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Abstract In this paper, a new analytical approach suitable for the stability analysis of multibody mechanical
systems is introduced in the framework of Lagrangianmechanics. The approach developed in this work is based
on the direct linearization of the index-three form of the differential-algebraic dynamic equations that describe
the motion of mechanical systems subjected to nonlinear constraints. One of the distinguishing features of the
proposed method is that it can handle general sets of nonlinear holonomic and/or nonholonomic constraints
without altering the original mathematical structure of the equations of motion. While the typical state-space
dynamic description associated with multibody systems leads to the definition of a standard eigenproblem,
which is impractical, if not impossible, to implement in the case of complex systems, the method developed
in this paper involves a generalized state-space representation of the dynamic equations and allows for the
formulation of a generalized eigenvalue problem that extends the scope of applicability of the stability analysis
to complex mechanical systems. As demonstrated in this investigation employing simple numerical examples,
the proposed methodology can be readily implemented in general-purpose multibody computer programs and
compares favorably with several other reference computational approaches already available in the multibody
literature.

Keywords Multibody system dynamics · Differential-algebraic equations of motion · Holonomic and
nonholonomic constraints · Stability analysis · Standard and generalized eigenvalue problems

1 Introduction

1.1 Background information and significance of this research work

From a general perspective, the dynamic analysis of multibody mechanical systems can be subdivided into two
general problems, namely a transient nonlinear analysis and a steady-state linear analysis [1–4]. In the former
case, the focus is on predicting the dynamic behavior through dynamical simulations observing the system on
a certain time interval, whereas in the latter case the perturbation of the system around a given configuration is
of interest [5–7]. In both cases, it is necessary to simultaneously enforce the algebraic constraints imposed on
the multibody system at the position, velocity, and acceleration levels to correctly capture its dynamic behavior
[8–11]. The stability analysis of multibody systems, which is the object of the present investigation, belongs
to the second class of dynamical problems mentioned before.
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As it is known from the study of mechanical vibrations, the eigenvalues arising from a linear problem
associated with the dynamics of a mechanical system can be real or complex conjugates. According to the
stability theory based on the Lyapunov criteria commonly adopted in physics and engineering, the stability
properties of a nonlinear system can be assessed by analyzing the stability characteristics of its linearized
counterpart, namely by computing the eigenvalues of the linearized dynamical system and by checking their
mathematical form [12]. In particular, it is well known that an eigenvalue having a positive real part is associated
with an unstable motion, an eigenvalue having a negative real part leads to a stable motion, two real eigenvalues
of opposite sign are associated with an unstable dynamical behavior, two complex conjugate eigenvalues with
positive real parts involve an unstable motion, two complex conjugate eigenvalues with negative real parts are
associated with a stable motion, and an eigenvalue characterized by a zero real part corresponds to a marginally
stable motion. In the last scenario, the dynamic behavior is called critically stable because the linearized system
cannot be used for predicting the stability characteristics of its nonlinear counterpart. Consequently, six types
of singular points of a linearized dynamical system can be, respectively, recognized, namely an unstable node,
a stable node, a saddle point, an unstable focus, a stable focus, and a center.

For each eigenvalue found for a linear dynamical system, one can determine its corresponding eigenvector
that represents themode shape associatedwith that eigenvalue. Since the complete solutionof a linear dynamical
system can be expressed as the linear combination of the eigenvectors associated with the eigenvalues, it is
sufficient to have only one unstable eigenvalue with a positive real part to induce the instability to the entire
solution. In this case, the linearized system and its nonlinear counterpart are said to be unstable. In the case of
a critically stable system having eigenvalues with zero real part, on the other hand, the indirect approach based
on the study of the stability analysis of the linearized system fails and the direct use of nonlinear dynamical
simulations is required. In this paper, a general method for the stability study is introduced and its effectiveness
is demonstrated by using dynamical simulations performed in the case of a set of simple benchmarksmultibody
systems.

1.2 Formulation of the problem of interest for this investigation

In general, the dynamic equations that mathematically formalize the description of the complex motion of
a multibody mechanical system are highly nonlinear differential-algebraic equations [13]. The nonlinearity
of the equations of motion serves to the correct description of large displacements and large finite rotations
performed by the rigid bodies that interact with each other because of the presence of complex force fields
and/or kinematic joints [14].

A fundamental aspect related to the analysis of the time response of a multibody mechanical system to the
loading conditions to which it is subjected is the identification of the potential presence of static and dynamic
instabilities [15]. Basically, the stability of such complex systems can be analyzed employing two different
approaches that, for simplicity, are herein referred to as the direct method and the indirect method. The first
approach (direct method) consists of performing computer simulations of the dynamic model of the multibody
mechanical system in several different scenarios that are all characterized by the presence of perturbations of the
system configuration around the desired state of interest for the stability study [16]. This approach relies on the
numerical results obtained from the dynamic simulations and, therefore, can be impractical or computationally
expensive for large multibody mechanical systems. On the other hand, the second approach (indirect method)
involves a stability study based on the formulation of a linear problem obtained by linearizing the differential-
algebraic equations of motion around a given set point of the state space. By doing so, the information on the
stability of the configuration points of interest is found by numerically solving an appropriate eigenproblem
and does not require any dynamical simulation performed in the time domain. The methodologies discussed in
this section, as well as the alternative method proposed later in the manuscript, belong to this second class of
stability methods and can effectively serve to shed light on the dynamic behavior of a given multibody system.
Thus, in both cases, a set of eigenvalues is numerically found and its nature is subsequently analyzed to study
the system stability.

The principal challenge associated with the problem of interest for this investigation is twofold and is
described in detail below. First, while the advantages and drawbacks associated with the analytical methods
adopted for the stability study of mechanical systems described by linearized ordinary differential equations
are mostly well understood, it is not completely clear which is the most appropriate approach for the stability
analysis of multibody systems whose motion is restricted by holonomic and/or nonholonomic constraints.
Second, even in the case of relatively less complex systems, the direct linearization of the equations of motion
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of a mechanical system, in which the effect of the constraint equations is automatically embedded using the
analytical methods of multibody dynamics, leads to an extremely contrived form of the matrix and vector terms
which are difficult, if not impossible, to handle by using computer programs based on symbolic manipulations.
Therefore, the analytical developments, the computational algorithm, and the numerical experiments based on
the general approach presented in this paper are aimed at shedding light on these important issues and propose
a practical solution strategy.

1.3 Literature review

The stability analysis is a powerful mathematical tool to evaluate the dynamical behavior of a mechanical
system in the proximity of a given reference point of the configuration space, without actually solving the
equations of motion [17]. While the stability analysis of a set of ordinary differential equations (ODEs) is a
well-established topic, the analysis of a set of differential-algebraic equations (DAEs) can be a challenging
task. Furthermore, the equations of motion obtained from the multibody approach are typically nonlinear.
Therefore, a proper linearization approach is essential to study the stability of multibody mechanical systems.

In general, the stability analysis of a nonlinear system can be performed by studying an equivalent system
that is linearized around a predefined generalized equilibrium position. For this purpose, different strategies are
available and the work of Vukic et al. is a good reference for this subject [18]. In the case of mechanical systems
constrained by kinematic pairs, a common approach is to rearrange the algebraic equations in advance and to
analyze the consequent set of ordinary differential equations, which is described using only the independent
coordinates [19,20]. When the mechanical system of interest grows in dimension, a reduced model can also
be a good choice to study its dynamical behavior. In [21], Ripepi and Masarati proposed a method to obtain
reduced-order models and analyze the linearized models in order to perform an eigenanalysis of the reduced
mechanical system of interest. Other interesting reduction techniques are also exposed in the work of Lehner
and Eberhard [22], as well as in the work of Koutsovasilis and Beitelschmidt [23].

The stability analysis of a given set of DAEs, which typically arise from the multibody approach to the
dynamics of constrained mechanical systems, can be performed with a direct strategy or by following an
indirect approach, as already mentioned in the paper. An example of a direct analysis can be found in [24],
where Nikravesh and Gim analyzed the dynamical behavior of a race car through numerical simulations of
its multibody model. In [25], Kim et al. studied the stability of a flying insect modeled as a multibody system
by using the direct approach and compared their numerical results with those found by Sun et al. [26], which
used an indirect technique. Other examples of a direct analysis can be found in the references [27,28].

Recently, an indirect analysis approach has been proposed by many authors in many different ways. For
this purpose, Escalona and Chamorro devised a method that is an alternative to the Floquet theory to analyze
the trajectory stability of wheeled systems [29]. In [30], Quaranta et al. developed a method to extract the
dominant eigenvalues of the transition matrix without directly solving it. In [31], Masarati introduced an
approach to linearize a set of differential-algebraic equations and defined how to identify the eigenvalues that
arise as a consequence of the algebraic equations. Another interesting example based on the linearization of
the set of index-three differential-algebraic equations is presented by Negrut and Ortiz in [32,33], in which
a computational technique that is analytically equivalent to a state-space formulation is devised. In [34],
Nichkawde et al. proposed a method that do not require the linearization and the decoupling of the equations
of motion to analyze the vehicle dynamics coupled with the sloshing inertial effects. In [35], Bencsik et al.
developed a method based on the stability analysis to tune the control parameters that can be directly applied
to a set of DAEs.

In this work, both holonomic and nonholonomic multibody mechanical systems are studied. As observed
by Zenkov et al. in [36], nonholonomic systems have a peculiar property; that is, these systems may exhibit
asymptotic stability even without an explicit presence of dissipation in the systemmodel. In this respect, one of
themost popular examples is the Chaplygin sleigh, which can be found in thework of Neimark and Fufaev [37].
This interesting example is also reproduced by Ruina in [38], where some interesting dynamical properties of
these systems are discussed. On the other hand, the use of nonholonomic constraints is common in the fields of
robotics and mechatronics. In [39], Pollard et al. showed some similarities shared by the dissipative Chaplygin
sleigh and a swimming robot, while in [40] Zhang et al. developed control strategies conceptually suitable
also for nonholonomic robots. In general, nonholonomic mechanical systems are also employed in the field
of mechanical engineering to mathematically model in a straightforward fashion the dynamical interaction of
the system of interest with the external environment [41,42].
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The high number of research works devoted to the stability analysis of multibody mechanical systems
constrained by holonomic and/or nonholonomic algebraic equations is a good indication of the importance of
the research topics addressed in this investigation.

1.4 Scope and contributions of this study

This paper is focused on the development of an effective analytical method for solving the stability problem of
multibody mechanical systems composed of rigid bodies and subjected to a general set of algebraic equations
representing holonomic and/or nonholonomic constraints. The key idea is to directly start from the original
index-three form of the equations of motion to devise a computational algorithm that is easily applicable in
general-purpose multibody computer codes.

In this research work, the differential-algebraic form of the equations of motion of multiboby mechanical
systems is first obtained considering a general set of holonomic and nonholonomic constraints. This is done by
employing one of the most fundamental methods of classical mechanics, namely the D’Alembert–Lagrange
principle of virtual work combined with the analytical technique based on the use of the Lagrange multipliers.
The principle of virtual work represents a skillful mathematical tool that is suitable for handling holonomic
and nonholonomic algebraic constraints applied to general multibody mechanical systems. This method leads
to a straightforward mathematical formulation of the index-three equations of motion, which can be readily
transformed into the corresponding index-one differential-algebraic form, as shown in detail in the manuscript.

