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Abstract Free vibration response of a joined shell system including cylindrical and spherical shells is analyzed
in this research. It is assumed that the system of joined shell is made from a functionally graded material
(FGM). Properties of the shells are assumed to be graded through the thickness. Both shells are unified in
thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first-order
shear deformation theory of shells is used. TheDonnell type of kinematic assumptions is adopted to establish the
general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton’s
principle. The resulting system of equations is discretized using the semi-analytical generalized differential
quadrature method. Considering the clamped and free boundary conditions for the end of the cylindrical
shell and intersection continuity conditions, an eigenvalue problem is established to examine the vibration
frequencies of the joined shell. After proving the efficiency and validity of the present method for the case of
thin isotropic homogeneous joined shells, some parametric studies are carried out for the system of combined
moderately thick cylindrical–spherical shell system. Novel results are provided for the case of FGM joined
shells to explore the influence of power-law index and geometric properties.

Keywords Joined cylindrical–spherical shells · Free vibration · Generalized differential quadrature ·
Intersection continuity conditions

1 Introduction

Vibration of complicated shells has received attention in the last years [1–3]. A system of joined cylindrical–
spherical shell structure iswidely used inmany industrial applications, such as pressure vessels and architectural
structures. For these structures, it is well accepted that close to the joined section, localized and severe bending
moments are produced when the shell is subjected to sudden loadings. Vibrations induced by such loadings
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may result in fatigue phenomenon. Therefore, it is of high interest and importance to understand the vibration
characteristics of joined shells to establish the fundamental requirements for a safe design.

A large number of publications deal with the vibration analysis of elementary class of shells, e.g., conical,
cylindrical or spherical shell elements. On such topics, therefore, wealth books are documented [4–6]. On the
other hand, in comparison with the elementary shells, researches on vibration analysis of joined shells are
limited. Hu and Raney [7] studied the joined cantilever cylindrical–conical shell in free vibration regime. Yim
et al. [8] studied the free vibration analysis of the clamped–free circular cylindrical shell with a plate attached
at an arbitrary axial position using the numerical method. Peterson and Body [9] developed a technique for
the free vibration analysis of cylindrical shells with an inner plate at a longitudinal position. Irie et al. [10]
presented a strategy to analyze the vibration of a joined cylindrical–conical shell element. The transfer matrix
of the shell is expressed conveniently by the power series method and the frequency equations are derived for
a given set of boundary conditions at the edges. As a special case, free vibration characteristics of an annular
plate–cylindrical shell system are also analyzed. Saunders and Paslay [11] derived the analytical solution for
the natural frequency of the joined conical and spherical shells by the Rayleigh–Ritz method, which shows
good agreement with the modal test. Bagheri et al. [12] investigated the free vibration response of a joined shell
system consisting of two conical shells. In another research, they considered the free vibration characteristics
of a joined shell system containing two conical shells at the ends and a cylindrical shell at the middle [13]. The
first-order shear deformation theory of shells is accompanied with the Donnell type of kinematic assumptions
to establish the general equations of motion and the associated boundary and continuity conditions with the aid
of Hamilton’s principle. The resulting system of equations is discretized using the semi-analytical generalized
differential quadrature (GDQ) method. Bagheri et al. [14] also investigated the free vibrations of conical shells
with intermediate ring support. Kerboua and Lakis [15] performed an investigation on the free vibration and
aerodynamics of joined cylindrical–conical shells.

The vibration of joined spherical–cylindrical shells or cylindrical shells with different end attachments
has been the subject of studies. For instance, the natural frequencies of cylindrical shells clamped at one end
and closed at the other end by different types of shells of revolution (cones, hemispheres, ellipsoids, etc.) are
studied byGalletly [16]. Lee et al. [17] performed an investigation on the free vibration of combined cylindrical–
spherical shells. Various cases of boundary conditions are considered in this research. Rayleigh–Ritz-based
solutions are developed to establish the eigenvalue problems associated with the natural frequencies and mode
shapes of a thin Flügge shell system. It is shown that the vibrational behavior of the joined spherical–cylindrical
shell structure is independent of the shallowness of a hemispherical shell, whereas the length of the cylindrical
shell is effective in the vibrational behavior of the joined hemispherical–cylindrical shell. Wu et al. [18], using
the Reissner–Naghdi–Berry’s shell theory, applied the domain decomposition method (DDM) to investigate
the vibration characteristics of the combined cylindrical–spherical shell with different boundary conditions.
In another study, Wu et al. [19] concentrated on the free vibration of a joined cylindrical–spherical shell with
elastic support type of boundary conditions using the domain decomposition method. Using the Flügge shell
theory and Rayleigh–Ritz energy method, Yosefzad et al. [20] analyzed the free vibration characteristics of the
pre-stressed joined spherical–cylindrical shells with free–free boundary conditions. In the modal test, the LMS
software is used to calculate the mode shapes and natural frequencies of the joined shell structure. Qu et al. [21]
analyzed the free vibration of joined cylindrical–conical shell system with classical or non-classical boundary
conditions. The thin shell assumptions of Reissner–Naghdi theory are used as the fundamental theoretical
assumptions. The interface continuity and geometric boundary conditions are approximately enforced by
means of a modified variational principle and least-squares weighted residual method. Qu and his co-authors
also applied their previousmethod [21] to the free vibration analysis of ring-stiffened joined conical–cylindrical
shell systems [22], joined conical–cylindrical–spherical shell systems [23], joined cylindrical–spherical shell
with elastic-support boundary conditions [24] and spherical–cylindrical–spherical shells [25]. In a series of
works, Kang[26–28] examined the free vibration response of cylindrical shells that are closed by various types
of shell of revolution within the framework of three-dimensional elasticity theory. The total strain and kinetic
energies of the joined shell system are established, and the Ritz method with the classical polynomial functions
is used to establish the eigenvalue problem and extract the natural frequencies.

