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Abstract The problem of estimating the time variant reliability of randomly parametered dynamical systems
subjected to random process excitations is considered. Two methods, based on Monte Carlo simulations, are
proposed to tackle this problem. In both the methods, the target probability of failure is determined based on a
two-step approach. In the first step, the failure probability conditional on the random variable vector modelling
the system parameter uncertainties is considered. The unconditional probability of failure is determined in the
second step, by computing the expectation of the conditional probability with respect to the random system
parameters. In the first of the proposedmethods, the conditional probability of failure is determined analytically,
based on an approximation to the average rate of level crossing of the dynamic response across a specified
safe threshold. An augmented space of random variables is subsequently introduced, and the unconditional
probability of failure is estimated by using variance-reduced Monte Carlo simulations based on the Markov
chain splitting methods. A further improvement is developed in the second method, in which, the conditional
failure probability is estimated by using Girsanov’s transformation-based importance sampling, instead of the
analytical approximation. Numerical studies on white noise-driven single degree of freedom linear/nonlinear
oscillators and a benchmark multi-degree of freedom linear system under non-stationary filtered white noise
excitation are presented. The probability of failure estimates obtained using the proposed methods shows
reasonable agreement with the estimates from existing Monte Carlo simulation strategies.

Keywords Time variant reliability · Random excitation · Uncertain system parameters · Monte Carlo
simulation · Markov chain splitting · Girsanov transformation

1 Introduction

Estimation of time variant reliability of dynamical systems, in which randomness exists in both the system
parameter specifications and the external excitations, remains one of the most challenging problems in stochas-
tic mechanics. This problem usually consists of determining the probability that the state of the dynamical
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system remains within a specified safe domain at all times over a given time duration. Evaluating this prob-
ability is of paramount importance in the safety assessment of structural or mechanical systems subjected to
loads such as earthquake, wind, wave, guideway unevenness or moving traffic. A review of works on stochastic
modelling of uncertainties and reliability estimation of dynamical systems can be found in [1–3]. In practical
applications, the reliability is determined by estimating its complement, the probability of failure. Several
complicating features make exact solution of the failure probability generally infeasible. These complexities
include the presence of strong nonlinearity in the system behaviour, nonlinear and (or) implicitly defined
performance functions, large number of mechanical degrees of freedom (dof), and non-stationary and (or)
non-Gaussian nature of applied loading, among others.

In the approximate analytical/semi-analytical approaches, the timevariant reliability is commonly evaluated
based on out-crossing theory through Rice’s formula [4–6], or diffusion theory through numerical solution of
the Kolmogorov equation [7–10]. These methods were originally developed in the context of deterministic
dynamical systems, but have been subsequently extended to estimate the reliability of systems involving
parameter uncertainties. Some approaches are the fast integration technique [11], methods based on asymptotic
reliability analysis [12,13], and methods based on Taylor series expansion of the failure probability [14].
Although the above methods provide important insights into the problem, they are often based on assumptions
which are only asymptotically valid, and their ability to tackle many of the afore-mentioned complexities is
rather limited. Recent research efforts focus on the development of the probability density evolution method
[15,16] that can handle more general cases, but its applicability for reliability analysis of white noise-driven
dynamical systems is not well studied. Such representations for loads are often employed in engineering
problems [17].

The Monte Carlo simulation (MCS) methods, on the other hand, are eminently suited to tackle a wide
range of complexities and form powerful alternatives to the analytical procedures. These methods, however,
typically need to be reinforced with strategies to control the sampling variance, in the absence of which the
methods become computationally infeasible, especially in the estimation of small failure probabilities. Several
variance reduction techniques have been developed for estimating the reliability of dynamical systems. For the
particular case where the system parameters are characterized as deterministic and the applied excitations are
modelled as random processes, one couldmodel the random excitation by an equivalent set of random variables
by using time discretization or series representations (such as, Fourier or Karhunen–Loeve expansion). The
performance function defining the failure event can further be expressed in terms of extremes of the relevant
response processes. This transforms the time variant reliability estimation problem into a high-dimensional
time invariant reliability problem, which can be subsequently tackled using variance reduction schemes such as
the importance samplingmethods [18,19], subset simulationmethods [20–22], line sampling technique [23], or
theMarkov chain particle splitting methods [24]. When the structural response process is Markovian in nature,
as in the case of white noise or filtered white noise-driven dynamical systems, an alternative approach for
variance reduction is to employ the Girsanov probability measure transformation technique [17]. Importance
sampling methods based on this principle introduce carefully chosen artificial control forces to the dynamical
system which nudge the response trajectories towards the failure region. Subsequently, an unbiased estimator
for the failure probability is derived by correcting for the artificial modification to the system dynamics. The
main challenge in applying thismethod lies with the selection of the control forcewhich, if selected judiciously,
leads to significant reduction in the sampling variance. These controls could be open loop (chosen a priori, and,
hence, independent of the response process), or closed loop (chosen adaptively, and, hence, dependent on the
response process as it evolves). Several studies focus on open loop Girsanov controls which are obtained by
solving a distance minimization problem [25–27]. However, improved variance reduction is achieved by using
closed loop controls which can be derived based on results from optimal stochastic control theory [28,29], or
by numerical solution of the Bellman equation [30].

When randomness in both external excitation and system parameters are considered, the estimation of
time variant reliability becomes considerably more involved. One way to proceed is to introduce an extended
vector of random variables, comprising of the random system parameters and the equivalent set of random
variables representing the random excitation. Failure probability estimation is then performed in the high
dimensional space of the extended random vector using time invariant reliability methods. The benchmark
study reported in [31] gives a comprehensive account of the performance of the subset simulation methods,
the line sampling technique and other variance reduction schemes for this setting. An alternative approach in
the literature consists of a two-step procedure: the first step estimates the failure probability conditional on
the random system parameters, and the second step estimates the unconditional probability of failure through
integration over the space of random parameters. In the existing studies based on this approach [32–35], the



Time variant reliability estimation of randomly excited uncertain dynamical systems 2365

conditional probability of failure is estimated through importance sampling of the uncertain loading using the
methods presented in [18,25]. Subsequently, importance sampling [32–34], or line sampling [35] in the space
of random system parameters is employed to evaluate the unconditional probability of failure. The performance
of these approaches depends on the appropriate selection of certain algorithmic parameters, which, in turn,
requires prior knowledge of the failure domain. The importance sampling method suggested in [32] requires
identification of a so-called design point in the random parameter space to construct the sampling density. In the
method based on line sampling [35], the unconditional failure probability is estimated by generating random
lines parallel to an important direction defined by the afore-mentioned design point. The above methods are
effective only when the important region contributing to the failure probability lies in the vicinity of a unique
design point. In the method presented in [34], the importance sampling density in the random parameter space
is determined by constructing a surrogate model for the conditional instantaneous failure probabilities, i.e. the
probability of failure at specific time instants, of the dynamical system. The approach is more robust as it does
not rely on the determination of design points. However, the efficiency of the method depends on a proper
choice of the surrogate model which may not be straight-forward, especially in the presence of a large number
of random system parameters.