As far as the stability analysis is concerned, the standard analytical techniques employed as multibody
solution procedures are first recalled in the manuscript. These computational methods can be effectively
implemented for obtaining the generalized acceleration vector of amechanical system constrained by kinematic
joints, as well as for the determination of a linearized form of the dynamic equations which is amenable to
be used for the stability analysis. To this end, the augmented formulation, the embedding technique, the
amalgamated formulation, the projection method, and the fundamental equations of constrained motion are
considered [43].

As shown in the literature, although the analytical methods cited above are perfectly appropriate for the
development of general-purpose multibody computer programs entirely relying on a systematic computational
approach, all these standard analytical techniques are based on the index-one form of the equations of motion
[44]. Therefore, in the case of the stability analysis, the implementation of these methods in a multibody
computer code based on a mixed symbolic-numeric calculation paradigm is challenging since they can involve
complex analytical expressions even in the case of the stability analysis of relatively simplemultibodymechan-
ical systems. This computational obstacle is one of the substantial reasons why, in commercial and academic
multibody software, the stability analysis of a mechanical system constrained by kinematic joints perturbed in
the neighborhood of a given equilibrium point is not available or is limited to very simple configurations. In
this investigation, on the other hand, an alternative computational approach is proposed for addressing these
issues.

To overcome the difficulties discussed above, in this work, a new method directly based on the index-three
form of the multibody equations of motion is developed and its use is demonstrated by means of numerical
experiments. As discussed in detail in the paper, unlike the conventional methods that rely on the elimination of
the actions of the constraint forces for the definition of a standard eigenvalue problem, the proposed approach
leads to the formulation of a generalized eigenproblem that is consistent with the presence of holonomic
and/or nonholonomic algebraic constraints having a general structure. When compared with the conventional
state-space approach, the proposed method has several advantages, as discussed in detail below.

(1) In the stability analysis, the total number of equations to be solved by using the proposed analytical
technique is equal to the original dimension of the dynamical problem at hand.

(2) In the computational algorithm introduced in this work, there is no need to perform a coordinate parti-
tioning into independent and dependent generalized coordinates, namely the entire vector of generalized
coordinates is considered in the stability study, thereby simplifying the mathematical formulation of the
problem.

(3) In the construction of the composite mass, damping, and stiffness matrices necessary for the definition of
the generalized eigenvalue problem considered in this paper, the sparsity of the matrices that appear in the
original index-three form of the equations of motion is preserved.

(4) In the case of multibody systems described by a stiff set of differential-algebraic equations of motion, the
additional information needed for the formulation of the matrix quantities involved in the definition of
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the stability problem is exactly the same information necessary for the computer implementation of an
implicit numerical integration scheme based on the second-order form of the dynamic equations, such as
the generalized alphamethod associatedwith theNewmark-beta integration schemeor theHilber–Hughes–
Taylor integration technique. Furthermore, although not fully explored in this investigation, in principle,
the numerical differentiation could also be employed as an alternative strategy for the determination of
the structural matrices of interest for the stability analysis.

(5) Asdemonstrated in themanuscript by employing simple numerical examples, another advantage associated
with the proposed computational algorithm is the ease of implementation of parametric studies based on
a mixed symbolic-numeric paradigm for the construction of the dynamical maps describing the stability
charts of multibody mechanical systems.

(6) The method for the stability analysis proposed in this work can be readily extended in the case of the
stability problem of flexible multibody systems and in the case of the presence of rigid body contacts, as
will be demonstrated in future investigations.

On the other hand, the principal drawback of the computational methodology developed in this investigation is
the enlargement of the dimensions of the eigenvalue problem to be solved for performing the stability analysis.

In this investigation, five benchmark examples are analyzed and used for performing numerical experiments
on the analytical method devised in this paper in comparison with the other fundamental approaches that can
be found in the multibody literature. While in the case of the first four illustrative examples considered in the
paper one can equivalently employ the proposed method or other consolidated techniques used in the field
of applied mechanics for performing the stability study, the fifth and last numerical example considered as a
demonstrative multibody system is a more complex dynamical system which is analyzed using the proposed
approach to show its advantages also in the case of a relatively more complicated system that presents some
difficulties due to the necessity of symbolically solve the nonlinear equations of motion to obtain the explicit
expressions of the generalized acceleration vector and the Lagrange multipliers vector. In fact, while the
multibody systems employed as the first four numerical examples are a physical pendulum, a wheeled inverted
pendulum, a spinning top, and a rolling disk, which are relatively less complicated mechanical systems, the
fifth and last example is a multibody model of a Watt centrifugal governor, which is a slightly more complex
system compared to the others. Besides, the fifth model is a closed-loop multibody mechanism, whereas the
previous four models are all open-loop mechanical systems. In general, it is well known that the analysis of
closed-chain mechanisms can be quite more challenging due to the relatively greater number of closed-chain
constraint equations that have a direct effect on the solution algorithm. Even for a relatively simple and well-
knownmechanism such as the centrifugal regulator considered in this work, the symbolic solution of the system
of algebraic equations necessary to obtain the generalized accelerations vector and the Lagrange multipliers
vector results in a hardly solvable task. In this case, the analytical approach proposed in this investigation for
the stability analysis turned out to be the only alternative to the direct analysis of the nonlinear model to gain
information about the stability of the closed-chain multibody mechanical system of interest.

1.5 Organization of the manuscript

The remaining part of this manuscript is organized according to the following structure. In Sect. 2, the index-
three and index-one analytical forms of the equations of motion of a general multibody system subjected to
holonomic and/or nonholonomic constraints are recalled. In Sect. 3, the conventional stability methods based
on the index-one form of the equations of motion are discussed, while the proposed stability technique that is
directly applicable to the index-three form of the dynamic equations is described in detail in Sect. 4. In Sect. 5,
a set of numerical results and their corresponding discussion are reported to corroborate the effectiveness of
the analytical method proposed in this research study. For this purpose, five simple demonstrative examples are
considered for performing a comparative analysis of the computational methodologies discussed in the paper
and to evaluate the stability properties of both holonomic and nonholonomic multibody mechanical systems.
In Sect. 6, a concise summary of the paper, the conclusions that are drawn in this investigation, and some
interesting ideas that will be considered as future directions of research are provided.
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2 Equations of motion of holonomic and nonholonomic multibody systems

2.1 Virtual work of the generalized constraint forces

Consider a multibody mechanical system described by a set of nq configuration parameters grouped in the
generalized coordinate vector denoted with q ≡ q(t), where t indicates the time treated as an independent
variable and nq × 1 are the dimensions of the generalized coordinate vector [45,46]. Assume that the general
multibody system under consideration is subjected to a nonlinear set of nc,h holonomic constraints included in
the holonomic constraint vector C ≡ C(q, t) having dimensions nc,h ×1, as well as to another nonlinear set of
nc,nh algebraic equations that represent the system nonholonomic constraints aggregated in the nonholonomic
constraint vector D ≡ D(q, q̇, t) of dimensions nc,nh × 1. While the holonomic constraints are position-
level constraints typically associated with the action of the kinematic joints, the nonholonomic constraints are
velocity-level constraintswhich cannot be integrated or reduced to an equivalent set of position-level constraints
and are used for describing some peculiar limitations on the dynamic behavior of a givenmultibodymechanical
system [47]. In classical mechanics, during a virtual change of the system configuration, the time variation
is assumed to be zero, namely the time is fixed [48]. Thus, a virtual variation is always associated with an
infinitesimal variation in the generalized coordinates denoted with the vector δq ≡ δq(t) of dimensions nq ×1.
In particular, a virtual variation of the system configuration leads to virtual displacements that are consistent
with the holonomic and nonholonomic constraints enforced on the motion of the multibody system. A virtual
change of the set of holonomic constraint equations can be analytically written as:

C = 0 ⇒ δC = Cqδq (1)

whereCq ≡ Cq(q, t) = ∂C
/
∂q represents the Jacobianmatrix associatedwith the set of holonomic constraints

having dimensions nc,h × nq that is computed by differentiating the holonomic constraint vector C with
respect to the generalized coordinate vector q [49]. Without loss of generality, it is assumed that the holonomic
constraints form a set of nc,h independent algebraic equations. Thus, the Jacobian matrix associated with the
holonomic constraints has full row rank. In analogy, one can compute the virtual change of the nonholonomic
constraint equations as follows:

D = 0 ⇒ δD = Dq̇δq (2)

where Dq̇ ≡ Dq̇(q, q̇, t) = ∂D
/
∂q̇ denotes the Jacobian matrix of the nonholonomic constraint equations

of dimensions nc,nh × nq which is computed by differentiating the nonholonomic constraint vector D with
respect to the generalized velocity vector q̇ [50]. For simplicity, the set of nc,nh nonholonomic constraints
are assumed to be independent as well, thereby leading to a Jacobian matrix of the nonholonomic constraints
having full row rank.

The effect of both the holonomic and nonholonomic constraint equations induced on the dynamics of a
general multibody system can be taken into account by employing themethod of Lagrangemultipliers [51]. For
this purpose, consider a vector of Lagrange multipliers associated with the holonomic constraints denoted with
λ ≡ λ(t) having dimensions nc,h ×1. At the same time, assume the existence of an additional unknown vector
of Lagrange multipliers μ ≡ μ(t) of dimensions nc,nh × 1 in relation to the set of nonholonomic constraint
equations. By using the Lagrange multiplier technique, one can express the virtual work of the generalized
forces associated with the holonomic constraint equations denoted with δWc,h as:

δWc,h = −λTδC = −λTCqδq = −
(

CT
qλ

)T
δq = QT

c,hδq = 0 (3)

where the equality to zero is based on the hypothesis of workless constraints commonly used in classical
mechanics and Qc,h ≡ Qc,h(q, t) is the generalized force vector associated with the set of holonomic con-
straints having dimensions nq × 1 and given by:

Qc,h = −CT
qλ (4)

Similarly, the virtual work of the generalized constraint forces relative to the nonholonomic constraints
denoted with δWc,nh can be analytically written by using the method of Lagrange multipliers as:

δWc,nh = −μTδD = −μTDq̇δq = −
(

DT
q̇μ

)T
δq = QT

c,nhδq (5)
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whereQc,nh ≡ Qc,nh(q, q̇, t) is the generalized force vector corresponding to the presence of the nonholonomic
constraints having dimensions nq × 1 that is mathematically defined as:

Qc,nh = −DT
q̇μ (6)

Consequently, the total virtual work relative to the action of the constraint forces of holonomic and non-
holonomic nature denoted with δWc is equal to:

δWc = δWc,h + δWc,nh = QT
c,hδq + QT

c,nhδq = QT
c δq (7)

where Qc ≡ Qc(q, q̇, t) denotes the total generalized force vector of dimensions nq × 1 associated with the
constraint equations which can be conveniently rewritten using a matrix form as follows:

Qc = Qc,h + Qc,nh = −CT
qλ − DT

q̇μ = −
[

CT
q DT

q̇

] [
λ
μ

]
= −JTv (8)

where nc = nc,h + nc,nh is the total number of algebraic constraints, v ≡ v(t) represents the total vector of
Lagrange multipliers having dimensions nc × 1, and J ≡ J(q, q̇, t) indicates the total Jacobian matrix relative
to the constraint equations of dimensions nc ×nq . These vector and matrix quantities are, respectively, defined
as:

v =
[

λ
μ

]
, J =

[
Cq
Dq̇

]
(9)