There are only a few works dealing with the free vibration response of joined cylindrical–spherical shells
where most of them are limited to thin class of shells. Also, all investigations deal with the homogeneous
class of shells and no work is yet reported on the free vibration of FGM joined cylindrical–spherical shells.
The present study aims to investigate the free vibration characteristics of a joined cylindrical–spherical shell
structure that is made from FGMs using the first-order shear deformable shell model suitable for moderately
thick shells. The Donnell type of kinematic assumptions is used to establish the equations of motion and
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Fig. 1 Geometric parameters and coordinate system sign of a joined cylindrical–spherical shell

the associated boundary conditions. A semi-analytical procedure based on the Fourier expansion along the
circumferential direction and the GDQ discretization along the tangential direction is developed to discrete the
equations of motion. The GDQ method is also applied to the intersection continuity and boundary conditions.
A system of homogeneous eigenvalue problems is established which may be useful to examine the frequencies
of a joined cylindrical–spherical shells. After validating the proposed solution method via some comparison
studies, a series of parametric studies are carried out to examine the influences of power-law index, cylindrical
shell length and shell radius.

2 Material properties of FGMs

The material properties of the ceramic and metal constituents of the joined shell system are assumed to be
graded in thickness direction based on the power-law function. The ceramic volume fraction Vc and metal
volume fraction Vm are assumed to obey the following form [29–36]

Vc =
(
1

2
+ z

h

)k

, Vm = 1 − Vc (1)

In the above equation, k is the power-law index and dictates the distribution of material properties across the
thickness. It is obvious that the surface z = +h/2 is ceramic-rich and the surface z = −h/2 is metal-rich.

Following the simple rule of mixtures approach (Voigt rule), each property of the FG joined shell such as P
may be written as a function of the associated properties of the constituents and volume fraction of constituents
as

P(z) = Pm + Pcm

(
1

2
+ z

h

)k

, Pcm = Pc − Pm (2)

where Pm and Pc are the corresponding properties of the metal and ceramic constituents, respectively. In the
present work, we assume that the modulus of elasticity E and mass density ρ are described by Eq. (2), while
Poisson’s ratio ν is considered to be constant across the thickness since it varies only in a small range.

3 Governing equations of the shell system

Consider a joined cylindrical–hemispherical shell made of a functionally graded material of uniform thickness
h, sphere radius r s = R, cylinder radius rc = R and cylinder length Lc = L . The system is shown in Fig. 1. A
(x, θ, z) system is applied to the cylindrical shell system, whereas a (φ, θ, z) system is applied to the spherical
shell. The coordinate systems are also shown in Fig. 1.

To capture the through-the-thickness shear deformations and rotary inertia effects of the cylindrical and
spherical shells, the first-order shear deformation theory (FSDT) of shells is used to formulate the governing
equations of the shell. Based on the FSDT, components of the displacement on a generic point for cylindrical
and spherical shells may be represented according to the mid-surface characteristics such that

ui (ζ, θ, z, t) = ui0 (ζ, θ, t) + zϕi
ζ (ζ, θ, t)
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vi (ζ, θ, z, t) = vi0 (ζ, θ, t) + zϕi
θ (ζ, θ, t)

wi (ζ, θ, z, t) = wi
0 (ζ, θ, t) (3)

In the above equation, u, v and w are the tangential, circumferential and through-the-thickness displacements,
respectively. The superscript i may be c or s associated with the cylindrical and spherical shells. Also, ζ may
take φ or x for spherical and cylindrical shells, respectively. A subscript 0 indicates the characteristics of the
mid-surface. Besides, ϕζ and ϕθ are, respectively, the transverse normal rotations about the θ and ζ axes,
respectively.

According to the FSDT, the components of strain field on an arbitrary point of the cylindrical or spherical
shell may be obtained in terms of those belonging to the mid-surface of the shell and change of curvatures.
Consequently, one may write [37]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εiζ ζ

εiθθ

γ i
ζθ

γ i
ζ z

γ i
θ z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εiζ ζ0

εiθθ0

γ i
ζθ0

γ i
ζ z0

γ i
θ z0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+ z

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κ i
ζ ζ

κ i
θθ

κ i
ζθ

κ i
ζ z

κ i
θ z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4)

where the components of strain associated with the mid-surface of the cylindrical shell are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εcxx0
εcθθ0