The present study aims at developing an efficient strategy for estimating the time variant reliability of
randomly excited uncertain dynamical systems. In the proposed approach, a two-step estimation procedure is
adopted. The first step involves estimation of the failure probability conditional on the random system parame-
ters. In implementing this step, two existing approaches are employed, which are: (a) analytical approximation
based on threshold crossing statistics [4,36], and (b) closed loop control based Girsanov’s transformation
method [29]. In the second step, the unconditional probability of failure is determined by estimating the expec-
tation of the conditional failure probabilitywith respect to the randomparameters. Themain contribution of this
paper lies in developing an efficient simulation-based method to estimate the expectation in the second step of
the proposed method. To accomplish this, a framework is introduced that transforms the problem of estimating
the expectation into a hypothetical reliability estimation problem through the inclusion of an auxiliary random
variable. This enables evaluation of the unconditional failure probability using simulation-based reliability
estimation methods which do not require prior knowledge of the failure domain. This is in contrast with the
afore-mentioned existing studies based on importance sampling and line sampling. In particular, the study
investigates the application of alternative versions of the Markov chain splitting methods, such as the subset
simulation method [20] and the particle splitting methods [24], in this context. The novel aspect of the present
study, thus, essentially lies in meeting the challenges posed by the need to combine details of alternative tools
such as closed loop Girsanov’s control-based importance sampling and the Markov chain splitting algorithms
for the problem on hand. The efficacy of the proposed methods is demonstrated through numerical studies on
single degree of freedom (sdof) linear/nonlinear oscillators driven by Gaussian white noise, and a multi-degree
of freedom (mdof) linear system subjected to filtered non-stationary Gaussian excitation. It is noted that the
latter problem is one of the benchmark reliability examples studied earlier in [31].

2 Problem formulation

2.1 Uncertain dynamical system

Consider a randomly parametered dynamical system with governing equation of the form

M (Θ) V̈ (t) + D
[
Θ, V (t) , V̇ (t) , t

] = F (t) ;
V (0) = V 0, V̇ (0) = V̇ 0; t ≥ 0 (1)

where a dot represents derivative with respect to time t . This semi-discretized equation of motion can be
obtained, for instance, from spatial discretization of a continuum system using the finite element method.
Here, V (t) is the n× 1 nodal displacement vector, M is the n× n mass matrix, F (t) is the external excitation
modelled as a n × 1 vector-valued random process, D is a n × 1 vector of nonlinear function of system states,
and Θ is the ns × 1 vector of uncertain system parameters which are modelled as random variables with joint
probability density function (pdf) pΘ (θ). The initial conditions V 0 and V̇ 0 are taken to be deterministic. The
components of F (t), in general, could be non-stationary, non-white, and (or) non-Gaussian. When non-white
excitations are considered, F (t) is taken to be the output of a set of additional linear/nonlinear filters driven
by Gaussian white noise excitations. Similarly, the components of Θ could be dependent and non-Gaussian,
and it is assumed that F (t) and Θ are independent.
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We define a p-dimensional extended state vector X (t) which comprises of the dynamical system states
V (t) , V̇ (t), and the additional state variables associated with the augmented filter equations (leading to
the definition of F (t)). In this setting, the governing equation (1) can be cast as a stochastic differential
equation (SDE) of the form

dX (t) = A [Θ, X (t) , t] dt + σ [Θ, X (t) , t] dB (t) ; X (0) = X0; t ≥ 0 (2)

Here, A [Θ, X (t) , t] and σ [Θ, X (t) , t] are, respectively, the p × 1 drift vector and p × q diffu-
sion matrix, B (t) is a q-dimensional zero mean Brownian motion process with covariance function
EP
[
(B (t1 + �t) − B (t1)) (B (t2 + �t) − B (t2))T

] = C�tδ (t1 − t2) ; t1, t2 ≥ 0, (�,F,P) is the prob-
ability space associated with the above SDE, EP [·] is the expectation operator with respect to the probability
measure P, and δ (·) is the Dirac delta function.

2.2 Time variant reliability problem

In problems of time variant reliability analysis, one compares a dynamic response of interest h [Θ, X (t)]
against an acceptable threshold level h∗, and the system is taken to be safe if the response remains below
h∗ at all times over the duration of the random excitation. The reliability of the system is thus defined by
the probability PR = P

[{h [Θ, X (t)] < h∗∀t ∈ [0, T ]}], where [0, T ] is the time duration over which the
excitation acts. The probability of failure PF = 1 − PR is subsequently obtained as

PF = 1 − P
[{
h [Θ, X (t)] < h∗∀t ∈ [0, T ]

}] = P

[{
h∗ − max

0<t≤T
h [Θ, X (t)] ≤ 0

}]
(3)

One can, in principle, estimate the failure probability by the direct Monte Carlo method. In this approach, the
estimator for the probability of failure is givenby the expression P̂F = 1

N

∑N
i=1 I

{
h∗ − max0<t≤T h

[
θ i , X i (t)

]

≤ 0}. Here, I {·} denotes the indicator function for the failure event, θ i ; i = 1, . . . , N are independent realiza-
tions of Θ distributed according to pΘ (θ), and X i (t) is a sample realization of the state vector X (t) obtained
by solving Eq. (2) for θ = θ i . It can be shown that the number of samples needed by the direct Monte Carlo
estimator to meet a target coefficient of variation is inversely proportional to the magnitude of PF. Therefore,
when PF is small, which is typically the case in engineering problems, the computational cost associated with
this approach becomes considerable because a large number of samples would be needed to generate accurate
estimates. The variance of the direct Monte Carlo estimator can be reduced by using advanced Monte Carlo
methods known as variance reduction techniques. The present study proposes a framework that combines
the potential of two variance reduction schemes, namely, the Markov chain splitting methods and Girsanov’s
transformation-based importance sampling, to estimate the failure probability.