For simplicity, the holonomic and nonholonomic constraint equations can be grouped in a comprehensive
vector of algebraic constraints denoted with E ≡ E(q, q̇, t) having dimensions nc × 1 and given by:

E =
[

C
D

]
(10)

In general, the holonomic constraint equations represent position-level algebraic constraints, whereas the
nonholonomic constraint equations imply velocity-level algebraic constraints. Thus, the set of holonomic con-
straints induces limitations of the configuration space (positions and orientations) of the multibody mechanical
system, while the set of nonholonomic constraints involve restrictions only on the velocity space of the system
[52]. However, both the sets of holonomic and nonholonomic algebraic constraints can be reformulated at the
acceleration level by, respectively, evaluating their second and first time derivatives since they also represent
specific restrictions of the acceleration space of the multibody mechanical system, namely they directly influ-
ence the system equations of motion [53]. Therefore, the holonomic and nonholonomic constraint equations
can be rewritten at the acceleration level as follows:

{
Cqq̈ = Qd,h
Dq̇q̈ = Qd,nh

⇔
[

Cq
Dq̇

]
q̈ =

[
Qd,h
Qd,nh

]
⇔ Jq̈ = Qd (11)

whereQd,h ≡ Qd,h(q, q̇, t) represents the holonomic constraint quadratic velocity vector of dimensions nq×1,
Qd,nh ≡ Qd,nh(q, q̇, t) indicates the nonholonomic constraint quadratic velocity vector dimensions nq × 1,
and Qd ≡ Qd(q, q̇, t) is the total vector having dimensions nq × 1 that absorbs the terms that are quadratic in
the generalized velocities and appear in the constraint equations rewritten at the acceleration level [54]. The
quadratic velocity vectors associated with the holonomic and nonholonomic constraints can be, respectively,
computed as follows:

Qd,h = −Ct,t − (
Cqq̇

)
qq̇ − 2Cq,t q̇, Qd,nh = −Dt − Dqq̇ (12)

The total constraint quadratic velocity vector associated with both sets of holonomic and nonholonomic
constraints is simply defined as:

Qd =
[

Qd,h
Qd,nh

]
(13)

As discussed below, it is important to emphasize the point that the quadratic velocity vector associated
with the total set of algebraic constraint equations plays a fundamental role in the definition of the index-one
differential-algebraic form of the equations of motion of a general multibody mechanical system subjected to
holonomic and nonholonomic constraints.
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2.2 Virtual work of the generalized external forces

The total virtual work associated with the external forces applied to a general multibody system denoted with
δWe can be concisely written as follows:

δWe = QT
e δq (14)

where Qe ≡ Qe(q, q̇, t) is the total generalized force vector of dimensions nq ×1 associated with the complete
set of external forces acting on themultibodymechanical system. For example, for amultibody systemdeployed
in a space of dimensions d , the generic external force Fe ≡ Fe(t) having dimensions d × 1 and applied to a
given material point P produces an external generalized force vector given by:

Qe = LT
PFe (15)

where LP ≡ LP(q, t) = ∂rP
/
∂q identifies the d × nq Jacobian matrix of the position field rP ≡ rP(q, t)

relative to the rigid body on which the material point P is collocated that is obtained by differentiating the
body position field with respect to the generalized coordinate vector [55].

2.3 Virtual work of the generalized inertia forces

One can readily demonstrate that the virtual work associated with the generalized inertia forces of a multibody
system composed only of rigid bodies denoted with δWi can be analytically expressed as follows:

δWi = QT
i δq (16)

where the nonlinear vector Qi ≡ Qi (q, q̇, q̈, t) of dimensions nq × 1 identifies the inertia generalized force
vector of the assembled multibody system which can be conveniently rewritten as:

Qi = −Mq̈ + Qv (17)

where M ≡ M(q, t) represents the mass matrix of the multibody system having dimensions nq × nq and
Qv ≡ Qv(q, q̇, t) corresponds to the system inertia quadratic velocity vector that absorbs the inertia terms
which are quadratic in the generalized velocities such as the Coriolis and centrifugal generalized inertia forces
[56].

2.4 D’Alembert–Lagrange principle of virtual work

At this stage, the total virtual work of all the forces acting on themultibodymechanical system can be evaluated
and set equal to zero in order to apply theD’Alembert–Lagrange principle of virtual work and obtain the system
equations of motion written in the general differential-algebraic form based on a redundant set of generalized
coordinates [57]. For this purpose, one can write:

δWi + δWe + δWc = 0 (18)

or equivalently:

(Qi + Qe + Qc)
Tδq = 0 ⇔ (

Qa − JTv
)T

δq = 0 (19)

where the nonlinear vector Qa ≡ Qa(q, q̇, q̈, t) of dimensions nq × 1 denotes the generalized force vector
associated with the active forces that embed the system inertia and external forces, while the nonlinear vector
Qc ≡ Qc(q, q̇, t) of dimensions nq × 1 represents the total constraint generalized force vector. As expected,
these vector quantities can be computed as follows:

Qa = Qi + Qe, Qc = −JTv (20)

Because of the presence of the algebraic constraints, respectively, of holonomic and nonholonomic nature,
which are grouped in the constraint vectorsC andD, themathematical quantities contained in the virtual change
of the generalized coordinate vector δq cannot be varied or chosen independently from each other. Thus, one
cannot directly equate the sum of the active generalized force vector Qa with the constraint generalized force
vector Qc to the zero vector. However, in order to overcome this difficulty, one can exploit the extra freedom
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arising from the introduction of the Lagrange multipliers vectors λ andμ that are, respectively, associated with
the holonomic and nonholonomic constraints. This can be done following an analytical procedure based on the
Lagrange multiplier technique that resembles the typical approach used in classical mechanics in which only
holonomic constraints are considered [58]. In order to apply this analytical approach, one can partition the
generalized coordinate vector q into two subvectors of independent and dependent generalized coordinates,
which are, respectively, denotedwith the vectorqi ≡ qi (t) having dimensions n f ×1 and the vectorqd ≡ qd(t)
of dimensions nc × 1, where n f = nq − nc is the number of degrees of freedom of the specific multibody
mechanical system under consideration. It is important to note that, in general, the integer number n f can be
different from the number of degrees of freedom of a given mechanical system since, in the determination
of this parameter, the set of holonomic and nonholonomic constraints must both be considered at the same
time. More precisely, the integer number n f should be interpreted as the number of free parameters that can
be independently varied in the virtual change of the generalized coordinate vector, which corresponds also
to the number of independent virtual generalized velocities as well as to the number of independent virtual
generalized accelerations. Therefore, the parameter n f can be recognized as the dimension of the space of
the independent virtual variations of the system generalized coordinates, whereas the number of degrees of
freedom represents the dimension of the space of the system independent configuration coordinates. However,
in the present work, for simplicity, the integer parameter n f is referred to as the number of degrees of freedom.
Thus, one can write:

q =
[

qi
qd

]
⇒ δq =

[
δqi
δqd

]
(21)

In a similarmanner, one can partition the generalized force vector corresponding to the active forces applied
on the multibody mechanical system as well as the total Jacobian matrix relative to the algebraic constraints
according to the subdivision into independent and dependent generalized coordinates as follows:

Qa =
[

Qa,i
Qa,d

]
, J = [

Ji Jd
]

(22)

where Qa,i ≡ Qa,i (q, q̇, q̈, t) is the active generalized force vector of dimensions n f × 1 associated with the
subset of independent generalized coordinates, Qa,d ≡ Qa,d(q, q̇, q̈, t) is the active generalized force vector
of dimensions nc × 1 associated with the subset of dependent generalized coordinates, Ji ≡ Ji (q, q̇, t) is the
partition of the constraint Jacobian matrix having dimensions nc × n f relative to the independent generalized
coordinates, and Jd ≡ Jd(q, q̇, t) is the partition of the constraint Jacobian matrix having dimensions nc × nc
relative to the dependent generalized coordinates. It is important to emphasize the fact that if the constraint
equations are correctly formulated, namely there are no redundant or incompatible algebraic equations, and,
at the same time, the partition into independent and dependent generalized coordinates is properly performed,
then the constraint Jacobian submatrix associated with the dependent generalized coordinates Jd is a square
nonsingular matrix [59]. As a result, the coordinate partitioning approach can be conveniently applied to the
mathematical expression of the total virtual work arising from the invocation of the D’Alembert–Lagrange
principle to yield:

δqT (
Qa − JTv

) = 0 ⇔ [
δqT

i δqT
d

]
([

Qa,i
Qa,d

]
−

[
JTi
JTd

]
v
)

= 0 (23)

or equivalently:
δqT

i

(
Qa,i − JTi v

) + δqT
d

(
Qa,d − JTd v

) = 0 (24)

where it is important to observe that the two apparently separated sets of dynamic equations associated with
the independent and dependent generalized coordinates are indeed coupled by the presence of the complete
vector of Lagrange multipliers which cannot be partitioned. The virtual change of the vector of independent
generalized coordinates can be arbitrarily varied and, therefore, one can deduce that the subset of dynamic
equations associated with the independent generalized coordinates is satisfied leading to:

Qa,i − JTi v = 0 (25)

On the other hand, one can assume that the total vector of Lagrange multipliers is selected equal to the
unique solution of the following system of linear algebraic equations:

JTd v = Qa,d (26)
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As mentioned before, this assumption is consistent with the fact that the Jacobian submatrix associated
with the dependent subset of generalized coordinates has full rank, namely:

rank(JTd ) = rank(Jd) = dim(JTd ) = dim(Jd) = nq − n f = nc (27)

Therefore, one can write:
Qa,d − JTd v = 0 (28)

which corresponds to the subset of dynamic equations associated with the dependent generalized coordinates.
The assembly of the two subsets of dynamic equations leads to the differential part of the set of equations of
motion of the multibody system which can be recasted in the following compact matrix form:

{
Qa,i − JTi v = 0
Qa,d − JTd v = 0

⇔ Qa − JTv = 0 ⇔ Qi + Qe − JTv = 0 (29)

or equivalently:
−Mq̈ + Qv + Qe − JTv = 0 ⇔ Mq̈ = Qb − JTv (30)

where Qb ≡ Qb(q, q̇, t) indicates the total body generalized force vector of dimensions nq × 1 that includes
the inertial and external forces applied on the multibody system which is given by:

Qb = Qv + Qe (31)

The definition of the total vector of generalized forces Qb applied on the bodies of the mechanical system
constrained by kinematic joints simplifies the final mathematical expression of the equations of motion.