γ c
xθ0

γ c
xz0

γ c
θ z0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uc0,x

vc0,θ

rc
+ wc

0

rc
uc0,θ
rc

+ vc0,x

wc
0,x + ϕc

x

wc
0,θ

rc
− vc0

rc
+ ϕc

θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

and similarly for the spherical shell one has

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εsφφ0

εsθθ0

γ s
φθ0

γ s
φz0

γ s
θ z0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

us0,φ
r s

+ ws
0

r s

vs0,θ

r s sin(φ)
+ us0

r s
cot(φ) + ws

0

r s

vs0,φ

r s
+ us0,θ

r s sin(φ)
− vs0

r s
cot(φ)

ws
0,φ

r s
+ ϕs

φ − us0
r s

ws
0,θ

r s sin(φ)
− vs0

r s
+ ϕs

θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

The components of change of curvature in the Donnell sense compatible with the FSDT for the cylindrical
shell are [37]



Free vibration of joined cylindrical–hemispherical FGM shells 2189

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κc
xx

κc
θθ

κc
xθ

κc
xz

κc
θ z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕc
x,x

ϕc
θ,θ

rc

ϕc
x,θ

rc
+ ϕc

θ,x

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

and for the spherical shell one may write

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κs
φφ

κs
θθ

κs
φθ

κs
φz

κs
θ z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕs
φ,φ

r s

ϕs
θ,θ

r s sin(φ)
+ ϕs

φ

r s
cot(φ)

ϕs
θ,φ

r s
+ ϕs

φ,θ

r s sin(φ)
− 1

r s
ϕs

θ cot(φ)

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where in the above equations, (),φ (),x and (),θ denote the derivatives with respect to φ, x and θ , respectively.
For the case when material properties of the shell are linearly elastic, components of stress in terms of

strains are evaluated as ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ i
ζ ζ

σ i
θθ

τ iζθ

τ iζ z

τ izθ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εiζ ζ

εiθθ

γ i
ζθ

γ i
ζ z

γ i
zθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9)

where Qi j ’s (i, j = 1, 2, 4, 5, 6) are the reduced material stiffness coefficients and are obtained as follows

Q11 = Q22 = E(z)

1 − ν2
, Q12 = νE(z)

1 − ν2
, Q44 = Q55 = Q66 = E(z)

2(1 + ν)
. (10)

The components of stress resultants are obtained using the components of stress field as [38]
⎧⎪⎨
⎪⎩

Ni
ζ ζ

Ni
θθ

Ni
ζθ

⎫⎪⎬
⎪⎭ =

∫ +h/2

−h/2

⎧⎪⎨
⎪⎩

σ i
ζ ζ

σ i
θθ

τ iζθ

⎫⎪⎬
⎪⎭ dz,

⎧⎪⎨
⎪⎩

Mi
ζ ζ

Mi
θθ

Mi
ζθ

⎫⎪⎬
⎪⎭ =

∫ +h/2

−h/2
z

⎧⎪⎨
⎪⎩

σ i
ζ ζ

σ i
θθ

τ iζθ

⎫⎪⎬
⎪⎭ dz,

{
Qi

ζ z

Qi
θ z

}
=

∫ +h/2

−h/2
κ

{
τ iζ z

τ iθ z

}
dz (11)

In the above equation, κ is the shear correction factor of FSDT. As known, adoption of a correction shear
factor results in more accurate estimation of the natural frequencies. Since shear correction factor depends
upon the boundary conditions, material properties and loading type [39], determination of its exact value is
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not straightforward. However, the approximate values of κ = 5/6 or κ = π2/12 are used extensively. In this
research, the shear correction factor is set equal to κ = 5/6.

Substitution of Eq. (9) into Eq. (11) with the simultaneous aid of Eqs. (4)–(8) generates the stress resultants
in terms of the mid-surface characteristics of the shell as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ni
ζ ζ

Ni
θθ

Ni
ζθ

Mi
ζ ζ

Mi
θθ

Mi
ζθ

Qi
θ z

Qi
ζ z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 B11 B12 0 0 0
A12 A22 0 B12 B11 0 0 0
0 0 A66 0 0 0 0 0
B11 B12 0 D11 D12 0 0 0
B12 B11 0 D12 D22 0 0 0
0 0 0 0 0 D66 0 0
0 0 0 0 0 0 κA44 0
0 0 0 0 0 0 0 κA55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εiζ ζ0

εiθθ0

γ i
ζθ0

κ i
ζ ζ

κ i
θθ

κ i
ζθ

γ i
θ z0

γ i
ζ z0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

In the above equation, the constant coefficients Ai j , Bi j and Di j indicate the well-known stretching, coupling
and bending stiffnesses, respectively, which are calculated by

(Ai j , Bi j , Di j ) =
∫ +0.5h

−0.5h
(Qi j , zQi j , z

2Qi j )dz. (13)

The complete set of equations of motion and boundary conditions of a joined cylindrical–hemispherical
shell system may be obtained based on the generalized Hamilton principle [38]. Statement of Hamilton’s
principle reads

δ

∫ t2

t1

(
Ki −

(
Ui + V i

))
dt = 0

at t = t1, t2: δui0 = δvi0 = δwi
0 = δϕi

ζ = δϕi
θ = 0 (14)

where in the above equation, δKi is the virtual kinetic energy of the cylindrical/spherical shell which is equal
to