To this end, it is noted that the probability of failure in Eq. (3) can be alternatively expressed as

PF = EP

[
I

{
h∗ − max

0<t≤T
h [Θ, X (t)] ≤ 0

}]
= E{Θ B}

[
I

{
h∗ − max

0<t≤T
h [Θ, X (t)] ≤ 0

}]
(4)

Here, I {·} is the indicator function and E{Θ B} [·] denotes expectation with respect to the uncertain system
parameters and loads. The above equation considers the simultaneous presence of randomness in both exci-
tation and system parameters in calculating the failure probability. The envisaged method first considers the
probability of failure conditional on a given value of the parameter vector Θ = θ . This conditional probability
is defined as

PF|Θ (θ) = EB

[
I

{
h∗ − max

0<t≤T
h [Θ, X (t)] ≤ 0

}∣∣∣
∣Θ = θ

]
= P

[{
h∗ − max

0<t≤T
h [Θ, X (t)] ≤ 0

}∣∣∣
∣Θ = θ

]

(5)

The probability of failure in Eq. (4) is then given by

PF = EΘ

[
EB

[
I

{
h∗ − max

0<t≤T
h [Θ, X (t)] ≤ 0

}∣∣
∣∣Θ
]]

= EΘ

[
PF|Θ (Θ)

] =
∫

PF|Θ (θ) pΘ (θ) dθ (6)

where EB [·] and EΘ [·] denote expectation with respect to the random excitation and the random system
parameters, respectively. Section 3 reviews two available approaches to estimate PF|Θ (θ). These approaches
are extended in Sect. 4 to develop an efficient strategy for estimating the probability of failure including
uncertainty in both system parameters and excitation.
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3 Estimation of probability of failure conditional on random system parameters

In this section, estimation of the conditional failure probability PF|Θ (θ) for a given value of the parame-
ter vector Θ = θ is discussed. Two existing approaches are employed: in the first approach, an analytical
approximation of PF|Θ (θ) is obtained based on out-crossing theory, and, in the second approach, PF|Θ (θ)
is evaluated by a Monte Carlo simulation strategy that uses Girsanov’s probability measure transformation
technique to achieve sampling variance reduction. The details of these methods are briefly outlined in the
subsequent sections.

3.1 Analytical approximation based on out-crossing theory

In this approach, an estimate of the conditional failure probability PF|Θ (θ) is obtained by counting the number
of times the response h [θ , X (t)] up-crosses the threshold h∗ in the time duration [0, T ]. Let η+ (h∗; θ , 0, T )
be the number of out-crossings from the safe domain. Under the assumption that the out-crossing events are
independent η+ (h∗; θ , 0, T ) is approximated by a Poisson random variable, and an analytical estimate of
PF|Θ (θ) is obtained as [37]

P̂ A
F|Θ (θ) = P

[{
η+ (h∗; θ , 0, T

)
> 0
}] = 1 − exp

⎛

⎝−
T∫

0

ν+ (h∗, θ , t
)
dt

⎞

⎠ (7)

The quantity ν+ (h∗, θ , t) is the mean rate of up-crossing the threshold h∗ at time t and can be obtained
according to the Rice formula ν+ (h∗, θ , t) = ∫∞

0 ṡ f (h∗, ṡ; θ , t) dṡ, where f (s, ṡ; θ , t) denotes the joint pdf
of the response h [θ , X (t)] and its velocity at time t [4].

When the response h [θ , X (t)] is a stationary/non-stationary Gaussian random process, such as in linear
systems subjected to Gaussian excitations, the joint pdf of the response and its time derivative can be explicitly
derived analytically, basedonwhich themeanup-crossing rate canbe computed.The exact analytical expression
of the mean up-crossing rate of Gaussian response processes across a specified threshold has been reported
in the existing literature [36,38]. For certain types of nonlinear systems driven by stationary Gaussian white
noise, this joint pdf can also be determined exactly based on the procedure outlined in [36]. However, for
general nonlinear systems, an approximation to this joint pdf is needed, deducing which is seldom straight-
forward. In such cases, Monte Carlo simulation-based approaches provide a powerful alternative to analytical
approximations for estimating the conditional probability of failure.

3.2 Girsanov’s transformation-based importance sampling

The underlying principle in the Girsanov transformation method is to modify the dynamical system by intro-
ducing an artificial control force that drives the response trajectories towards the failure region. An unbiased
estimator for PF|Θ (θ) is subsequently obtained by introducing a correction term, known as the Radon–
Nikodym derivative, that corrects for the addition of the artificial controls. For this purpose, associated with
Eq. (2), one considers the controlled dynamical system governed by the Ito’s SDE,

dX̃ (t) = A
[
θ , X̃ (t) , t

]
dt + σ

[
θ , X̃ (t) , t

]
u
[
θ , X̃ (t) , t

]
dt + σ

[
θ , X̃ (t) , t

]
dB̃ (t) ;

dR (t) = −R (t)
(
u
[
θ , X̃ (t) , t

])T
C−1dB̃ (t)

X̃ (0) = X0; R (0) = R0; 0 ≤ t ≤ T (8)

where u
[
θ , X̃ (t) , t

]
is the q-dimensional vector-valued control force, R (t) is the scalar correction process,

X̃ (t) is the biased state corresponding to the modified input, and B̃ (t) is an Ito’s process given by dB̃ (t) =
−u
[
θ , X̃ (t) , t

]
dt + dB (t) ; B̃ (0) = 0; t ≥ 0. In the above equation, the initial condition R0 is typically set

to 1. According to the Girsanov theorem [17], the addition of control forces transforms the probability measure
associated with the uncontrolled SDE such that B̃ (t) is a zero mean correlated Brownian motion process with
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respect to the transformed measure. Assuming R0 = 1, an estimator for PF|Θ (θ) based on the above modified
SDE is obtained as

P̂GT
F|Θ (θ) = 1

NI

NI∑

j=1

R j (T ) I

{
h∗ − max

0<t≤T
h
[
θ , X̃

j
(t)
]

≤ 0

}
(9)

where X̃
j
(t) , R j (t) ; j = 1, . . . , NI are random draws from Eq. (8). The salient feature of this importance

sampling scheme is the choice of the control u
[
θ , X̃ (t) , t

]
which, if selected judiciously, can significantly

reduce the sampling variance of P̂GT
F|Θ (θ). As has been previously mentioned, several alternative strategies for

devising variance reducing Girsanov controls have been studied in the existing literature. In the present study,
PF|Θ (θ) is estimated by employing the closed loop Girsanov control developed in a recent study by the present
authors [29]. The novelty of this control force lies in the fact that it is applicable to mdof systems driven by non-
stationary Gaussian excitation, unlike other existing closed loop controls which have been studied primarily
in the context of stationary white noise-driven sdof oscillators, and it leads to significant sampling variance
reduction as compared to open loop controls. The procedure for deducing this Girsanov control, as outlined
in [29], is described in Annexure A of the accompanying electronic supplementary material (ESM).