2.5 Differential-Algebraic equations of motion

The index-three differential-algebraic equations of motion of a general multibody system subjected to holo-
nomic and nonholonomic constraints can thus be analytically written in a compact matrix form [60]. Thus,
one can write: {

Mq̈ = Qb − JTv
E = 0 (32)

Furthermore, one can readily obtain the index-one form of the differential-algebraic equations of motion
of a general multibody system by replacing the definition of the constraint equations at the position level with
their acceleration-level counterpart [61]. By doing so, one obtains the following equations:

{
Mq̈ = Qb − JTv
Jq̈ = Qd

(33)

In particular, when the set of nonholonomic constraints is absent, the index-one differential-algebraic
equations reduce to the following form: {

Mq̈ = Qb − CT
qλ

Cqq̈ = Qd,h
(34)

If, on the other hand, the mechanical system is subjected only to a set of nonholonomic constraints, one
obtains a set of differential-algebraic dynamic equations characterized by an analogousmathematical structure:

{
Mq̈ = Qb − DT

q̇μ

Dq̇q̈ = Qd,nh
(35)

It is well known that the index-one form of the dynamic equations, although mathematically equivalent to
the original index-three form, is numerically prone to the drift phenomenon of the algebraic constraints that is
particularly detrimental in dynamical simulations ranging on long time spans [62]. This issue is present even
in the case of interest for this investigation in which both holonomic and nonholonomic constraint equations
are included in the mathematical model of the class of multibody systems considered. However, the numerical
procedure for eliminating the constraint violations can be readily extended to the case in which also a set of
holonomic constraints are considered [63]. For example, the robust generalized coordinate partitioningmethod
or the direct correction approach can be effectively employed as constraint stabilization techniques [64,65].
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More importantly, in the stability analysis ofmultibodymechanical systems, the analytical techniques available
in the literature are substantially based on the index-one form of the dynamic equations [66]. Although there is
no theoretical obstacle to the analytical techniques based on this approach, in practice, these methodologies are
cumbersome or inapplicable when a mixed symbolic-numeric strategy is employed for the stability analysis
of complex multibody mechanical systems. As discussed more in detail below, the method proposed in this
investigation for assessing the stability characteristics of amultibody systemoffers a solution to this challenging
issue concerning large-scale multibody mechanical systems and this is done starting from the original index-
three form of the equations of motion.

3 Standard analytical techniques for the stability analysis

3.1 Explicit form of the equations of motion

The general stability concepts discussed in the manuscript in the case of dynamical systems governed by
ordinary differential equations are also applicable to the case of multibody mechanical systems that involve
the presence of nonlinear algebraic constraints in addition to the intrinsic nonlinearities of the differential
equations of motion [67]. However, in this general case, the nonlinear generalized force vector associated
with the algebraic constraints must be eliminated or expressed as an explicit function of the generalized
displacements and velocities of the multibodymechanical system [68]. This mathematical process is necessary
in order to be able to formulate the stability study as a standard eigenvalue problem. For this purpose, the
methodologies considered in this section start from the index-one form of the differential-algebraic equations
of motion and lead to the following explicit formulation of the equations of motion expressed in terms of the
system configuration vector and its time derivative:

q̈ = a (36)

where the nonlinear vector function a ≡ a(q, q̇, t) of dimensions nq × 1 represents the analytical description
of the generalized acceleration vector of the multibody system which can be determined by using the different
computational approaches described below.

3.2 Augmented formulation

In the case of the augmented formulation [69], one can write the index-one form of the differential-algebraic
equations of motion employing a block matrix form as follows:

Mauqau = Qau (37)

where the characteristic dimension of the problem is nau = nq+nc, thematrixMau ≡ Mau(q, t) of dimensions
nau × nau identifies the augmented mass matrix of the multibody system, the vector qau ≡ qau(t) having
dimensions nau × 1 represents the augmented generalized acceleration vector of the mechanical system, and
Qau ≡ Qau(q, q̇, t) denotes the augmented generalized force vector of dimensions nau × 1. These matrix and
vector quantities are readily given by:

Mau =
[

M JT

J O

]
, qau =

[
q̈
v

]
, Qau =

[
Qb
Qd

]
(38)

The computational method based on the augmented formulation can be effectively employed for obtaining
an analytical expression of the generalized acceleration vector of a multibody mechanical system by solving
a system of linear equations written in terms of the augmented generalized acceleration vector. However, for
multibody systems composed of a large numbers of rigid bodies, the symbolic lower-upper factorization of
the augmented mass matrix can lead to complex analytical expressions. A set of alternative methods for the
determination of the generalized acceleration vector of a multibody system is reported in detail in “Appendix
A” of the manuscript [70–79].
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3.3 Formulation of the stability problem in the standard form

Once that the nonlinear vector function that analytically describes the generalized acceleration vector of the
multibody system has been obtained by using one of the computational methods mentioned above, one can
go ahead with the stability analysis. For this purpose, the configuration of interest for the stability study is
first identified. For simplicity, assume as the reference configuration the constant vector denoted with q0 of
dimensions nq × 1. Note that, in general, one can use a time-varying reference configuration without altering
the mathematical structure of the methodology discussed herein. However, in any case, it is assumed that the
reference configuration is a particular solution for the nonlinear set of equations of motion. The perturbation
of the system configuration around the reference configuration is given by:

Δq = q − q0 (39)

where Δq ≡ Δq(t) is a vector having dimensions nq × 1 that represents the deviation of the current system
configuration from the reference configuration of interest for the stability analysis. The perturbation of the
analytical function that represents the system generalized acceleration vector can be performed by considering
its Taylor series expansion truncated at the first order defined as:

a � a(q0, q̇0, t0) + ∂a
∂q

∣∣
∣
q0,q̇0,t0

(q − q0) + ∂a
∂q̇

∣∣
∣
q0,q̇0,t0

(q̇ − q̇0)

= a|0 + aq
∣∣
0Δq + aq̇

∣∣
0Δq̇

(40)

where the sum of the generalized acceleration vector with the first vector term in the Taylor series is equal to
the zero vector since the reference configuration satisfies the equations of motion. The series expansion yields
to the following linearized index-one form of the equations of motion of the multibody system:

M0Δq̈ + R0Δq̇ + K0Δq = 0 (41)

whereM0 is the linearizedmassmatrix of themultibody system having dimensions nq×nq ,R0 is the linearized
damping matrix of the multibody system having dimensions nq × nq , and K0 is the linearized stiffness matrix
of the multibody system having dimensions nq × nq . These constant matrices are, respectively, defined as:

M0 = I, R0 = R(q0, q̇0, t0), K0 = K(q0, q̇0, t0) (42)

where
R = −aq̇, K = −aq (43)

where I is the identity matrix of dimensions nq ×nq . It is apparent that the linearized stiffness matrixK is given
by the opposite of the Jacobian of the equations of motion computed with respect to the vector of generalized
coordinates, the linearized dampingmatrixR is equal to the opposite of the Jacobian of the equations of motion
computed with respect to the vector of generalized velocities, and the linearized mass matrix M arises from
the opposite of the Jacobian of the equations of motion computed with respect to the vector of generalized
accelerations. These matrices are all evaluated in correspondence of the reference configuration and, therefore,
are constant matrices for a given instant of time. In the linearization process applied to the equations of motion
that is performed around a given reference configuration, it is important to note that while the system mass
matrix is always a symmetric positive definite matrix, the stiffness and damping matrices are not necessarily
symmetric positive definite matrices [80]. The structure of the system stiffness and damping matrices depends
both on the type of reference configuration and on the stability properties of the multibody mechanical system
linearized around that particular configuration point.

3.4 Standard eigenvalue problem associated with the stability analysis

At this stage, the state-space form of the linearized equations of motion defined in the configuration space can
be readily obtained by introducing a state vector of dimensions nz × 1 denoted with Δz ≡ Δz(t) and given
by:

Δz =
[

Δq
Δq̇

]
(44)
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where nz = 2nq . By doing so, the following standard state-space model of the linearized equations of motion
can be readily obtained:

Δż = A0Δz (45)

where the constant matrix A0 having dimensions nz × nz represents the state matrix associated with the
linearized equations of motion in which the effect of the algebraic constraints is automatically embedded [81].
The state matrix can be readily assembled as a block matrix as follows:

A0 =
[

O I
−M−1

0 K0 −M−1
0 R0

]
(46)

where I is the identity matrix of dimensions nq × nq . As already discussed before, the definition of the state
matrix is of fundamental importance for the stability analysis of a multibody system since the eigenvalues
of this matrix arising from the linearized equations of motion contain information on the nonlinear dynamic
behavior of the mechanical system. This can be done by solving a standard eigenvalue problem associated
with the state matrix obtained from the standard state-space form of the linearized equations of motion. To this
end, one can search for a particular analytical solution labeled with the natural number k having the following
mathematical form:

Δz = ψke
sk , k = 1, 2, . . . , nz (47)

where sk is a complex scalar number that identifies the generic eigenvalue andψk is the corresponding complex
eigenvector of dimensions nz × 1. Both the eigenvalue and the eigenvector k are associated with the particular
solution of the linear dynamical model. By substituting the trial solution into the linearized state-space model
written in the standard form, one obtains:

A0ψk = skψk ⇔ (A0 − skI)ψk = 0 (48)

where I is the identity matrix of dimensions nz × nz . This equation defines a standard eigenvalue problem. In
order to have solutions different from the trivial one, the following condition must be satisfied:

det(A0 − skI) = |A0 − skI| = 0 (49)

This characteristic equation obtained by computing the matrix determinant has nz roots that correspond to
the nz system eigenvalues associated to which there are the nz system eigenvectors that can be computed from
the original matrix equation. For a mechanical system subjected to externally applied forces that are dependent
on the generalized velocities, as is typical in the case of multibody systems, the eigenvalues obtained from the
linearization around a given system configuration appear in complex conjugate pairs. For instance, considering
two complex conjugate eigenvalues, respectively, denoted with sk and sk+1, one can write:

sk = ak + ibk, sk+1 = ak − ibk (50)

where i = √−1 is the imaginary unit, ak is the real part, and bk is the imaginary part of the complex conjugate
eigenvalues k and k + 1.

4 Proposed computational approach for the stability analysis

4.1 Implicit form of the equations of motion

The computational technique for the stability analysis proposed in this work is directly applicable to the index-
three differential-algebraic form of the equations of motion associated with a general multibody system. For
this purpose, the index-three dynamic equations are rewritten as follows:

{
Mq̈ − Qb + JTv = 0
E = 0 ⇔

{
F = 0
E = 0 (51)

where F ≡ F(q, q̇, q̈, v, t) is a nonlinear vector function of dimensions nq × 1 that contains the differential
part of the equations of motion. This vector quantity is defined as:

F = Mq̈ − Qb + JTv (52)
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In analogy with the partition of the equations of motion into a differential and an algebraic part, one can
define a composite coordinate vector obtained from the combination of the system generalized coordinate
vector and the vector of Lagrange multipliers. This vector is denoted with p ≡ p(t), has dimensions n p × 1,
and is given by:

p =
[

q
v

]
(53)

where n p = nq + nc. It follows that the differential-algebraic dynamic equations can be easily written in a
composite form by assembling a nonlinear vector function as:

g = 0 (54)

where g ≡ g(p, ṗ, p̈, t) is a nonlinear vector function having dimensions n p × 1 that encapsulates the entire
differential-algebraic set of equations of motion as follows:

g =
[

F
E

]
(55)

The definition of the vector function g allows for a straightforward formulation of the stability problem in
the generalized form.