δKi =
∫
V i

ρ(z)
(
u̇iδu̇i + v̇iδv̇i + ẇiδẇi

)
dV i (15)

Here, a (˙) indicates the derivative with respect to time t . Besides, δUi is the virtual strain energy of the
cylindrical/spherical shell which may be calculated as

δUi =
∫
V i

(
σ i

ζ ζ δε
i
ζ ζ + σ i

θθ δε
i
θθ + τ iζθ δγ

i
ζθ + κτ iθ zδγ

i
θ z + κτ iζ zδγ

i
ζ z

)
dV i (16)

And δV i is the virtual potential energy of the external loads which is absent for the free vibration problem.
Integrating the above expressions with respect to z coordinate and performing the Green–Gauss theorem
to relieve the virtual displacement gradients results in the expressions for the linear equations of motion of
cylindrical and spherical shells, respectively, as

N c
xx,x + N c

xθ,θ

R
= I1ü

c
0 + I2ϕ̈

c
x

N c
θθ,θ

R
+ N c

xθ,x + Qc
θ z

R
= I1v̈

c
0 + I2ϕ̈

c
θ

Qc
xz,x + Qc

θ z,θ

R
− N c

θθ

R
= I1ẅ

c
0

Mc
xx,x + Mc

xθ,θ

R
− Qc

xz = I2ü
c
0 + I3ϕ̈

c
x

Mc
xθ,x + Mc

θθ,θ

R
− Qc

θ z = I2v̈
c
0 + I3ϕ̈

c
θ (17)
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N s
φφ,φ

R
+ N s

φθ,θ

R sin(φ)
+ N s

φφ − N s
θθ

R
cot(φ) + Qs

φ

r
= I1ü

s
0 + I2ϕ̈

s
φ

N s
θθ,θ

R sin(φ)
+ N s

φθ,φ

R
+ 2

cot(φ)

R
N s

φθ + Qs
θ

R
= I1v̈

s
0 + I2ϕ̈

s
θ

Qs
φz,φ

R
+ 1

R sin(φ)
Qs

θ,θ + Qs
φ

R
cot(φ) − N s

φφ + N s
θθ

R
= I1ẅ

s
0

Ms
φφ,φ

R
+ Ms

φθ,θ

R sin(φ)
+ Ms

φφ − Ms
θθ

R
cot(φ) − Qs

φ = I2ü
s
0 + I3ϕ̈

s
φ

Ms
θθ,θ

R sin(φ)
+ Ms

φθ,φ

R
+ 2

cot(φ)

R
Ms

φθ − Qs
θ = I2v̈

s
0 + I3ϕ̈

s
θ (18)

In Eq. (18), the notation R is used for both rc and r s. Also, the following definitions apply

(I1, I2, I3) =
∫ +h/2

−h/2
ρ(1, z, z2)dz. (19)

4 Boundary and matching conditions

For the end of the cylindrical shell, various types of boundary conditions may be defined. The edge x = L
may be clamped (C) or free (F). Mathematical expression of the edge supports on the end of the cylinder takes
the form

C: uc0 = vc0 = wc
0 = ϕc

x = ϕc
θ = 0

F: N c
xx = N c

xθ = Qc
xz = Mc

xx = Mc
xθ = 0 (20)

Furthermore, in view of the shell theory adopted in the present study, particular conditions (apex compatibility
conditions) need to be enforced to avoid the divisions by zero arising in Eq. (6) when calculating the strain
components at the pole. Following [40], imposing the finiteness of deformations at the apex, one obtains the
following sets of assignments, which depend up the considered harmonic number.

n �= 1: us0 = vs0 = Qs
φ = ϕs

φ = ϕs
θ = 0

n = 1: N s
φφ = N s

φθ = ws
0 = ϕs

φ + ϕs
θ = us0 + vs0 = 0 (21)

Here, n is the harmonic number through the circumferential direction.
At the intersection of the shell system, the continuity of displacement components as well as the force and

moment resultants should be satisfied. The compatibility of the displacements at the intersection (x = 0 and
φ = π/2) reads

us0 = uc0
ws
0 = wc

0

vs0 = vc0

ϕs
φ = ϕc

x

ϕs
θ = ϕc

θ (22)

and similarly, the compatibility of the stress resultants at the intersection (x = 0 and φ = π/2) results in

N s
φφ = N c

xx

Qs
φz = Qc

xz

Ms
φφ = Mc

xx

N s
φθ = N c

xθ

Ms
φθ = Mc

xθ . (23)
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Table 1 Non-dimensional frequency parameters, Ω = ωR
√

ρ/G of combined hemispherical–cylindrical shells of revolution
without top opening

n m Fixed at bottom Completely free

Kang et al. [28] Present Kang et al. [28] Present

0T 1 0.9300 0.9300 1.787 1.787
2 2.517 2.517 3.153 3.153
3 3.786 3.786 4.434 4.434
4 5.063 5.063 5.680 5.680
5 6.306 6.306 6.930 6.930

0A 1 1.031 1.031 1.299 1.299
2 1.497 1.497 1.552 1.552
3 1.639 1.639 1.609 1.609
4 1.780 1.780 1.651 1.651
5 1.857 1.857 1.789 1.789