4 Estimation of the unconditional probability of failure

4.1 Framework for estimating the probability of failure

In order to estimate the unconditional probability of failure PF = EΘ

[
PF|Θ (Θ)

]
, it is expedient to express

the expectation in Eq. (6) as an equivalent expectation of the form EZ [I {g (Z) ≤ 0}], for a suitably defined
random vector Z and a performance function g (Z). To this end, an auxiliary random variable ξ distributed
uniformly in [0, 1] and independent of Θ is introduced [11]. Since 0 ≤ PF|Θ (Θ) ≤ 1 for a specified value of
Θ , the following identity holds:

PF|Θ (Θ) = Eξ

[
I
{
ξ ≤ PF|Θ (Θ)

}]
(10)

Therefore, by combining Eqs. (6) and (10), one gets

PF = EΘ

[
Eξ

[
I

{
ξ ≤ EB

[
I

{
h∗ − max

0<t≤T
h [Θ, X (t)] ≤ 0

}∣∣∣
∣Θ
]}]]

= E{Θ ξ}
[
I

{
ξ − EB

[
I

{
h∗ − max

0<t≤T
h [Θ, X (t)] ≤ 0

}∣∣∣∣Θ
]

≤ 0

}]

= E{Θ ξ}
[
I
{
ξ − PF|Θ (Θ) ≤ 0

}] = EZ [I {g (Z) ≤ 0}] = P [{g (Z) ≤ 0}] (11)

where Z = {ξ Θ} is a (ns + 1)-dimensional random vector with pdf pZ (z) = pΘ (θ) for ξ ∈ [0, 1] and
pZ (z) = 0 otherwise. The above equation represents a hypothetical time invariant reliability problem with
performance function given by g (Z) = ξ − PF|Θ (Θ).

The problem of estimating the failure probability in Eq. (11) can now be tackled by using Monte Carlo
simulations augmented with a suitable variance reduction scheme. The present study employs a specific class
of variance reduction techniques, known as the Markov chain particle splitting methods. The basic idea in this
class of methods is to express the event E = {g (Z) ≤ 0} as an intersection of M intermediate nested events
E1, . . . , EM such that E1 ⊃ E2 ⊃ . . . ⊃ EM = E . Consequently, the probability of the event E can be
computed as a product of conditional probabilities:

PF = P [E] = P

[
M⋂

k=1

Ek

]

=
M∏

k=1

P
[
Ek | Ek−1

] =
M∏

k=1

pk (12)

Here, E0 is the certain event. The intermediate events are selected such that the conditional probabilities
pk = P

[
Ek | Ek−1

] ; k = 1, . . . , M are much larger than P [E]. In this way, the original problem of estimating
the small probability of the rare event E reduces to a problem of computing a sequence of larger conditional
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probabilities that can be efficiently estimated with fewer samples. The intermediate events are defined as
Ek = {g (Z) ≤ bk} ; k = 1, . . . , M where the threshold levels satisfy the condition b1 > b2 > · · · > bM = 0.

Depending on the manner in which the intermediate events, i.e. the threshold levels b1, . . . , bM−1,
are selected, and the strategy employed to generate conditional samples for estimating P

[
Ek | Ek−1

] ; k =
1, . . . , M , alternative particle splitting algorithms can be developed. In this study, three existing algorithms
are considered, namely, the subset simulation (SS) method [20], the generalized splitting (GS) method [39],
and the multiple-chain Holmes–Diaconis–Ross (mHDR) method [24]. The salient features of these methods
are provided in Annexure B of the ESM, and further details can be found in [24]. The resulting estimators for
the unconditional failure probability PF are discussed in the following section.

4.2 Proposed estimators for the probability of failure

By embedding the estimator for PF|Θ (Θ) into the framework of the Markov chain particle splitting methods,
alternative estimators for the unconditional failure probability are obtained. These estimators are listed inBox 1.
It is noted that the proposed estimators require repeated evaluations of the function g (Z), and hence PF|Θ (Θ).
For instance, the estimator of PF based on the SS andmHDRmethods requires MNO estimations of PF|Θ (Θ),
once for each of the NO samples

{
zk−1,1, . . . , zk−1,NO

}
simulated in the domain Ek−1; k = 1, . . . , M . This

implies that if PF|Θ (Θ) is estimated by Girsanov’s transformation, i.e. when P̂F|Θ (θ) = P̂GT
F|Θ (θ) in Box 1,

one has to determine a total of MNO Girsanov controls u
[
θk−1,i , X̃ (t) , t

]
; k = 1, . . . M; i = 1, . . . , NO.

As has been discussed in Annexure A of the ESM, the control force u
[
θk−1,i , X̃ (t) , t

]
is randomly chosen

from a set of m closed loop controls ur
[
θk−1,i , X̃ (t) , t

]
; r = 1, . . . ,m, where each control promotes an

instantaneous failure event. Thus, determination of each Girsanov control requires further evaluation of m
instantaneous level control forces.

Box 1. Failure probability estimator based on Markov chain particle splitting methods

Method Estimator

mHDR P̂F =∏M
k=1 p̂k =∏M

k=1

(
1
NO

∑NO
i=1 I

{
g
(
zk−1,i

) ≤ bk
}) =∏M

k=1

(
1
NO

∑NO
i=1 I

{
ξ k−1,i − P̂F|Θ

(
θk−1,i ) ≤ bk

})

GS P̂F = NM
NO

∏M
k=2 p′

k

SS P̂F = ρM−1 p̂M = ρM−1 1
NO

∑NO
i=1 I

{
g
(
zM−1,i

) ≤ 0
} = ρM−1 1

NO

∑NO
i=1 I

{
ξM−1,i − P̂F|Θ

(
θM−1,i ) ≤ 0

}

Remarks:
1. zk−1,i = { ξ k−1,i θk−1,i

} ; i = 1, 2, . . . , are the samples of Z generated in the (k − 1)− th conditional level. These
samples are drawn from the pdf pZ ( z| z ∈ Ek−1) using direct MCS for k = 1, and using Markov chain Monte
Carlo (MCMC) method for k > 1.

2. p̂1, . . . , p̂M are Monte Carlo estimators of the probabilities P
[
Ek | Ek−1

] ; k = 1, . . . , M .
3. p′

2, . . . , p
′
M are parameters of the GS method. These correspond to approximate a priori values of the probabilities

P
[
Ek | Ek−1

] ; k = 2, . . . , M . The procedure for obtaining these parameters is outlined in box B1 of Annexure B
in the ESM.

4. ρ is a parameter of the SS method. It represents a pre-fixed value for the sample estimates of the probabilities
P
[
Ek | Ek−1

] ; k = 1, . . . , M − 1. In this study, ρ is taken equal to 0.1.
5. P̂F|Θ

(
θk−1,i ) is an estimate of PF|Θ (Θ) for Θ = θk−1,i computed using equations (7) or (9).

6. NO is the sample size for the conditional probability estimators p̂1, . . . , p̂M .
7. NM is the number of samples generated in the (M − 1) -th conditional level that fall in the region EM , i.e. number

of samples from the set
{
zM−1,1 zM−1,2 · · · } for which g (z) ≤ 0.