4.2 Formulation of the stability problem in the generalized form

Let p0 be the composite configuration vector of dimensions n p×1 that identifies the reference configuration of
interest for the stability analysis. In the vector p0, around which the stability study is performed, the reference
configuration q0 having dimensions nq ×1 and the reference Lagrange multiplier vector v0 having dimensions
nc×1 are both embedded. It is important to note that the reference vector of Lagrangemultipliers can be readily
obtained from the reference configuration vector by using one of the analytical methods for the determination
of the generalized accelerations discussed in the previous section [82]. Furthermore, let the vectorΔp ≡ Δp(t)
of dimensions n p × 1 be the perturbation of the current composite configuration vector from the reference
composite configuration vector defined as:

Δp = p − p0 (56)

By perturbing the composite vector function associated with the equations of motion, one obtains the
following Taylor series expansion truncated at the first order:

g � g(p0, ṗ0, p̈0, t0) + ∂g
∂p

∣
∣∣
p0,ṗ0,p̈0,t0

(p − p0)

+ ∂g
∂ṗ

∣
∣∣
p0,ṗ0,p̈0,t0

(ṗ − ṗ0) + ∂g
∂p̈

∣
∣∣
p0,ṗ0,p̈0,t0

(p̈ − p̈0)

= g|0 + gp
∣
∣
0Δp + gṗ

∣
∣
0Δṗ + gp̈

∣
∣
0Δp̈

(57)

where the first vector term in the series expansion is identically equal to zero because it is assumed that the
nonlinear functions considered in the definition of the composite reference configuration satisfy the equations
of motion. Thus,

g(p0, ṗ0, p̈0, t0) = 0 (58)

By means of simple mathematical manipulations, one can readily show that the Taylor series expansion
leads to the following linearized form of the index-three set of differential-algebraic dynamic equations:

M̄0Δp̈ + R̄0Δṗ + K̄0Δp = 0 (59)

where M̄0 is the composite mass matrix of the multibody system, R̄0 is the composite damping matrix of the
multibody system, and K̄0 is the composite stiffness matrix of the multibody system that have dimensions
n p × n p. These constant matrices are all associated with the linearized version of the multibody dynamical
model and are, respectively, given by:

M̄0 = M̄(p0, t0), R̄0 = R̄(p0, ṗ0, t0), K̄0 = K̄(p0, ṗ0, p̈0, t0) (60)
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where
M̄ = gp̈, R̄ = gṗ, K̄ = gp (61)

It is, therefore, apparent that the composite stiffness matrix K̄ is given by the Jacobian of the equations
of motion computed with respect to the vector of composite coordinates, the composite damping matrix R̄ is
equal to the Jacobian of the equations of motion computed with respect to the vector of composite velocities,
and the composite mass matrix M̄ arises from the Jacobian of the equations of motion computed with respect
to the vector of composite accelerations. In particular, the composite mass matrix is a block matrix and has the
following structure:

M̄0 = gp̈
∣
∣
0 = [

gq̈
∣∣
0 gv̈|0

] =
[

Fq̈
∣∣
0 Fv̈|0

Eq̈
∣∣
0 Ev̈|0

]
=

[
M̄0

1,1 M̄0
1,2

M̄0
2,1 M̄0

2,2

]
(62)

where {
M̄0

1,1 = M|0, M̄0
1,2 = O

M̄0
2,1 = O, M̄0

2,2 = O
(63)

where M̄0
1,1, M̄0

1,2, M̄0
2,1, M̄0

2,2 are constant matrices of dimensions nq × nq , nq × nc, nc × nq , and nc × nc,
respectively. The composite damping matrix assumes the following matrix block form:

R̄0 = gṗ
∣∣
0 = [

gq̇
∣
∣
0 gv̇|0

] =
[

Fq̇
∣∣
0 Fv̇|0

Eq̇
∣
∣
0 Ev̇|0

]
=

[
R̄0
1,1 R̄0

1,2
R̄0
2,1 R̄0

2,2

]
(64)

where ⎧
⎨

⎩

R̄0
1,1 = − ∂Qb

∂q̇

∣
∣∣
0
, R̄0

1,2 = O

R̄0
2,1 = ∂E

∂q̇

∣
∣∣
0
, R̄0

2,2 = O
(65)

where R̄0
1,1, R̄0

1,2, R̄0
2,1, R̄0

2,2 are constant matrices of dimensions nq × nq , nq × nc, nc × nq , and nc × nc,
respectively. The composite stiffness matrix is also a block matrix given by:

K̄0 = gp
∣∣
0 = [

gq
∣∣
0 gv|0

] =
[

Fq
∣∣
0 Fv|0

Eq
∣
∣
0 Ev|0

]
=

[
K̄0

1,1 K̄0
1,2

K̄0
2,1 K̄0

2,2

]
(66)

where ⎧
⎪⎨

⎪⎩

K̄0
1,1 = ∂(Mq̈)

∂q

∣∣
∣
0
− ∂Qb

∂q

∣∣
∣
0
+ ∂

(
JTv

)

∂q

∣
∣∣
∣
0
, K̄0

1,2 = JT
∣∣
0

K̄0
2,1 = ∂E

∂q

∣∣
∣
0
, K̄0

2,2 = O
(67)

where K̄0
1,1, K̄0

1,2, K̄0
2,1, K̄0

2,2 are constant matrices of dimensions nq × nq , nq × nc, nc × nq , and nc × nc,
respectively. Note that the scenario considered here is more general compared with the case analyzed in the
previous section. It is indeed apparent that the composite mass matrix is symmetric but is also indefinite; that
is, this matrix is not positive semi-definite and not negative semi-definite. The composite damping and stiffness
matrices, on the other hand, are indefinite matrices which are also not necessarily symmetric.

4.3 Generalized eigenvalue problem associated with the stability analysis

In order to carry out the stability analysis of the composite reference configuration employing the proposed
analytical method, a state-space reformulation of the linearized equations of motion is necessary. To this end,
consider another state vector denoted with Δy ≡ Δy(t) having dimensions ny × 1 defined in terms of the
perturbation of the composite generalized coordinates and velocities as follows:

Δy =
[

Δp
Δṗ

]
(68)

whereny = 2n p. The introductionof the composite state vector defined above leads to the followinggeneralized
state-space formulations of the linearized equations of motion:

Ū0Δẏ = V̄0Δy (69)
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where the constant matrices Ū0 and V̄0 having dimensions ny ×ny represent two transition matrices associated
with the generalized state-space form of the linearized dynamic equations [83]. The structure of these matrices
is based on the following block matrix form:

Ū0 =
[

R̄0 M̄0

M̄0 O

]
, V̄0 =

[−K̄0 O
O M̄0

]
(70)

In order to perform the stability analysis of a given composite reference configuration, the generalized
eigenvalue problem associated with the generalized state-space form of the linearized differential-algebraic
equations of motion can be effectively employed. In this respect, it is important to emphasize the point that, for
the same multibody mechanical system, the eigenvalues arising from the formulation of a generalized state-
space dynamical model exactly coincide with those obtained from the corresponding standard state-space
dynamical model. The only important difference relies in the fact that the set of eigenvalues associated with
the generalized eigenproblem contains additional eigenvalues equal to infinite that are due to the presence of
the Lagrange multipliers in the definition of the composite coordinate vector. The eigenvectors, on the other
hand, show substantial differences in the two models since they are associated with different state vectors.
In order to formulate the generalized eigenvalue problem associated with the generalized state-space model,
consider the following trial solution labeled with the natural number h:

Δy = ϕhe
sh , h = 1, 2, . . . , ny (71)

where the complex scalar number sh denotes the generic eigenvalue labeled with the number h and the vector
of complex numbers indicated with ϕh represents the corresponding eigenvector. The introduction of the trial
analytical solution into the generalized state-space model leads to the following mathematical expression:

V̄0ϕh = shŪ0ϕh ⇔ (
V̄0 − shŪ0

)
ϕh = 0 (72)

Thus, the vector equation so found represents the basis of the generalized eigenvalue problem associated
with the stability of a general multibody mechanical system. Even in this case, the following condition must
be enforced for obtaining nontrivial solutions:

det(V̄0 − shŪ0) = ∣∣V̄0 − shŪ0
∣∣ = 0 (73)

This mathematical condition represents the key equation for the determination of the eigenvalues of the
system of interest, which correspond to the ny roots of the matrix determinant arising from the generalized
eigenproblem associated with the state-space model [84]. As mentioned before, a subset of the eigenvalues
found by implementing this approach is not meaningful for the stability analysis since they are equal to
infinite. However, the remaining eigenvalues assume finite values and, in general, appear as complex numbers
in conjugate pairs. Thus, this second subset of eigenvalues contains valuable information about the stability of
the multibody mechanical system. Unlike the stability methods based on the numerical solution of a standard
eigenproblem discussed in the previous section, the analytical technique for the stability analysis proposed
herein is based on the formulation of a generalized eigenproblem which can be formulated by means of
relatively simple symbolic manipulations of the equations of motion that are feasible also in the case of
multibody mechanical systems having complex structures.

5 Numerical results and discussion

5.1 Physical pendulum

The first demonstrative example is a two-dimensional physical pendulum modeled as a holonomic multibody
system. This holonomic mechanical system is shown in Fig. 1.

The numerical data used for the system parameters are reported in Table 1.
The physical pendulum is a two-dimensional holonomic multibody system composed of one rigid body

and one mechanical joint, namely a revolute joint collocated in the point O of Fig. 1. Half of the length of the
pendulum is denoted with L , the pendulum mass is denoted with m, the pendulum mass moment of inertia
is denoted with Izz , and the gravitational acceleration is denoted with g. Although the physical pendulum is
a mechanical system endowed with n f = 1 degree of freedom, when a redundant coordinate formulation
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Fig. 1 Physical pendulum multibody model

Table 1 Physical pendulum physical parameters

Descriptions Symbols Data (units)

Pendulum mass m 1.0 (kg)
Pendulum half length L 0.2 (m)
Pendulum mass moment of inertia Izz 0.0133 (kg × m2)

Gravitational acceleration g 9.81 (m
/
s2)

approach is assumed for modeling this multibody system, one needs to use a vector of nq = 3 generalized
coordinates. To this end, consider the following vector of generalized coordinates denoted with q ≡ q(t):

q = [
x y θ

]T (74)

where x ≡ x(t) is the horizontal displacement of the pendulum center of mass, y ≡ y(t) is the vertical
displacement of the pendulum center of mass, and θ ≡ θ(t) is the pendulum angular displacement evaluated
with respect to the positive direction of the horizontal axis of the global frame of reference. The kinetic energy
T ≡ T (q, q̇, t) and the potential energy U ≡ U (q, t) of the physical pendulum are, respectively, given by:

T = 1

2
m

(
ẋ2 + ẏ2

) + 1

2
Izz θ̇

2, U = mgy (75)

The mass matrix M and the total body generalized force vector Qb of the physical pendulum can be,
respectively, written as follows:

M = diag(m,m, Izz), Qb = [
0 −mg 0

]T (76)

The holonomic constraint vector C of the physical pendulum system due to the presence of the revolute
joint in the point O of Fig. 1 can be readily written as:

C =
[
x − L cos(θ)
y − L sin(θ)

]
(77)

The holonomic constraint Jacobian matrix Cq of the physical pendulum system is given by:

Cq =
[
1 0 L sin (θ)
0 1 −L cos (θ)

]
(78)
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The holonomic constraint quadratic velocity vector Qd,h of the physical pendulum system is defined as
follows:

Qd,h =
[−L θ̇2 cos (θ)

−L θ̇2 sin (θ)

]
(79)

In the case of the physical pendulum, one can analytically derive the composite matrices M̄, R̄, and K̄
associated with the general stability analysis of this holonomic multibody system by using the computational
approach developed in this paper and starting from the systemmassmatrixM, the system total body generalized
force vector Qb, the system constraint vector C, the system constraint Jacobian matrix Cq, and the system
constraint quadratic velocity vector Qd,h . For this purpose, one can write the matrix blocks that form the
composite mass matrix M̄ of the physical pendulum as:

⎧
⎨

⎩

M̄1,1 = diag(m,m, Izz), M̄1,2 = O

M̄2,1 = O, M̄2,2 = O
(80)

The matrix blocks that form the composite damping matrix R̄ of the physical pendulum are given by:

⎧
⎨

⎩

R̄1,1 = O, R̄1,2 = O

R̄2,1 = O, R̄2,2 = O
(81)

The matrix blocks that form the composite stiffness matrix K̄ of the physical pendulum are defined as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̄1,1 =
⎡

⎣
0 0 0
0 0 0
0 0 L (λ1 cos(θ) + λ2 sin(θ))

⎤

⎦

K̄1,2 =
⎡

⎣
1 0
0 1

L sin(θ) −L cos(θ)

⎤

⎦

K̄2,1 = K̄T
1,2

K̄2,2 = O

(82)

where O is the zero matrix, while λ1 ≡ λ1(t) and λ2 ≡ λ2(t) are the Lagrange multipliers associated with the
holonomic constraint equations.