1 1 0.467 0.467 1.210 1.118
2 1.285 1.285 1.462 1.452
3 1.398 1.413 1.527 1.548
4 1.621 1.620 1.690 1.733
5 1.685 1.645 1.874 1.874

2 1 0.840 0.840 0.0751 0.077
2 1.397 1.397 1.075 1.075
3 1.548 1.548 1.416 1.417
4 1.734 1.735 1.578 1.579
5 1.986 1.980 1.760 1.760

3 1 0.739 0.734 0.201 0.203
2 1.424 1.423 0.945 0.946
3 1.608 1.609 1.483 1.484
4 1.844 1.844 1.638 1.639
5 2.148 2.135 1.876 1.876

4 1 0.736 0.735 0.373 0.374
2 1.430 1.428 0.899 0.901
3 1.714 1.716 1.523 1.525
4 1.994 1.991 1.743 1.745
5 2.348 2.325 2.038 2.036

5 1 0.847 0.846 0.589 0.589
2 1.497 1.494 0.986 0.987
3 1.858 1.859 1.609 1.610
4 2.188 2.180 1.869 1.897
5 2.594 2.561 2.248 2.240

Geometric characteristics of the shell are h/R = 0.05, L/R = 1 and ν = 0.3

5 Solution procedure

Referring to the definitions of normal force and bending moment resultants from Eq. (12) and the equations of
motion (17) and (18), the following separation of variables exactly satisfies the periodicity conditions of the
field variables and is also compatible with the equations of motion (17) and (18) and the matching conditions
(22) and (23).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui0(ζ, θ, t)

vi0(ζ, θ, t)

wi
0(ζ, θ, t)

ϕi
ζ (ζ, θ, t)

ϕi
θ (ζ, θ, t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= cos(ωt + ψ)

⎡
⎢⎢⎢⎢⎢⎣

sin(nθ) 0 0 0 0
0 cos(nθ) 0 0 0
0 0 sin(nθ) 0 0
0 0 0 sin(nθ) 0
0 0 0 0 cos(nθ)

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ui (ζ )

V i (ζ )

Wi (ζ )

�i
ζ (ζ )

�i
θ (ζ )

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(24)

where in the above equation n, as mentioned , is the wave number through the circumferential direction. The
time dependence of the solution (24) is chosen to overcome the periodicity condition of field variables in time
domain. In this function, ω is the natural frequency of the joined shell system.

Substitution of the above equation into the equations of motion (17) and (18) results in new
ten coupled ordinary differential equations in terms of the unknown through-the-meridian functions



Free vibration of joined cylindrical–hemispherical FGM shells 2193

Table 2 First five natural frequency parameters for each circumferential mode number n in the case of completely free and
clamped combined hemispherical–cylindrical shells for various power-law indices

n m Fixed at bottom Completely free

k = 0.5 k = 1 k = 5 k = 10 k = 100 k = 0.5 k = 1 k = 5 k = 10 k = 100

0 1 0.8586 0.8181 0.7236 0.6988 0.6707 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9472 0.9015 0.7980 0.7716 0.7419 0.0000 0.0000 0.0000 0.0000 0.0000
3 1.3756 1.3087 1.1605 1.1229 1.0795 0.3916 0.8873 0.3762 0.3283 0.2594
4 1.5049 1.4320 1.2745 1.2336 1.1834 1.2001 0.8873 0.7070 0.9861 0.5140
5 1.6296 1.5509 1.3872 1.3434 1.2852 1.4376 1.1335 0.7137 1.0118 0.5343

1 1 0.4320 0.4114 0.3641 0.3519 0.3380 0.0000 0.0000 0.0000 0.0000 0.0000
2 1.1839 1.1273 0.9990 0.9656 0.9271 0.0235 0.0225 0.0148 0.0128 0.0171
3 1.3000 1.2371 1.0960 1.0600 1.0192 0.5281 0.4934 0.7980 0.6288 0.0637
4 1.4835 1.4112 1.2591 1.2196 1.1693 1.2481 1.0344 0.7980 0.8342 0.5292
5 1.5119 1.4393 1.2792 1.2374 1.1865 1.3725 1.3088 0.9243 0.8342 1.1289

2 1 0.7714 0.7342 0.6523 0.6310 0.6056 0.0699 0.0666 0.0625 0.0609 0.0568
2 1.2835 1.2213 1.0841 1.0489 1.0075 0.9894 0.9420 0.8358 0.8082 0.7756
3 1.4196 1.3508 1.2038 1.1655 1.1174 1.3020 1.2390 1.0989 1.0631 1.0214
4 1.5856 1.5088 1.3538 1.3120 1.2533 1.4486 1.3785 1.2287 1.1896 1.1401
5 1.8034 1.7164 1.5535 1.5072 1.4330 1.6092 1.5314 1.3751 1.3327 1.2724

3 1 0.6756 0.6430 0.5767 0.5587 0.5336 0.1820 0.1733 0.1626 0.1585 0.1479
2 1.3027 1.2398 1.1095 1.0746 1.0277 0.8678 0.8262 0.7391 0.7156 0.6839
3 1.4737 1.4021 1.2528 1.2135 1.1619 1.3609 1.2952 1.1552 1.1184 1.0714
4 1.6814 1.6000 1.4427 1.3992 1.3332 1.5005 1.4278 1.2785 1.2387 1.1844
5 1.9389 1.8455 1.6798 1.6311 1.5463 1.7107 1.6280 1.4695 1.4254 1.3572