For linear systems, where the instantaneous level controls can be analytically obtained in closed form,
this does not pose any significant difficulty. However, for nonlinear systems, the approach would become

computationally intractable since, in this case, the controls ur
[
θk−1,i , X̃ (t) , t

]
; r = 1, . . . ,m are obtained

through numerical solution of the optimization problem in Eq. (A3) of AnnexureA. To alleviate this difficulty, a

simplification is proposed, wherein for every k ∈ {1, . . . , M}, the controls u
[
θk−1,i , X̃ (t) , t

]
; i = 1, . . . , NO

are replaced by a representative control u
[
θk−1,rep, X̃ (t) , t

]
. The points θk−1,rep; k = 1, . . . , M are obtained
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as follows. For k = 1, in all the three methods (SS, GS and mHDR), θ0,rep is taken as the mean value of the
random vector Θ , i.e. θ0,rep = EP [Θ]. In order to determine θk−1,rep for the successive levels, a sequence of
points Y1, . . . ,Ym−1 are obtained such that Y k; k ∈ {1, . . . , M − 1} lies in the region Ek . The algorithm for
obtaining Y1, . . . ,Ym−1 is stated in box B1 of Annexure B in the ESM. Subsequently, in the GS and mHDR
methods, the representative points for k ≥ 2 are obtained as θk−1,rep = Y k−1. To determine θk−1,rep in the SS
method, a parameter ρ = 0.1 is considered and the function values g

(
zk−2,i

) ; i = 1, . . . , NO are sorted in
ascending order. Let bk−1

ρ denote the ρNO-th largest value in the sorted sequence. The representative point is

taken as θk−1,rep = Yd where d is the smallest integer such that bd ≤ bk−1
ρ .

From the above discussion, it follows that when PF|
 (Θ) is estimated by Girsanov’s transformation, the
conditional probability estimators p̂k; k ∈ {1, . . . , M} in Box 1 are of the following form:

p̂k = 1

NO

NO∑

i=1

I
{
g
(
zk−1,i

)
≤ bk

}
= 1

NO

NO∑

i=1

I
{
ξ k−1,i − P̂GT

F|Θ
(
θk−1,i

)
≤ bk

}

= 1

NO

NO∑

i=1

I

⎧
⎨

⎩
ξ k−1,i −

⎧
⎨

⎩
1

NI

NI∑

j=1

(
m∑

r=1

wr

(
θk−1,rep

) 1

R j
r (T )

)−1

I

{
h∗ − max

0<t≤T
h
[
θk−1,i , X̃

j
(t)
]

≤ 0

}
⎫
⎬

⎭
≤ bk

⎫
⎬

⎭

(13)

The expression for P̂GT
F|Θ
(
θk−1,i ) in the above equation follows from the discussion in Annexure A

of the ESM. To estimate p̂k based on the above equation, for a given (i, j) ; i ∈ {1, . . . , NO} , j ∈
{1, . . . , NI}, an index λi j ∈ {1, . . . ,m} is sampled according to the probability mass function P

[
λi j = a

] =
wa
(
θk−1,rep) ; a = 1, . . . ,m. The weights wa

(
θk−1,rep) ; a = 1, . . . ,m are computed based on the procedure

outlined in Annexure A. The sample realizations X̃
j
(t) and R j

r (t) are obtained by solving the system of SDEs

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX̃ (t)
dR1 (t)
...

dRm (t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A
[
θk−1,i , X̃ (t) , t

]
+ σ

[
θk−1,i , X̃ (t) , t

]
uλi j

[
θk−1,rep, X̃ (t) , t

]

−R1 (t) u1
[
θk−1,rep, X̃ (t) , t

]T
C−1

(
uλi j

[
θk−1,rep, X̃ (t) , t

]
− u1

[
θk−1,rep, X̃ (t) , t

])

...

−Rm (t) um
[
θk−1,rep, X̃ (t) , t

]T
C−1

(
uλi j

[
θk−1,rep, X̃ (t) , t

]
− um

[
θk−1,rep, X̃ (t) , t

])

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

dt

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ
[
θk−1,i , X̃ (t) , t

]

−R1 (t) u1
[
θk−1,rep, X̃ (t) , t

]T
C−1

...

−Rm (t) um
[
θk−1,rep, X̃ (t) , t

]T
C−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

dB̃
λi j

(t)

(14)

with initial conditions X̃ (0) = X0, Rr (0) = 1; r = 1, . . . ,m. The governing SDE for Rr (t) ; r = 1, . . . ,m
stated above can be obtained from Eq. (A10).

Finally, it is noted that the computational time needed to implement the proposed methods scales approx-
imately linearly, individually with respect to NO and NI. A reduction in the computational time is possible by
adopting parallelization. Estimation of the unconditional probability of failure can be parallelized when the
mHDR method is used for deconditioning the conditional failure probability. Specifically, the probabilities
P
[
Ek | Ek−1

] ; k = 2, . . . , M at the different levels can be estimated in parallel. Within each level, the com-
putation of p̂k , i.e. the estimator of P

[
Ek | Ek−1

]
, requires evaluation of the function g (Z) = ξ − PF|Θ (Θ)

for the NO samples
{
zk−1,1, . . . , zk−1,NO

}
distributed according to pZ ( z| z ∈ Ek−1). These NO evaluations of

g (Z) can be done in parallel. For every sample, zk−1,i = {
ξ k−1,i θk−1,i

}
, PF|Θ

(
θk−1,i ) is evaluated either

by analytical approximation, or by Girsanov’s transformation. In the latter case, evaluation of the estimator
P̂GT
F|Θ
(
θk−1,i ) in Eq. (13) requires an additional NI evaluation of the dynamical system for each sample θk−1,i .

These additional NI evaluations can also be parallelized. However, when the SS andGSmethods are employed,
one cannot completely parallelize the estimation of the unconditional probability of failure. For these methods,
only evaluation of the estimator P̂GT

F|Θ
(
θk−1,i ) can be parallelized. In the present study, however, we have not

explored issues related to parallelizing the computational steps.
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5 Numerical illustrations

The procedures discussed in the previous section are now illustrated by considering two numerical examples.
The first example considers a nonlinear single dof system subjected to stationary white noise excitation.
The second pertains to a ten storey linear frame excited by filtered non-stationary Gaussian excitation. The
latter example is a benchmark example reported in [31]. These problems are analysed using three alternative
methods designated as follows: (a) method 1—the proposed procedure with P̂F|Θ (θ) in Box 1 taken equal to
the analytical approximation P̂ A

F|Θ (θ) (b) method 2—the proposed procedure with P̂F|Θ (θ) in Box 1 taken

equal to the Girsanov transformation-based estimator P̂GT
F|Θ (θ), and (c) method 3—large-scale direct Monte

Carlo simulation which provides a benchmark for the estimates obtained from the other methods. In methods
1 and 2, the unconditional failure probability PF is estimated using the three alternative estimators described
in Box 1, i.e. the estimators based on the SS, GS and mHDR methods. In the SS and GS methods, the Markov
chains in the conditional levels are generated based on the procedure outlined in [20,39]. In methods 2 and 3,
integration of the governing SDE is performed using order 1.5 explicit stochastic Runge–Kutta method [40]
with a time step of �t = 0.01 s in example 1 and �t = 0.005 s in example 2.

