coefficient k5 = a1 = 1, from the 11 linear algebraic equations bp = 0 (p = 1, 2, . . . , 11), all coefficients
ki (i = 1, 2, . . . , 6, 8, 9) and li (i = 1, 2, 3, 4) of the stencil equation, Eq. (67), can be numerically found
for the new approach. As can be seen from Eq. (69), this leads to the sixth order of the local truncation error
for rectangular by �= 1 and square by = 1 meshes. As can be seen, the 8-point cut stencil with the Neumann
boundary conditions yields the sixth order of the local truncation error.

Remark 14 For some simple cases, the 11 linear algebraic equations bp = 0 (p = 1, 2, . . . , 11) can be solved
analytically. In this case, the leading terms bp (p = 12, 13) of the local truncation error are the rational
functions of the xi and yi coordinates (i = 1, 2, 3, 4) of the boundary points and the components of the unit
normal vectors n1i (i = 1, 2, 3, 4) for the boundary points (the components n2i can be expressed in terms of
n1i ). If the denominators of these rational functions are nonzero for all xi , yi and n1i , then the leading terms
bp (p = 12, 13) are bounded. The numerical results show that in this case we have stable numerical solutions.
A more comprehensive study of the imposition of the optimal boundary conditions (including the number and
location of the boundary points) will be considered in the future. We should also mention that a simpler way
of the imposition of the Neumann boundary conditions is considered in our papers [29,30].

5 Concluding remarks

Most of the numerical techniques for the solution of partial differential equations finally reduce to a system
of discrete or semi-discrete equations. However, in many cases the corresponding stencil equations of these
systems do not provide an optimal accuracy. The idea of the new approach consists in the direct optimization
of the coefficients of the stencil equations and is based on the minimization of the order of the local truncation
error. The form and width of the stencil equations in the new approach are assumed (e.g., as it is assumed
for the finite-difference method) or can be selected similar to those for known numerical technique. (In this
case, the accuracy of the known numerical techniques can be significantly improved by the modification of
the coefficients of the stencil equations.) Another idea of the new approach is the use of simple Cartesian
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meshes for complex irregular domains. In the considered paper, the new approach has been applied to the
space discretization of the time-dependent wave and heat equations as well as of the time-independent Poisson
equation. 3-point stencils in the 1-D case and 9-point stencils in the 2-D case that are similar to those for the
linear quadrilateral finite elements are considered in the paper. Themain advantages of the suggested technique
can be summarized as follows:

• The idea of the minimization of the order of the local truncation error of stencil equations can be easily
and efficiently applied to the development of new numerical techniques with optimal accuracy as well as
to the accuracy improvement of known numerical methods. The new approach can be equally applied to
regular and irregular domains. In contrast to many fictitious domain numerical methods, the new approach
uses the exact Dirichlet and Neumann boundary conditions at the actual boundary points without their
interpolation using the Cartesian grid points.

• In contrast to the finite-difference techniques with the stencil coefficients calculated through the approxi-
mation of separate partial derivatives, the entire partial differential equation is used for the calculation of
the stencil coefficients in the new approach. This leads to the optimal accuracy of the proposed technique.

• At the similar 9-point 2-D stencils, the accuracy of the new approach is two orders higher than that for
the linear finite elements. This means that at a given accuracy, the new approach significantly reduces the
computation time compared to that for the linear finite elements.

• Similar to our recent results for regular domains in [23], the order of accuracy of the new approach for the
Poisson equation on irregular domains with square Cartesian meshes is higher than that with rectangular
Cartesian meshes.

• The treatment of the Dirichlet and Neumann boundary conditions in the new approach is related to the
development of high-order boundary conditionswith the stencils that include the same or smaller number of
grid points compared to that for the regular 9-point internal stencils. For example, the numerical boundary
conditions for the Cartesian meshes developed in [34,37–39] include stencils with a greater number of grid
points but yield a much smaller order of accuracy compared with that for the proposed technique.

• In contrast to the finite elements, spectral elements, isogeometric elements and other similar techniques used
for irregular domains, the new approach uses trivial Cartesian meshes that requires practically negligible
computation time for their preparation.

• The new approach does not require time-consuming numerical integration for finding the coefficients of
the stencil equations, e.g., as for the high-order finite, spectral and isogeometric elements. For the new
technique, the coefficients of the stencil equations for the grid points located far from the boundary are
calculated analytically. For the grid points located close to the boundary (with non-uniform and cut stencils),
the coefficients of the stencil equations are calculated numerically by the solution of a very small local
systems of linear algebraic equations.