4 1 0.6678 0.6357 0.5789 0.5620 0.5326 0.3352 0.3192 0.2993 0.2917 0.2724
2 1.3015 1.2389 1.1190 1.0851 1.0327 0.8202 0.7810 0.7088 0.6877 0.6525
3 1.5676 1.4915 1.3387 1.2977 1.2396 1.3928 1.3258 1.1932 1.1565 1.1026
4 1.8107 1.7233 1.5637 1.5179 1.4415 1.5934 1.5162 1.3642 1.3227 1.2616
5 2.1065 2.0051 1.8350 1.7831 1.6857 1.8508 1.7615 1.5999 1.5531 1.4741

5 1 0.7635 0.7269 0.6709 0.6526 0.6142 0.5285 0.5033 0.4717 0.4598 0.4295
2 1.3572 1.2920 1.1771 1.1428 1.0828 0.8933 0.8507 0.7830 0.7611 0.7171
3 1.6939 1.6118 1.4566 1.4132 1.3452 1.4649 1.3946 1.2664 1.2289 1.1663
4 1.9772 1.8819 1.7188 1.6698 1.5804 1.7268 1.6433 1.4886 1.4447 1.3732
5 2.3161 2.2048 2.0268 1.9707 1.8589 2.0311 1.9333 1.7670 1.7167 1.6241

Geometric characteristics of the shell are h/R = 0.05, L/R = 1

Ui (ζ ), V i (ζ ),Wi (ζ ), �i
ζ (ζ ) and �i

θ (ζ ). The transformed equations and the associated boundary conditions
for the cylindrical/spherical segment are not given here and are presented in “Appendix A”.

As expected, Eqs. (A.1)–(A.10) along with a proper choice of boundary and matching conditions result
in a system of homogeneous equations. To solve the system of equations as an eigenvalue problem, the GDQ
method is implemented to transform the ordinary differential equations (A.1)–(A.10) into a new linear algebraic
equations. The GDQ method is quite well known, and its details are not repeated herein. Meanwhile, one may
refer to [41] for more details. It is worth noting that the distribution of nodal points in each segment is described
by means of the Chebyshev–Gauss–Lobatto points which results in

xi = 1

2
L

(
1 − cos

(
i − 1

N − 1

))
, i = 1, 2, . . . , N

φi = 1

2

π

2

(
1 − cos

(
i − 1

N − 1

))
, i = 1, 2, . . . , N (25)

where N is the number of nodal points which is the same for each segment.
Four general procedures are known to apply the boundary conditions to a GDQ-based discretized system.

In this study, the SBCGE technique which directly substitutes the boundary conditions into the governing
equations is used to apply the boundary andmatching conditions. Based on this technique, one should apply the
GDQmethod to both equations of motion and boundary conditions. The equations of motion after discretizing,
applying the matching and boundary conditions and global assembling, take the form

K� = ω2M� (26)

where in the above equation M is the generalized mass matrix, K is the generalized stiffness matrix and �
is the unknown displacement vector. The natural frequencies of the structure may be obtained by solving the
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Table 3 First five natural frequency parameters for each circumferential mode number n in the case of completely free and
clamped combined hemispherical–cylindrical shells for various power-law indices

n m Fixed at bottom Completely free

k = 0.5 k = 1 k = 5 k = 10 k = 100 k = 0.5 k = 1 k = 5 k = 10 k = 100

0 1 0.5419 0.5164 0.4568 0.4411 0.4233 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.7316 0.6964 0.6163 0.5957 0.5726 0.0000 0.0000 0.0000 0.0000 0.0000
3 1.2662 1.2047 1.0667 1.0319 0.9927 0.5311 0.6447 0.4127 0.4889 0.6847
4 1.4354 1.3657 1.2117 1.1724 1.1267 1.0454 1.0289 0.9339 0.4889 0.6972
5 1.4969 1.4247 1.2637 1.2223 1.1739 1.0454 1.0507 1.0036 0.6868 0.8907

1 1 0.2609 0.2484 0.2199 0.2125 0.2041 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.7728 0.7360 0.6512 0.6292 0.6043 0.0451 0.0408 0.0369 0.0363 0.0177
3 1.1776 1.1207 0.9918 0.9589 0.9222 0.1833 0.2434 0.5240 0.0727 0.0499
4 1.2660 1.2050 1.0674 1.0322 0.9920 0.8300 0.9645 0.8210 0.5224 0.2562
5 1.4301 1.3608 1.2100 1.1710 1.1238 1.1880 0.9742 1.0484 0.5224 0.2631

2 1 0.4336 0.4127 0.3664 0.3545 0.3403 0.0633 0.0603 0.0566 0.0551 0.0514
2 0.9023 0.8588 0.7628 0.7379 0.7082 0.5495 0.5231 0.4640 0.4487 0.4308
3 1.2140 1.1555 1.0273 0.9940 0.9537 1.0110 0.9624 0.8541 0.8260 0.7929
4 1.3493 1.2839 1.1416 1.1049 1.0603 1.2684 1.2072 1.0722 1.0372 0.9956
5 1.4704 1.3993 1.2504 1.2109 1.1590 1.3671 1.3011 1.1577 1.1204 1.0746