5.1 Example 1: nonlinear single degree of freedom oscillator

In this example, a sdof nonlinear oscillator subjected to stationary random excitation is considered. The
governing equation of the system is written as

V̈ (t) + V̇ (t)
[
2ηω + 0.5ε

(
ω2V 2 (t) + V̇ 2 (t) + 0.5αV 4 (t)

)]+ ω2V (t) + αV 3 (t) = W (t)

V (0) = 0, V̇ (0) = 0; t ≥ 0 (15)

Here,W (t) is a zeromeanGaussianwhite noise processwith auto-covariance EP [W (t)W (t + τ)] = σ 2δ (τ ).
The state space of the associated Ito’s SDE is given byX (t) = {V (t) V̇ (t)

}
. The parameters η,ω, σ , ε, and α

aremodelled as correlatednon-Gaussian randomvariableswith distributionproperties as given inTable 1.These
randomvariables are collectively represented by a randomvectorΘ . ANatafmodel [37] for the joint pdf pΘ (θ)
is adopted. The failure event is defined in terms of the maximum steady state displacement. The problem on
hand thus consists of determining the probability of failure PF = P

[{
h∗ − maxt0<t≤t0+T h [Θ, X (t)] ≤ 0

}] =
P
[{
h∗ − maxt0<t≤t0+T V (t) ≤ 0

}]
. Here, h∗ denotes the safe limit on displacement, t0 denotes the timeneeded

for the response to reach steady state, and T denotes the duration over which the reliability is analysed. In the
numerical work, we take t0 = 10 s and T = 35 s.

The problem is solved for two cases: (i) case 1—here, the system is assumed to be linear (i.e. α = 0
and ε = 0), and (ii) case 2—here, nonlinearity is considered with α and ε as stated in Table 1. In each case,
different threshold values are selected and the failure probability is computed based on methods 1–3. It may be
recalled that, in method 1, the conditional failure probability PF|Θ (θ) for a given threshold h∗, and for a given
realization θ of the parameter vector, is estimated using the analytical approximation based on out-crossing
theory. Here, one needs to determine the mean up-crossing rate of the threshold h∗ by the response process
h [θ , X (t)]. This, in turn, requires knowledge of the joint pdf of the response process and its time derivative
at different time instants. For the system defined by Eq. (15), an exact analytical expression for the joint pdf
can be determined by solving the underlying Fokker–Planck equation [36]. Accordingly, the steady state joint

Table 1 Example 1; quantities modelled as random variables and their properties

Quantity Distribution Parameter

η Uniform Range [0.05 0.07]
ω, rad/s Uniform Range [1.6π 2.4π]
σ Uniform Range [0.4 0.6]
α, 1/m2-s2 Lognormal Mean=50.00, Standard deviation=5.000
ε, s/m2 Lognormal Mean=0.25, Standard deviation=0.025
Correlation coefficient: ρω,ε = 0.3; ρω,α = 0.3; ρα,ε = 0.2; all other coefficients are zero
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pdf of the response is obtained as

f (s, ṡ; θ) = C0 exp

[
−2ηω

σ 2

{
ṡ2 + ω2s2 + 0.5αs4 + 0.25ε

ηω

(
ṡ2 + ω2s2 + 0.5αs4

)2
}]

(16)

where C0 is the normalization constant. In the above equation, the variable s denotes the response, and ṡ
denotes its time derivative. The steady state mean up-crossing rate ν+ (h∗, θ) can subsequently be determined
by integrating the joint pdf according to the Rice formula stated in Sect. 3.1, i.e. according to the expression
ν+ (h∗, θ) = ∫∞

0 ṡ f (s, h∗; θ) dṡ. In the numerical work, ν+ (h∗, θ) is evaluated by numerical integration.
To implement methods 1 and 2, the sample size NO for the failure probability estimators listed in Box 1 is
taken equal to 200. In method 2, the sample size for the Girsanov transformation based estimator for PF|Θ (θ)
is taken as NI = 5. In the mHDR method, the number of Markov chains in each level is taken as 10, and
an additional 125 samples are employed in each level to allow for dissipation of initial transients in MCMC
sampling. During the burn-in phase, PF|Θ (θ) is evaluated using the out-crossing statistic-based analytical
approximation method. To implement method 3, a sample size of 3 × 106 is used. A total of 175 equi-spaced
up-crossing time instants (i.e. m = 175) in the time window 10–45s are selected to determine the Girsanov
controls in method 2 (see, [29] for further details).

Tables 2 and 3 summarize the estimates of PF obtained from the proposedmethods, i.e. methods 1 and 2, for
cases 1 and 2, respectively. Here, P̂F and δP̂F

are themean and coefficient of variation of the sample estimates of
PF from 25 independent runs. The acceptability of the failure probability estimates obtained from the proposed
methods is assessed by comparing the results with corresponding large-scale direct Monte Carlo simulation-
based estimates (method 3). From Tables 2 and 3, it may be observed that, for different threshold levels, the
mean of the failure probability estimates obtained using methods 1 and 2 shows satisfactory agreement with
the estimates from method 3. Tables 2 and 3 also compare the coefficient of variation of the estimates of PF
(numbers in parenthesis) obtained using the alternative particle splitting algorithms. It may be observed that
the coefficient of variation of the estimator based on the GS method is relatively less, while the estimators
based on the mHDR and SS methods show broadly similar levels of sampling variance.

An idea of the computational effort needed to implement method 2 can be obtained by examining Table 4,
where the total sample size and the CPU time needed to implement the method on a Intel(R) Core(TM) i7-3770
CPU@3.40GHz processor with 8GB ram have been reported. Here, TA denotes the time needed to determine
the algorithmic parameters of the particle splitting methods. The quantities TR and NTot, respectively, denote
the total time and the total number of SDE evaluations required to obtain a single estimate of PF during
reliability analysis. The results noted in this table are averaged over 25 independent runs, and NTot is rounded
to the nearest integer. From these tables, it may be observed that the quantity TA is significantly higher for
case 2 as compared to case 1. This is because in case 2, the constrained optimization problem for determining
the representative Girsanov controls is solved numerically due to nonlinear nature of the system. In order to
obtain the same coefficient of variation as in method 2, the sample size required in direct MCS (method 3)
is approximately NTot = 2.8 × 104 for h∗ = 0.46m in case 1, and approximately NTot = 2.5 × 104 for
h∗ = 0.36m in case 2. Finally, it is noted that in method 1 the failure probability conditional on the random

Table 2 Example 1; estimates of PF from methods 1, 2, and 3 for case 1 (linear system)

h∗ (m) Method 1 Method 2 Method 3

P̂F
(
δP̂F

)
P̂F
(
δP̂F

)
P̂F

SS GS mHDR SS GS mHDR

0.30 2.50 × 10−2 2.28 × 10−2 2.16 × 10−2 2.58 × 10−2 2.45 × 10−2 2.29 × 10−2 2.15 × 10−2