• In contrast to the finite element techniques, a large difference in distances between the boundary and
Cartesian grid points used in the same stencil does not lead to the degradation of accuracy. This is very
important for the application of the new approach to irregular domains.

• It has been shown that the wave and heat equations can be uniformly treated with the new approach. The
order of the time derivative in these equations does not affect the coefficients of the stencil equations of
the semi-discrete systems.

In the future, we plan to consider the stencils with a larger numbers of grid points for a higher order of
accuracy (similar to the high-order finite elements or to the high-order finite-difference techniques), to consider
a mesh refinement with uniform Cartesian meshes using special stencils for the transition from a fine mesh to
a coarse mesh, to apply the proposed technique to other partial differential equations, to consider nonlinear
problems (e.g., by analysis of the local truncation error for nonlinear stencils obtained by known approaches
and by optimization of their stencil coefficients), to solve real-world problems with the new approach.
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Appendix A: The coefficients bp used in Eqs. (38), (56), (63) and (69)

The first five coefficients bi (i = 1, 2, . . . , 5) used in Eqs. (38), (56), (63) and (69) are presented below. All
coefficients bi used in these formulas are given in the attached file ’b-coeff.pdf’
Equation (38):

b1 = (k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8 + k9),

b2 = (−d1k1 + d3k3 − d4k4 + d5k6 − d6k7 + d8k9),

b3 = by(−d1k1 − d2k2 − d3k3 + d6k7 + d7k8 + d8k9),

b4 = (d21k1 + d23k3 + d24k4 + d25k6 + d26k7 + d28k9
+2(m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9)),

b5 = 2by(d
2
1k1 − d23k3 − d26k7 + d28k9),

. . . (A.1)

Equation (56):

b1 = (k1 + k2 + k3 + k4 + k5 + k6 + k8 + k9),

b2 = −(k1 − k3 + k4 − k6 − k9 + l1n11 + l2n12 + l3n13),

b3 = −(k1 + k2 + k3 − k8 − k9 + l1n21 + l2n22 + l3n23),

b4 = 1

2
(k1 + k3 + k4 + k6 + k9 + 2m1 + 2m2 + 2m3 + 2m4 + 2m5 + 2m6 + 2m8 + 2m9

−2α1l1n11 − 2α2l2n12 − 2α3l3n13),

b5 = (k1 − k3 + k9 − β1l1n11 − β2l2n12 − β3l3n13 − α1l1n21 − α2l2n22 − α3l3n23),

. . . (A.2)

Equation (63):

b1 = (k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8 + k9),

b2 = (−d1k1 + d3k3 − d4k4 + d5k6 − d6k7 + d8k9),

b3 = by(−d1k1 − d2k2 − d3k3 + d6k7 + d7k8 + d8k9),

b4 = 2by(d
2
1k1 − d23k3 − d26k7 + d28k9),

b5 = (d21 (−1 + b2y)k1 − d23k3 − d24k4 − d25k6 − d26k7 − d28k9

+b2y(d
2
2k2 + d23k3 + d26k7 + d27k8 + d28k9)),

. . . (A.3)

Equation (69):

b1 = k1 + k2 + k3 + k4 + k5 + k6 + k8 + k9,

b2 = −k1 + k3 − k4 + k6 + k9 + l1n11 + l2n12 + l3n13 + l4n14,

b3 = −by(k1 + k2 + k3 − k8 − k9) + l1n21 + l2n22 + l3n23 + l4n24,

b4 = by(k1 − k3 + k9 + β1l1n11 + l1n11 + β2l2n12 + l2n12 + β3l3n13 + l3n13 + β4l4n14
+l4n14) + (α1 − 1)l1n21 + α2l2n22 − l2n22 + α3l3n23 − l3n23 + α4l4n24 − l4n24,

b5 = 1

2
((k2 + k3 + k8 + k9)b

2
y + 2((β1 + 1)l1n21 + (β2 + 1)l2n22 + β3l3n23 + l3n23 + β4l4n24

+l4n24)by + (b2y − 1)k1 − k3 − k4 − k6 − k9 − 2α1l1n11 + 2l1n11 − 2α2l2n12
+2l2n12 − 2α3l3n13 + 2l3n13 − 2α4l4n14 + 2l4n14),

. . . (A.4)
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