3 1 0.3578 0.3405 0.3076 0.2983 0.2839 0.1708 0.1627 0.1526 0.1488 0.1389
2 0.7501 0.7140 0.6399 0.6199 0.5921 0.4247 0.4044 0.3644 0.3533 0.3364
3 1.1151 1.0615 0.9524 0.9226 0.8808 0.8490 0.8083 0.7234 0.7005 0.6694
4 1.3873 1.3203 1.1806 1.1434 1.0941 1.1925 1.1353 1.0176 0.9856 0.9412
5 1.4898 1.4177 1.2719 1.2326 1.1772 1.4144 1.3459 1.2013 1.1632 1.1142

4 1 0.4138 0.3940 0.3644 0.3545 0.3334 0.3213 0.3059 0.2869 0.2797 0.2612
2 0.7098 0.6758 0.6152 0.5972 0.5659 0.4595 0.4376 0.4040 0.3930 0.3697
3 1.0665 1.0154 0.9211 0.8937 0.8483 0.7897 0.7519 0.6834 0.6632 0.6288
4 1.3982 1.3310 1.2036 1.1673 1.1102 1.1464 1.0916 0.9891 0.9594 0.9110
5 1.5671 1.4912 1.3418 1.3010 1.2408 1.4495 1.3799 1.2445 1.2065 1.1492

5 1 0.5721 0.5448 0.5087 0.4956 0.4638 0.5134 0.4888 0.4583 0.4468 0.4174
2 0.7914 0.7536 0.6960 0.6770 0.6369 0.6122 0.5830 0.5439 0.5298 0.4960
3 1.1131 1.0599 0.9724 0.9449 0.8918 0.8603 0.8192 0.7557 0.7349 0.6916
4 1.4560 1.3862 1.2652 1.2285 1.1628 1.1913 1.1344 1.0396 1.0100 0.9536
5 1.6820 1.6008 1.4502 1.4074 1.3376 1.5182 1.4455 1.3164 1.2779 1.2109

Geometric characteristics of the shell are h/R = 0.05, L/R = 2

standard eigenvalue problem (26). In this research, the solution procedure by means of GDQ technique is
implemented in a MATLAB code.

6 Numerical results and discussion

The procedure outlined in the previous sections is used herein to study the free vibration of joined cylindrical–
hemispherical shell system made of a functionally graded material. In this section, at first a comparison study
is conducted. Afterward, parametric studies are performed to examine the influences of involved parameters.
In all the numerical results, each segmented shell is divided into 31 grid points through the φ and x directions,
after the examination of convergence for the first ten natural frequencies up to four digits.

6.1 Comparison studies

The comparison study calculates the first five frequencies of a joined cylindrical–hemispherical shell for each
circumferential mode number n. Numerical results of this study are compared with the numerical results of
Kang [28] which are obtained by means of the 3D elasticity theory and the Ritz method. The comparison is
made in Table 1. For the results of this table, the dimensionless frequencies are defined as

Ω = ωR
√

ρ/G (27)

whereG is the shearmodulus. For the sake of comparison, the axisymmetric frequencies of the shell (designated
by n = 0) are divided into two parts which are pure torsional (designated by a superscript T ) and non-torsional
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Table 4 First five natural frequency parameters for each circumferential mode number n in the case of completely free and
clamped combined hemispherical–cylindrical shells for various power-law indices

n m Fixed at bottom Completely free

k = 0.5 k = 1 k = 5 k = 10 k = 100 k = 0.5 k = 1 k = 5 k = 10 k = 100

0 1 0.8602 0.8202 0.7255 0.7001 0.6709 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9557 0.9093 0.8053 0.7790 0.7493 0.0000 0.0000 0.0000 0.0000 0.0000
3 1.4350 1.3642 1.2150 1.1771 1.1308 0.0517 0.0256 0.0091 0.0099 0.0074
4 1.6894 1.6064 1.4453 1.4024 1.3397 1.0381 1.1515 1.0175 0.9878 0.9515
5 1.7257 1.6428 1.4559 1.4076 1.3519 1.2101 1.3980 1.1648 1.1986 1.1524

1 1 0.4335 0.4129 0.3651 0.3527 0.3389 0.0000 0.0000 0.0000 0.0000 0.0000
2 1.2193 1.1609 1.0304 0.9964 0.9561 0.0730 0.0680 0.1125 0.0664 0.0588
3 1.3156 1.2520 1.1087 1.0721 1.0309 0.2299 0.5777 0.2108 0.1286 0.3783
4 1.5999 1.5215 1.3592 1.3172 1.2625 0.7597 0.8362 0.2108 0.7983 0.8344
5 1.8276 1.7377 1.5826 1.5384 1.4609 1.4196 1.4152 0.5088 0.7983 1.0798