(0.33) (0.32) (0.24) (0.31) (0.27) (0.64)
0.36 2.72 × 10−3 2.77 × 10−3 2.81 × 10−3 3.11 × 10−3 2.67 × 10−3 2.76 × 10−3 2.71 × 10−3

(0.74) (0.50) (0.67) (0.61) (0.43) (0.57)
0.40 6.38 × 10−4 6.40 × 10−4 5.82 × 10−4 6.58 × 10−4 6.33 × 10−4 6.29 × 10−4 6.14 × 10−4

(0.78) (0.63) (0.90) (0.88) (0.51) (0.96)
0.43 2.29 × 10−4 2.21 × 10−4 2.22 × 10−4 2.11 × 10−4 1.94 × 10−4 2.03 × 10−4 1.95 × 10−4

(0.94) (0.82) (0.83) (1.29) (0.92) (0.92)
0.46 5.74 × 10−5 5.58 × 10−5 5.12 × 10−5 5.12 × 10−5 5.52 × 10−5 5.16 × 10−5 5.33 × 10−5

(1.28) (0.79) (1.06) (1.37) (0.82) (0.93)

Numbers in parenthesis denote the coefficient of variation of the estimates of PF from 25 independent runs
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Table 3 Example 1; estimates of PF from methods 1, 2, and 3 for case 2 (nonlinear system)

h∗(m) Method 1 Method 2 Method 3
P̂F (δP̂F

) P̂F (δP̂F
) P̂F

SS GS mHDR SS GS mHDR

0.250 3.15 × 10−2 3.09 × 10−2 3.29 × 10−2 4.12 × 10−2 3.71 × 10−2 3.55 × 10−2 3.59 × 10−2

(0.32) (0.30) (0.48) (0.34) (0.30) (0.30)
0.300 2.91 × 10−3 2.89 × 10−3 3.27 × 10−3 3.32 × 10−3 3.05 × 10−3 2.96 × 10−3 3.04 × 10−3

(0.70) (0.58) (0.70) (0.72) (0.59) (0.77)
0.325 7.09 × 10−4 6.88 × 10−4 6.87 × 10−4 6.27 × 10−4 6.26 × 10−4 7.03 × 10−4 6.53 × 10−4

(0.78) (0.59) (0.72) (0.95) (0.62) (0.79)
0.340 2.24 × 10−4 2.26 × 10−4 2.55 × 10−4 2.45 × 10−4 2.20 × 10−4 2.36 × 10−4 2.29 × 10−4

(0.89) (0.65) (0.81) (1.05) (0.77) (0.88)
0.360 5.39 × 10−5 6.23 × 10−5 5.31 × 10−5 4.96 × 10−5 5.21 × 10−5 5.47 × 10−5 5.13 × 10−5

(0.95) (0.79) (0.87) (1.23) (0.88) (0.92)

Numbers in parenthesis denote the coefficient of variation of the estimates of PF from 25 independent runs

Table 4 Example 1; computational effort needed to implement method 2 for cases 1 and 2

Method Case 1: h∗ = 0.46m Case 2: h∗ = 0.36m

TA ( s) TR ( s) NTot TA ( s) TR ( s) NTot

Method 2—SS 7.9 1334 5120 360.3 1706 5360
Method 2—GS 7.4 1784 4610 290.8 1966 5180
Method 2—mHDR 7.4 1138 5000 290.8 1520 5000

systems parameters is estimated via analytical approximation procedures based on out-crossing rate statistics.
Hence, the quantity NTot, which denotes the number of SDE evaluations needed for reliability estimation, is not
applicable for this method. However, for the sake of completeness, we provide the computational time needed
to estimate the failure probability based on method 1 (using the mHDR method), which is approximately
TR = 30.3 s for h∗ = 0.46m in case 1, and approximately TR = 36.0 s for h∗ = 0.36m in case 2. The time
required for determining the algorithmic parameters in method 1 is the same as in method 2.

5.2 Example 2: ten storey linear frame

This example considers a randomly excited ten storey linear frame which constitutes one of the benchmark
reliability examples studied in [31]. The frame is idealized as a mass-spring-dashpot system with mass mi ,
stiffness parameter ki and damping ratio ηi , i = 1, . . . , 10. The governing equation of motion is written as

MsV̈ (t) + CsV̇ (t) + KsV (t) = −P (t)

V (0) = 0, V̇ (0) = 0; t ≥ 0 (17)

where V (t) = {
V1 · · · V10

}T is the displacement vector, and Ms, Cs, and Ks are the mass, damping, and
stiffness matrices given by

Ms =
⎡

⎢
⎣

m1 0 0 · · · 0
0 m2 0 · · · 0
· · · · · · ·
0 · · · 0 0 m10

⎤

⎥
⎦ , Cs =

⎡

⎢
⎣

c1 + c2 −c2 0 · · · 0
−c2 c2 + c3 −c3 · · · 0

· · · · · · ·
0 · · · 0 −c10 c10

⎤

⎥
⎦

Ks =
⎡

⎢
⎣

k1 + k2 −k2 0 · · · 0
−k2 k2 + k3 −k3 · · · 0

· · · · · · ·
0 · · · 0 −k10 k10

⎤

⎥
⎦

The damping coefficients are given by ci = 2ηi
√
miki . The random excitation P (t) is taken as P (t) =

f (t)
{
m1 · · · m10

}T. The input f (t) is modelled as a filtered non-stationary Gaussian white noise excitation
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Table 5 Example 2; statistical properties of the random structural parameters

Parameter Mean Standard deviation

m1, . . . ,m10 10,000kg 1000kg
k1, k2, k3 40 × 106 N/m 4.0 × 106 N/m
k4, k5, k6 36 × 106 N/m 3.6 × 106 N/m
k7, k8, k9, k10 32 × 106 N/m 3.2 × 106 N/m
η1, . . . , η10 0.04 0.004

Table 6 Example 2; comparison of failure probability estimates and coefficient of variation of the estimators

Case Method 1 Method 1 Method 1 Method 2 Method 2 Method 2 SubSim S3 Direct MCS
SS GS mHDR SS GS mHDR (method 3)

1 P̂F 2.78 × 10−4 2.01 × 10−4 2.45 × 10−4 9.94 × 10−5 1.03 × 10−4 8.51 × 10−5 1.20 × 10−4 9.20 × 10−5 1.06 × 10−4

NTot – – – 2700 2868 2400 1850 3070 2.98 × 107

δP̂F
70% 46% 51% 57% 49% 58% 77% 35% 2%

� – – – 30 26 28 33 19 97
2 P̂F 1.77 × 10−6 1.30 × 10−6 1.05 × 10−6 8.61 × 10−7 6.75 × 10−7 6.19 × 10−7 1.00 × 10−6 8.80 × 10−7 8.07 × 10−7