The linearization point of the configuration space used for the stability analysis of the physical pendulum
is identified by the following generalized vectors:

q0 =
⎡

⎣
x0
y0
θ0

⎤

⎦ =
⎡

⎣
0

−L
3
2π

⎤

⎦ , q̇0 = q̈0 = 0 (83)

In Table 2, the eigenvalues resulting from the stability study of the physical pendulum carried out with the
proposed method are reported and used as the reference solution, whereas the eigenvalue errors with respect to
the reference solution arising from the application of the other fundamental techniques of applied mechanics
are listed immediately after.

As expected, it is apparent that the reference configuration chosen for performing the stability study is a
marginally stable equilibrium configuration since the significant eigenvalues found form a purely imaginary
conjugate pair. Furthermore, the numerical results presented inTable 2demonstrate that there are only negligible
errors due to the numerical procedure and the different algorithms used to compute the solution. On the other
hand, after the stability analysis, the nonlinear equations of motion of the physical pendulum are numerically
solved to verify the qualitative and quantitative information obtained from the stability study by analyzing
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Table 2 Physical pendulum eigenvalues

Analytical methods Eigenvalues

Proposed approach (reference) 0 ± 6.0653i
Augmented formulation (error) 1.77635 × 10−15

Embedded technique (error) 1.77626 × 10−15

Amalgamated formulation (error) 8.88178 × 10−16

Projection method (error) 8.88109 × 10−16

Udwadia–Kalaba equations (error) 1.77573 × 10−15
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(b) Angular velocity θ̇.

Fig. 2 Angular displacement θ and angular velocity θ̇ of the physical pendulum

the angular displacement and the angular velocity of the pendulum. For this purpose, the initial conditions
considered include a small perturbation from the equilibrium configuration and are defined as follows:

⎧
⎨

⎩

xs = L cos(θs)
ys = L sin(θs)
θs = θ0 + ε

,

⎧
⎨

⎩

ẋs = 0
ẏs = 0
θ̇s = 0

, ε = π

4
(84)

where xs is the initial horizontal displacement of the pendulum center of mass, ys is the initial vertical
displacement of the pendulum center of mass, θs is the initial angular displacement of the physical pendulum,
ẋs is the initial horizontal velocity of the pendulum center of mass, ẏs is the initial vertical velocity of the
pendulum center of mass, θ̇s is the initial angular velocity of the physical pendulum, and ε represents the
perturbation. The time step employed for carrying out the numerical simulation is Δt = 10−3 (s), whereas
the time interval used for studying the dynamic behavior of the physical pendulum system is Ts = 10 (s).
In Fig. 2, the numerical results of the dynamical simulation are shown; that is, Fig. 2a represents the angular
displacement of the physical pendulum, while Fig. 2b represents its angular velocity.

The numerical results arising from the nonlinear dynamic analysis of the physical pendulum confirm the
stability properties found by means of the linear stability analysis.

5.2 Wheeled inverted pendulum

The second illustrative example is a two-dimensional wheeled inverted pendulum modeled as a multibody
system. This mechanical system is shown in Fig. 3.

The numerical data used for the system parameters are reported in Table 3.
The wheeled inverted pendulum is a two-dimensional multibodymechanical system composed of two rigid

bodies, that are a disk and a pendulum, one revolute joint collocated in the point Gd of Fig. 3, one contact
constraint between the disk and the ground collocated in the point C of Fig. 3, and one pure rolling nonholo-
nomic constraint. Even if in the case of two-dimensional systems the algebraic equations associated with the
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Fig. 3 Wheeled inverted pendulum multibody model

Table 3 Wheeled inverted pendulum physical parameters

Descriptions Symbols Data (units)

Disk radius Rd 0.2 (m)
Disk mass md 1 (kg)
Disk mass moment of inertia Izz,d 0.02 (kg × m2)
Pendulum half length L p 0.5 (m)
Pendulum mass mp 2 (kg)
Pendulum mass moment of inertia Izz,p 0.0417 (kg × m2)

Gravitational acceleration g 9.81 (m
/
s2)

pure rolling condition are generally integrable, namely they are reducible from nonholonomic constraints to
holonomic constraints, in this numerical example, they are treated as nonholonomic constraints to illustrate the
use of the computational method developed in this work in the case of nonholonomic multibody systems. The
radius of the disk is indicated with Rd , the mass of the disk is indicated with md , the mass moment of inertia
of the disk is indicated with Izz,d , half the length of the pendulum is indicated with L p, the pendulum mass is
indicated with mp, the mass moment of inertia of the pendulum is indicated with Izz,p, and the gravitational
acceleration is indicated with g. Although the wheeled inverted pendulum is a mechanical system endowed
with n f = 2 degrees of freedom, when a redundant coordinate formulation approach is used for modeling this
multibody system, a vector of nq = 6 generalized coordinates is required. For this purpose, consider a vector
of generalized coordinates denoted with q ≡ q(t) and given by:

qd =
⎡

⎣
xd
yd
θd

⎤

⎦ , qp =
⎡

⎣
xp
yp
θp

⎤

⎦ , q =
[

qd
qp

]
(85)

where qd ≡ qd(t) is the generalized coordinate vector of the disk, qp ≡ qp(t) is the generalized coordinate
vector of the pendulum, xd ≡ xd(t) is the horizontal displacement of the disk center of mass, yd ≡ yd(t) is
the vertical displacement of the disk center of mass, θd ≡ θd(t) is the disk angular displacement, xp ≡ xp(t)
is the horizontal displacement of the pendulum center of mass, yp ≡ yp(t) is the vertical displacement of the
pendulum center of mass, and θp ≡ θp(t) is the pendulum angular displacement. The kinetic energy T and
the potential energy U of the wheeled inverted pendulum are, respectively, given by:

T = 1

2
md

(
ẋ2d + ẏ2d

) + 1

2
Izz,d θ̇

2
d + 1

2
mp

(
ẋ2p + ẏ2p

)
+ 1

2
Izz,p θ̇

2
p (86)

and
U = mdgyd + mpgyp (87)
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The mass matrix M and the total body generalized force vector Qb of the wheeled inverted pendulum can
be, respectively, written as follows:

M = diag(md ,md , Izz,d ,mp,mp, Izz,p) (88)

and
Qb = [

0 −mdg 0 0 −mpg 0
]T (89)

The total vector of holonomic constraints C of the wheeled inverted pendulum system due to the presence
of the revolute joint in the pointGd of Fig. 3 that connects the disk and the pendulum, as well as to the presence
of the contact between the disk and the ground in the point C of Fig. 3, can be readily written as:

C =
[

jTrd,C
rd,Gd − rp,Gd

]
=

⎡

⎣
yd − Rd

xd − xp + L p cos(θp)
yd − yp + L p sin(θp)

⎤

⎦ (90)

where j is the unit vector associated with the Y axis of the absolute reference frame, rd,C is the global position
of the contact pointC collocated on the disk, rd,Gd is the global position of the disk center ofmassGd measured
with respect to the disk, and rp,Gd is the global position of the disk center of mass Gd measured with respect
to the pendulum. These vector quantities are explicitly defined as follows:

rd,C = Rd + Ad ūd,C =
[

xd
yd − Rd

]
(91)

rd,Gd = Rd =
[
xd
yd

]
, rp,Gd = Rp + Apūp,Gd =

[
xp − L p cos(θp)
yp − L p sin(θp)

]
(92)

where Rd is the global position vector of the disk center of mass, Rp is the global position vector of the
pendulum center of mass, Ad is the disk rotation matrix, Ap is the pendulum rotation matrix, ūd,C is the local
position vector of the contact point C defined with respect to the disk body-fixed reference frame, and ūp,Gd

is the local position vector of the disk center of mass Gd defined with respect to the pendulum body-fixed
reference system that are, respectively, given by:

Rd =
[
xd
yd

]
, Rp =

[
xp
yp

]
(93)

Ad =
[
cos(θd) − sin(θd)
sin(θd) cos(θd)

]
, Ap =

[
cos(θp) − sin(θp)
sin(θp) cos(θp)

]
(94)

ūd,C =
[ −Rd sin(θd)

−Rd cos(θd)

]
, ūp,Gd =

[−L p
0

]
(95)

The holonomic constraint Jacobian matrix Cq of the wheeled inverted pendulum system is given by:

Cq =
⎡

⎣
0 1 0 0 0 0
1 0 0 −1 0 −L p sin

(
θp

)

0 1 0 0 −1 L p cos
(
θp

)

⎤

⎦ (96)

The holonomic constraint quadratic velocity vector Qd,h of the wheeled inverted pendulum is defined as
follows:

Qd,h =
⎡

⎢
⎣

0
L p θ̇

2
p cos

(
θp

)

L p θ̇
2
p sin

(
θp

)

⎤

⎥
⎦ (97)

On the other hand, the pure rolling condition is mathematically expressed by one nonholonomic constraint
equation. For this purpose, the longitudinal velocity of the disk contact point C is set equal to zero. Thus, the
nonholonomic constraint vector D of the wheeled inverted pendulum can be written as:

D = iTvd,C = ẋd + Rd θ̇d (98)

where i is the unit vector associated with the X axis of the absolute reference frame and vd,C is the absolute
velocity vector of the contact point C that can be explicitly computed as follows:



1982 C. M. Pappalardo et al.

vd,C = Ṙd + Ȧd ūd,C =
[
ẋd + Rd θ̇d

ẏd

]
(99)

The nonholonomic constraint Jacobian matrix Dq̇ of the wheeled inverted pendulum system is given by:

Dq̇ = [
1 0 Rd 0 0 0

]
(100)

The nonholonomic constraint quadratic velocity vector Qd,nh of the wheeled inverted pendulum is defined
as follows:

Qd,nh = 0 (101)