2 1 0.8302 0.7899 0.7054 0.6832 0.6546 0.1375 0.1309 0.1227 0.1196 0.1119
2 1.3546 1.2881 1.1486 1.1129 1.0680 1.0403 0.9903 0.8818 0.8532 0.8175
3 1.6246 1.5448 1.3927 1.3516 1.2899 1.3692 1.3023 1.1616 1.1253 1.0792
4 2.0161 1.9171 1.7469 1.6980 1.6120 1.6601 1.5791 1.4210 1.3778 1.3158
5 2.2156 2.1114 1.8703 1.8063 1.7318 1.7462 1.6610 1.4757 1.4291 1.3723

3 1 0.8392 0.7983 0.7241 0.7031 0.6687 0.3553 0.3379 0.3164 0.3087 0.2892
2 1.4955 1.4219 1.2777 1.2396 1.1853 1.0393 0.9891 0.8939 0.8671 0.8252
3 1.8038 1.7152 1.5596 1.5157 1.4405 1.5325 1.4573 1.3104 1.2713 1.2148
4 2.2776 2.1656 1.9840 1.9301 1.8277 1.8698 1.7783 1.6189 1.5731 1.4934
5 2.8589 2.7186 2.5000 2.4329 2.2996 2.3444 2.2294 2.0452 1.9898 1.8821

4 1 0.9907 0.9422 0.8668 0.8436 0.7971 0.6485 0.6167 0.5769 0.5629 0.5278
2 1.6705 1.5883 1.4418 1.4009 1.3328 1.1693 1.1126 1.0201 0.9919 0.9379
3 2.0580 1.9567 1.7915 1.7428 1.6510 1.7424 1.6568 1.5048 1.4621 1.3901
4 2.6117 2.4832 2.2835 2.2228 2.1012 2.1466 2.0415 1.8719 1.8209 1.7228
5 3.2471 3.0875 2.8463 2.7713 2.6164 2.6985 2.5661 2.3628 2.3000 2.1719

5 1 1.2786 1.2157 1.1266 1.0978 1.0341 1.0127 0.9629 0.8997 0.8779 0.8238
2 1.9297 1.8347 1.6802 1.6347 1.5486 1.4480 1.3773 1.2730 1.2395 1.1682
3 2.3961 2.2781 2.0958 2.0403 1.9286 2.0350 1.9350 1.7728 1.7246 1.6329
4 3.0101 2.8619 2.6382 2.5690 2.4258 2.5052 2.3823 2.1948 2.1366 2.0171
5 3.6870 3.5056 3.2352 3.1506 2.9732 3.1184 2.9654 2.7366 2.6647 2.5137

Geometric characteristics of the shell are h/R = 0.1, L/R = 1

(designated by A). It is seen that for both cases of boundary conditions results of our study are in close agreement
with those given by Kang [28], which accepts the validity and correctness of the present formulation.

6.2 Parametric studies

After validating the present formulation and solution method, novel numerical results are given for the FGM
joined cylindrical–hemispherical shells. The properties of the metal and ceramic phases are assumed as Ec =
151GPa, Em = 70GPa, ρc = 3000kg/m3 and ρm = 2707kg/m3. For simplicity, Poisson’s ratio is assumed
as ν = 0.3. Also frequencies are evaluated by

Ω = ωR
√

ρc/Gc (28)

Results of this study are provided in Tables 2, 3 and 4. These three tables are associated with the three
different geometric properties. In each table, two types of boundary conditions and five different values
are considered for the power-law index. In each case, for each circumferential mode number the first five
frequencies are tabulated. It is observed that as the power-law index of the shell increases, the frequencies
of the shell decrease. This is mainly due to the higher E/ρ ratio of the ceramic phase in comparison with
the metal phase. Further examination of the numerical results reveals that the minimum frequency of the
joined shell belongs to the higher circumferential mode numbers, which is also reported previously in [28].
It should be noted that, for the case of completely free shells, there are rigid body motion type frequencies
which are designated by zero value frequencies. These frequencies are due to the incomplete constraints of
the shell. Comparison of the results between Tables 2 and 3 reveals that as the length of the cylindrical shell
increases, the frequencies of the combined shell decrease which is expected since the effect of edge supports
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becomes weaker. Also, comparison of the results between Tables 2 and 4 shows that combined shells with
higher thickness have higher frequencies which is mainly due to the higher flexural rigidity of the shell.

7 Conclusion

In the current research, the free vibration response of joined cylindrical–hemispherical shell system is evaluated.
Shell is assumed to be made from an FGMwhere properties are graded in thickness direction. A simple power-
law function is used to describe the volume fraction of constituents and the simple Voigt rule of mixtures is
implemented to evaluate the properties. To establish the governing equations of the shell system, the first-order
shear deformation shell theory and the Donnell type of kinematic assumptions are used. Using the Hamilton
principle, the complete set of governing equations and boundary conditions for the shells are obtained.With the
aid of Fourier expansion through the circumferential direction and theGDQmethod to the governing equations,
boundary conditions and the intersection matching conditions, a complete system of algebraic equations is
obtained which is solved as an eigenvalue problem. After validating the results of this study for the case of
homogeneous shells, novel numerical results are obtained for the case of FGM shells. It is shown that the
power-law index of the FGM, the radius-to-cylindrical shell length ratio and the length-to-radius ratio are the
important factors on the frequencies of the joined shell system.
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A Appendix

After applying Eq. (24) to the motion equations (17) and (18), the following system of equations is extracted.
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