NTot – – – 4050 5214 3600 2750 4200 2.98 × 107

δP̂F
96% 79% 81% 80% 81% 77% 99% 68% 20%

� – – – 51 59 46 52 44 1113
3 P̂F 5.57 × 10−5 6.33 × 10−5 5.19 × 10−5 3.67 × 10−5 3.22 × 10−5 3.77 × 10−5 6.60 × 10−5 4.60 × 10−5 4.88 × 10−5

NTot – – – 2780 3572 2400 2300 3250 2.98 × 107

δP̂F
49% 52% 43% 58% 61% 46% 58% 58% 3%

� – – – 31 36 23 28 33 143

Results of SubSim, S3 and Direct MCS have been taken from [31].
NTot and � are not applicable for Method 1 (with SS, GS or mHDR) since the method does not involve any evaluation of the
dynamical system

according to the equation

f (t) = ω2
d xd (t) + 2ηdωd ẋd (t) − ω2

gxg (t) − 2ηgωg ẋg (t) (18)

where
{
xd ẋd xg ẋg

}T is defined by the linear system

ẍd (t) + 2ηdωd ẋd (t) + ω2
d xd (t) = e (t)W (t)

ẍg (t) + 2ηgωg ẋg (t) + ω2
gxg (t) = 2ηdωd ẋd (t) + ω2

d xd (t)

xd (0) = 0; ẋd (0) = 0; xg (0) = 0; ẋg (0) = 0 (19)

Here, e (t) is amodulating function that imparts non-stationarity to the input, andW (t) is a zeromeanGaussian
white noise process with EP [W (t)W (t + τ)] = I (e (t))2 δ (τ ). The modulating function is given by

e (t) =

⎧
⎪⎨

⎪⎩

0 t ≤ 0 s
t/2 0 s ≤ t ≤ 2 s
1 2 s ≤ t ≤ 10 s
exp (−0.1 (t − 10)) 10s ≤ t ≤ 20 s

(20)

The numerical values of the parameters in Eq. (18) are taken as ωd = 15 rad/s, ωg = 0.3 rad/s, ηd = 0.8,

ηg = 0.995 and I = 0.08m2/s3. The structural parameters mi , ki , and ηi are modelled as independent
Gaussian random variables with statistical properties as listed in Table 5. These choices follow the models
adopted in the definition of the benchmark exercise [31]. The state space of the Ito’s SDE associated with

Eqs. (17) and (19) is given by X (t) = {V (t) V̇ (t) xg (t) ẋg (t) xd (t) ẋd (t)
}T
.

To define the failure condition, two response measures are considered: (i) the first floor displacement given
by h1 [Θ, X (t)] = V 1 (t), and (ii) the relative displacement between the ninth and the tenth floors given
by h2 [Θ, X (t)] = V 10 (t) − V 9 (t). The probability of failure is evaluated for the following cases: (i) case
1—here, the failure event is defined by the exceedance of the maximum value of the response h1 [Θ, X (t)]
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over the threshold h∗
1 = 0.057m, (ii) case 2—this case is similar to the previous case except that h∗

1 is taken
equal to 0.073m, and (iii) case 3—here, the failure event is defined by the exceedance of the maximum value
of the response h2 [Θ, X (t)] over the threshold h∗

2 = 0.013m. In each case, the reliability is analysed over
the transient domain encompassing the duration 0–20s.

The probability of failure is estimated based on the proposed methods, i.e. methods 1 and 2, using the
alternative estimators listed in Box 1. While implementing method 1, as has been already noted, the mean
up-crossing rate of the response hi [Θ, X (t)] over the corresponding threshold h∗

i needs to be evaluated. For
this purpose, in the present study, the analytical expression reported in [38] is employed. For the estimators
in Box 1, the sample size NO is taken equal to 250 for method 1 and equal to 200 for method 2. In method
2, the sample size in the Girsanov transformation-based estimator for PF|Θ (θ) is taken as NI = 3. Here,
the Girsanov control is determined using 480 equi-spaced up-crossing time instants from the time window
6–18s. In each case, 15 independent realizations of PF are obtained using methods 1 and 2, and the mean
and coefficient of variation of the estimates are computed. The results are summarized in Table 6. This table
also compares the estimates obtained using the proposed approach with the results obtained from two existing
methods reported in [31], namely, the subset simulation method (SubSim) and the spherical subset simulation
method (S3). The results from few other variance reduction methods are also available in [31], but they are not
reproduced here. The estimates from large-scale direct Monte Carlo simulation (i.e. method 3 with 2.98× 107

samples) are also reported in these tables.
From Table 6, it is observed that the failure probability estimates obtained from method 2 agree well with

those from large-scale direct Monte Carlo results, while the estimates from method 1 are marginally higher.
The sampling variance associated with the proposed methods can be assessed based on the coefficient of
variation, δP̂F

, reported in the table. The quantity NTot in Table 6 denotes the average number of dynamical

system evaluations needed to obtain a single estimate of PF, and � = δP̂F

√
NTot is the unit coefficient of

variation. Based on the values of δP̂F and� reported in Table 6, it is concluded that the performance of method
2 is comparable with most of the other existing method.

6 Conclusions

The study considers the problem of time variant reliability analysis of randomly parametered and randomly
excited dynamical systems. Two alternative approaches to tackle the problem are explored. The first approach
shows that, when an approximate analytical solution of the failure probability conditional on the system
parameters is known, it can form the basis for obtaining estimates of the unconditional reliability of the
dynamical system by applying the Markov chain splitting techniques. The second approach demonstrates
the feasibility of combining Girsanov’s transformation, based on closed loop controls, with the Markov chain
splittingmethods, to estimate the probability of failure. In order to avoid construction of control forces for every
realization of the uncertain system parameters, a strategy to construct representative closed loop Girsanov’s
controls,which can be used for an ensemble of realization of systemparameters, is suggested.Numerical studies
on linear/nonlinear systems demonstrate that the failure probability estimates obtained from the proposed
methods compare well with those obtained from large-scale direct Monte Carlo simulations. Finally, it is
noted that the determination of algorithmic parameters in the proposed methods requires prior knowledge of
an approximate analytical estimate of the failure probability conditional on the random system parameters.
For general nonlinear dynamical systems, this approximate solution based on out-crossing rate statistics is
often difficult to obtain. A possible strategy to reinforce the proposed framework, in order to estimate the
time variant reliability of general nonlinear dynamical systems, could be to combine the developed methods
with equivalent linearization techniques. This aspect of the problem requires further exploration and remains
as a topic for future work. In addition, extensions of the proposed methods to estimate time variant system
reliability of randomly parametered dynamical systems,withmultiple failuremodes arranged in series, parallel,
or combined series and parallel configurations, is currently being pursued by the present authors.
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