In the case of the wheeled inverted pendulum, one can analytically derive the composite matrices M̄, R̄,
and K̄ associated with the general stability analysis of this nonholonomic multibody system employing the
computational approach developed in this paper and starting from the system mass matrix M, the system total
body generalized force vector Qb, the total constraint vector E, the total constraint Jacobian matrix J, and
the total constraint quadratic velocity vector Qd . To this end, one can write the matrix blocks that form the
composite mass matrix M̄ of the wheeled inverted pendulum as:

⎧
⎨

⎩

M̄1,1 = diag(md ,md , Izz,d ,mp,mp, Izz,p), M̄1,2 = O

M̄2,1 = O, M̄2,2 = O
(102)

The matrix blocks that form the composite damping matrix R̄ of the wheeled inverted pendulum are given
by: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R̄1,1 = O, R̄1,2 = O

R̄2,1 =
⎡

⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 Rd 0 0 0

⎤

⎥
⎦ , R̄2,2 = O

(103)

Thematrix blocks that form the composite stiffness matrix K̄ of the wheeled inverted pendulum are defined
as follows: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̄1,1 =

⎡

⎢⎢
⎢⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −L p

(
λ2 cos(θp) + λ3 sin(θp)

)

⎤

⎥⎥
⎥⎥
⎥
⎦

K̄1,2 =

⎡

⎢
⎢⎢
⎢⎢
⎣

0 1 0 1
1 0 1 0
0 0 0 Rd
0 −1 0 0
0 0 −1 0
0 −L p sin(θp) L p cos(θp) 0

⎤

⎥
⎥⎥
⎥⎥
⎦

K̄2,1 =
⎡

⎢
⎣

0 1 0 0 0 0
1 0 0 −1 0 −L p sin(θp)
0 1 0 0 −1 L p cos(θp)
0 0 0 0 0 0

⎤

⎥
⎦

K̄2,2 = O

(104)

where O is the zero matrix, while λ1 ≡ λ1(t), λ2 ≡ λ2(t), and λ3 ≡ λ3(t) are the Lagrange multipliers
associated with the holonomic constraint equations, and μ ≡ μ(t) is the Lagrange multiplier associated with
the nonholonomic constraint equation.
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Table 4 Wheeled inverted pendulum eigenvalues

Analytical methods Eigenvalues

Proposed approach (reference) 6.1909
Augmented formulation (error) 7.9936 × 10−15

Embedded technique (error) 6.5732 × 10−16

Amalgamated formulation (error) 8.2321 × 10−16

Projection method (error) 8.8818 × 10−16

Udwadia–Kalaba equations (error) 1.7764 × 10−15

The linearization point of the configuration space used for the stability analysis of the wheeled inverted
pendulum is identified by the following generalized vectors:

q0 =
[

qd,0
qp,0

]
=

⎡

⎢⎢⎢
⎢⎢
⎣

xd,0
yd,0
θd,0
xp,0
yp,0
θp,0

⎤

⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢
⎣

0
Rd
0
0

Rd + L p
π
2

⎤

⎥⎥⎥
⎥⎥
⎦

, q̇0 = q̈0 = 0 (105)

In Table 4, the eigenvalues resulting from the stability study of the wheeled inverted pendulum derived by
employing the proposed method are reported and used as the reference solution, while the eigenvalue errors
concerning the reference solution arising from the application of the other fundamental techniques of classical
mechanics are listed immediately after.

As expected, it is apparent that the reference configuration considered for carrying out the stability study
is an unstable equilibrium configuration since the significant eigenvalue found is real and positive. Moreover,
the numerical results that are shown in Table 4 indicate that there are only small errors due to the differences
in the algorithms used to determine the solution. On the other hand, after the stability analysis, the nonlinear
equations of motion of the wheeled inverted pendulum are numerically solved to investigate the qualitative
and quantitative information resulting from the stability study by analyzing the angular displacement and the
angular velocity of the pendulum. To this end, the initial conditions of the nonlinear analysis involve a small
perturbation from the equilibrium configuration and are given by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xd,s = 0
yd,s = Rd
θd,s = 0
xp,s = L p cos(θp,s)
yp,s = Rd + L p sin(θp,s)
θp,s = θp,0 + ε

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋd,s = 0
ẏd,s = 0

θ̇d,s = 0
ẋ p,s = 0
ẏp,s = 0

θ̇p,s = 0

, ε = π

18
(106)

where xd,s is the initial horizontal displacement of the disk center ofmass, yd,s is the initial vertical displacement
of the disk center of mass, θd,s is the initial angular displacement of the disk, xp,s is the initial horizontal
displacement of the pendulum center of mass, yp,s is the initial vertical displacement of the pendulum center
ofmass, θp,s is the initial angular displacement of the pendulum, ẋd,s is the initial horizontal velocity of the disk
center of mass, ẏd,s is the initial vertical velocity of the disk center of mass, θ̇d,s is the initial angular velocity
of the disk, ẋ p,s is the initial horizontal velocity of the pendulum center of mass, ẏp,s is the initial vertical
velocity of the pendulum center ofmass, θ̇d,s is the initial angular velocity of the pendulum, and ε represents the
perturbation. The time step employed for carrying out the numerical simulation isΔt = 10−3 (s), whereas the
time interval used for studying the dynamic behavior of the wheeled inverted pendulum system is Ts = 10 (s).
In Fig. 4, the numerical results of the dynamical simulation are shown; that is, Fig. 4(a) represents the angular
displacement of the pendulum, while Fig. 4(b) represents its angular velocity.

The numerical results arising from the nonlinear dynamic analysis of the wheeled inverted pendulum
confirm the stability properties found by means of the linear stability analysis.
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Fig. 4 Angular displacement θp and angular velocity θ̇p of the second body of the wheeled inverted pendulum

Fig. 5 Spinning top multibody model

5.3 Spinning top

The third benchmark example is a three-dimensional spinning top modeled as a holonomic multibody system.
This holonomic mechanical system is shown in Fig. 5. The numerical data used for the system parameters are
reported in Table 5. The spinning top is a three-dimensional holonomic multibody system composed of one
rigid body, one spherical joint collocated in the point O of Fig. 5, and one driven motion constraint applied
to the rotation of the system around its vertical axis. Half of the height of the top is denoted with H , the
mass of the top is denoted with m, the principal mass moments of inertia of the top are, respectively, denoted
with Ixx , Iyy , and Izz , while the gravitational acceleration is denoted with g. Although the spinning top is
a mechanical system endowed with n f = 2 degrees of freedom, when a redundant coordinate formulation
approach is assumed for modeling this multibody system, one needs to employ a vector of nq = 6 generalized
coordinates. To this end, consider the following vector of generalized coordinates denoted with q ≡ q(t):

R = [
x y z

]T
, θ = [

φ θ ψ
]T (107)

and
q = [

RT θT
]T = [

x y z φ θ ψ
]T (108)

where R ≡ R(t) is the vector of translational coordinates of the spinning top, θ ≡ θ(t) is the vector of
rotational coordinates of the spinning top that coincides with the set of Euler angles based on the sequence
X-Y-Z, x ≡ x(t) is the horizontal displacement of the top center of mass, y ≡ y(t) is the lateral displacement
of the top center of mass, z ≡ z(t) is the vertical displacement of the top center of mass, φ ≡ φ(t) is the roll
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Table 5 Spinning top physical parameters

Descriptions Symbols Data (units)

Top half height H 4 × 10−2 (m)
Top mass m 1 × 10−2 (kg)
Top mass moment of inertia (x axis) Ixx 3 × 10−4 (kg × m2)

Top mass moment of inertia (y axis) Iyy 3 × 10−4 (kg × m2)

Top mass moment of inertia (z axis) Izz 4 × 10−4 (kg × m2)

Gravitational acceleration g 9.81 (m
/
s2)

angular displacement of the top, θ ≡ θ(t) is the pitch angular displacement of the top, and ψ ≡ ψ(t) is the
yaw angular displacement of the top. The kinetic energy T and the potential energyU of the spinning top are,
respectively, given by:

T = 1

2
mvTGvG + 1

2
ω̄TĪG ω̄, U = mgz (109)

where vG ≡ vG(t) is the global linear velocity of the center of mass G of the spinning top and ω̄ ≡ ω̄(t) is
the local angular velocity of the spinning top which can be, respectively, written as follows:

vG = Ṙ, ω̄ = Ḡθ̇ (110)

where the 3× 3 transformation matrix denoted with Ḡ ≡ Ḡ(t) is associated with the X-Y-Z sequence of Euler
angles and is defined as:

Ḡ =
⎡

⎣
cos(θ) cos(ψ) sin(ψ) 0

− cos(θ) sin(ψ) cos(ψ) 0
sin(θ) 0 1

⎤

⎦ (111)

On the other hand, the 3 × 3 matrix denoted with ĪG that appears in Equation 109 is the principal inertia
matrix of the spinning top referred to its center of mass and is given by:

ĪG = diag(Ixx , Iyy, Izz) (112)

The mass matrix M and the total body generalized force vector Qb of the spinning top can be, respectively,
written as follows:

M =
[

M1,1 O
O M2,2

]
, Qb =

[
Qb,1
Qb,2

]
(113)

where O is the 3 × 3 zero matrix, I is the 3 × 3 identity matrix, and

M1,1 = mI = diag(m,m,m) (114)

M2,2 = ḠT ĪGḠ

=
⎡

⎣
Izzs2θ + Ixxc2ψc

2
θ + Iyyc2θ s

2
ψ (Ixx − Iyy)cψ sψcθ Izzsθ

(Ixx − Iyy)cψ sψcθ Ixx − c2ψ(Ixx − Iyy) 0
Izzsθ 0 Izz

⎤

⎦ (115)

and

Qb,1 = mg = [
0 0 −mg

]T (116)
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Qb,2 = −ḠT ˜̄ωĪG ω̄ − ḠTĪG ˙̄Gθ̇

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

ψ̇ θ̇cθ

(
Ixx − Iyy − Izz

) + φ̇θ̇s2θ
(
Iyy − Izz

)

+θ̇2cψ sψ sθ
(
Ixx − Iyy

) + 2ψ̇ θ̇cθc2ψ
(
Iyy − Ixx

)

+2φ̇ψ̇c2θcψ sψ
(
Ixx − Iyy

) + 2φ̇θ̇c2ψcθ sθ
(
Ixx − Iyy

)

1
2 φ̇

2s2θ
(
Izz − Iyy

) + φ̇ψ̇cθ

(
Ixx − Iyy + Izz

)

+ψ̇ θ̇s2ψ
(
Iyy − Ixx

) + φ̇2c2ψcθ sθ
(
Iyy − Ixx

)

+2φ̇ψ̇c2ψcθ

(
Iyy − Ixx

)

(
Iyy − Ixx

) (
φ̇θ̇cθ − θ̇2cψ sψ + φ̇2cψc2θ sψ − 2φ̇θ̇c2ψcθ

)

−Izzφ̇θ̇cθ

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

(117)

where cα is the abbreviation of cos(α), sα is the abbreviation of sin(α), g is the gravitational acceleration
vector oriented towards the negative versus of the Z axis, and ˜̄ω is the skew-symmetric matrix associated with
the cross product with the axial vector ω̄. The holonomic constraint vector C of the spinning top system due to
the presence of the spherical joint in the point O of Fig. 5 as well as to the imposition of the rotational motion
of the spinning top can be readily written as:

C =
[

rO
ψ − ωt

]
(118)

where rO is the global position vector of the point O collocated at the bottom of the top and ω is the magnitude
of the angular velocity imposed to the system yaw angular displacement. The absolute position vector of the
point O of Fig. 5 can be expressed as:

rO = R + AūO =
⎡

⎣
x − H sin(θ)

y + H sin(φ) cos(θ)
z − H cos(φ) cos(θ)

⎤

⎦ (119)

where A is the top rotation matrix and ūO is the local position vector of the point O defined with respect to
the top body-fixed reference system. These vector and matrix quantities are, respectively, defined as:

ūO =
⎡

⎣
0
0

−H

⎤

⎦ , A = Ax̄AȳAz̄ (120)

where

Ax̄ =
⎡

⎣
1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤

⎦ , Aȳ =
⎡

⎣
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤

⎦ (121)

and

Az̄ =
⎡

⎣
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤

⎦ (122)

The holonomic constraint Jacobian matrix Cq of the spinning top system is given by:

Cq =
⎡

⎢
⎣

1 0 0 0 −H cos (θ) 0
0 1 0 H cos (φ) cos (θ) −H sin (φ) sin (θ) 0
0 0 1 H sin (φ) cos (θ) H cos (φ) sin (θ) 0
0 0 0 0 0 1

⎤

⎥
⎦ (123)

The holonomic constraint quadratic velocity vector Qd,h of the spinning top system is defined as follows:
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Qd,h =

⎡

⎢⎢
⎣

−H θ̇2 sin (θ)

H sin (φ) cos (θ)
(
φ̇2 + θ̇2

) + 2H cos (φ) sin (θ) φ̇θ̇

−H cos (φ) cos (θ)
(
φ̇2 + θ̇2

) + 2H sin (φ) sin (θ) φ̇θ̇

0

⎤

⎥⎥
⎦ (124)

In the case of the spinning top, one can analytically derive the composite matrices M̄, R̄, and K̄ associated
with the general stability analysis of this holonomic multibody system by using the computational approach
developed in this paper and starting from the system mass matrix M, the system total body generalized force
vector Qb, the system constraint vector C, the system constraint Jacobian matrix Cq, and the system constraint
quadratic velocity vector Qd,h . However, the composite matrices of the spinning top are too large to be written
in a concise form and, therefore, are not reported herein.

In the case of the spinning top, the magnitude of the angular velocity ω imposed by employing a driven
motion holonomic constraint can be used as a free parameter for studying the stability properties of the system.
For this purpose, the linearization point of the configuration space used for the stability analysis of the spinning
top is identified by the following generalized vectors:

q0 =

⎡

⎢⎢
⎢⎢
⎢
⎣

x0
y0
z0
φ0
θ0
ψ0

⎤

⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢
⎣

0
0
H
0
0
0

⎤

⎥⎥
⎥⎥
⎥
⎦

, q̇0 =

⎡

⎢⎢
⎢⎢
⎢
⎣

ẋ0
ẏ0
ż0
φ̇0
θ̇0
ψ̇0

⎤

⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢
⎣

0
0
0
0
0
ω

⎤

⎥⎥
⎥⎥
⎥
⎦

, q̈0 = 0 (125)

As expected, the eigenvalues of the linearized system depend on the angular velocity ω employed as a free
parameter of the stability study. In particular, there are two critical angular velocities equal toωc = ±5.6 (rad/s)
that delimit the border between an instability region and a marginally stable one, as it is apparent from the
stability map represented in Fig. 6, as well as by observing the root locus shown in Fig. 7, both referred to the
spinning top system.

In Table 6, the eigenvalues of the spinning top for ω = 4 (rad/s), ω = 5.6 (rad/s), and ω = 10 (rad/s) are
reported.
In Table 6, the eigenvalues resulting from the stability study of the spinning top carried out with the proposed
method are used as the reference solution, whereas the eigenvalue errors with respect to the reference solution
arising from the application of the other fundamental techniques of applied mechanics are listed immediately
after. The numerical results presented in Table 6 demonstrate that there are only negligible errors due to the
numerical procedure and the different algorithms used to compute the solution. Furthermore, for a value of
the angular velocity equal to ω = 6 (rad/s), which is above the critical value, the system is perturbed from the

Fig. 6 Spinning top stability map. The solid line ( ) represents the real part of the eigenvalues, while the dashed line ( )
represents the corresponding imaginary part. The critical angular velocities of the spinning top are, respectively, equal to ωc =
±5.6 (rad/s)
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Fig. 7 Spinning top root locus. The solid line ( ) and the dashed line ( ) represent the eigenvalue pairs of the system. The
square symbol (�) indicates the eigenvalue pairs for ω = 0 (rad/s), while the circle symbol (◦) indicates the eigenvalue pairs for
ω = 10 (rad/s). The critical angular velocities of the spinning top are, respectively, equal to ωc = ±5.6 (rad/s) and are indicated
with the diamond symbol (�)

Table 6 Spinning top eigenvalues

Analytical methods Eigenvalues Eigenvalues Eigenvalues
(ω = 4.0 (rad/s) < ωc) (ω = 5.6 (rad/s) = ωc) (ω = 10.0 (rad/s) > ωc)

Proposed approach (reference) +2.4512 ± 2.5316i 0 ± 3.1643i 0 ± 1.0717i
−2.4512 ± 2.5316i 0 ± 3.9243i 0 ± 11.5865i

Augmented formulation (error) 6.9369 × 10−15 1.0442 × 10−14 1.7015 × 10−15

Embedded technique (error) 7.7684 × 10−15 1.8726 × 10−14 5.0561 × 10−15

Amalgamated formulation (error) 6.9353 × 10−15 1.0433 × 10−14 7.6685 × 10−15

Projection method (error) 6.4355 × 10−15 2.4237 × 10−15 2.5945 × 10−15

Udwadia–Kalaba equations (error) 5.1789 × 10−15 1.9138 × 10−14 7.7058 × 10−15

initial equilibrium state to verify its dynamic behavior. To this end, the following set of initial conditions is
considered:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xs = H sin(θs)
ys = −H sin(φs) cos(θs)
zs = H cos(φs) cos(θs)
φs = 0
θs = θ0 + ε
ψs = 0

,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋs = 0
ẏs = 0
żs = 0
φ̇s = 0
θ̇s = 0
ψ̇s = ω

, ε = π

36
(126)

where xs is the initial horizontal displacement of the top center of mass, ys is the initial lateral displacement
of the top center of mass, zs is the initial vertical displacement of the top center of mass, φs is the initial roll
angular displacement of the top, θs is the initial pitch angular displacement of the top, ψs is the initial yaw
angular displacement of the top, ẋs is the initial horizontal velocity of the top center of mass, ẏs is the initial
lateral velocity of the top center of mass, żs is the initial vertical velocity of the top center of mass, φ̇s is the
initial roll angular velocity of the top, θ̇s is the initial pitch angular velocity of the top, ψ̇s is the initial yaw
angular velocity of the top, and ε represents the perturbation. The time step employed for carrying out the
numerical simulation is Δt = 10−3 (s), whereas the time interval used for studying the dynamic behavior of
the spinning top system is Ts = 60 (s). The numerical results of the dynamical simulation are shown in Figs. 8
and 9.

In particular, Figs. 8a and 9a, respectively, represent the roll angular displacement and the pitch angular
displacement of the spinning top, while the corresponding angular velocities are, respectively, shown in Figs. 8b
and 9b. The numerical results arising from the nonlinear dynamic analysis of the spinning top confirm the
stability properties found by means of the linear stability analysis.
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(a) Roll angular displacement φ.
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(b) Roll angular velocity φ̇.

Fig. 8 Roll angular displacement φ and roll angular velocity φ̇ of the spinning top in the stable region for ω = 6.0 (rad/s)
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(a) Pitch angular displacement θ.
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(b) Pitch angular velocity θ̇.

Fig. 9 Pitch angular displacement θ and pitch angular velocity θ̇ of the spinning top in the stable region for ω = 6.0 (rad/s)

C

Fig. 10 Rolling disk multibody model

5.4 Rolling disk

The fourth numerical example is a three-dimensional rolling disk modeled as a nonholonomic multibody
system. This nonholonomic mechanical system is shown in Fig. 10.

The numerical data used for the system parameters are reported in Table 7.
The rolling disk is a three-dimensional nonholonomic multibody system composed of one rigid body, one

contact constraint between the disk and the ground collocated in the point C of Fig. 10, one driven motion
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Table 7 Rolling disk physical parameters

Descriptions Symbols Data (units)

Disk radius R 0.3 (m)
Disk width W 0.05 (m)
Disk mass m 2 (kg)
Disk mass moment of inertia (x axis) Ixx 0.0454 (kg × m2)

Disk mass moment of inertia (y axis) Iyy 0.0454 (kg × m2)

Disk mass moment of inertia (z axis) Izz 0.0900 (kg × m2)

Gravitational acceleration g 9.81 (m
/
s2)

constraint applied to the rotation of the system around its vertical axis, and two pure rolling nonholonomic
constraints collocated in the point C of Fig. 10. The radius of the disk is indicated with R, the width of the
disk is indicated withW , the mass of the disk is indicated withm, the principal mass moments of inertia of the
disk are, respectively, indicated with Ixx , Iyy , and Izz , while the gravitational acceleration is indicated with g.
Although the rolling disk is a mechanical system endowed with n f = 4 degrees of freedom, when a redundant
coordinate formulation approach is used for modeling this multibody system, a vector of nq = 6 generalized
coordinates is necessary. For this purpose, the generalized coordinate vector q of the rolling disk is identical
to the generalized coordinate vector of the spinning top given in Equation 108. Consequently, the mass matrix
M and the total body generalized force vector Qb of the rolling disk are also identical to those of the spinning
top reported in Equation 113. The total vector of holonomic constraints C of the rolling disk system due to the
presence of the contact between the disk and the ground in the point C of Fig. 10, as well as to the imposition
of the rotational motion of the rolling disk, can be readily written as:

C =
[

kTrC
ψ − ωt

]
=

[
z − R sin(φ)

ψ − ωt

]
(127)

where k is the unit vector associated with the Z axis of the absolute reference frame, rC is the global position
of the contact point C collocated on the disk, and ω is the magnitude of the angular velocity imposed to the
system pitch angular displacement. The position vector rC is explicitly defined as follows:

rC = R + AūC =
⎡

⎣
x

y − R cos(φ)
z − R sin(φ)

⎤

⎦ (128)

where R is the global position vector of the disk center of mass, A is the disk rotation matrix, and ūC is the
local position vector of the contact point C defined with respect to the disk body-fixed reference frame given
by:

ūC =
⎡

⎣
−R sin(ψ)
−R cos(ψ)

0

⎤

⎦ (129)

The holonomic constraint Jacobian matrix Cq of the rolling disk system is given by:

Cq =
[
0 0 1 −R cos (φ) 0 0
0 0 0 0 0 1

]
(130)

The holonomic constraint quadratic velocity vector Qd,h of the rolling disk is defined as follows:

Qd,h =
[−φ̇2R sin (φ)

0

]
(131)

On the other hand, the pure rolling condition is mathematically expressed by two nonholonomic constraint
equations. For this purpose, the longitudinal and lateral velocities of the disk contact point C are set equal to
zero. Thus, the nonholonomic constraint vector D of the rolling disk can be written as:

D =
[

iTvC
jTvC

]
=

[
ẋ + R cos(θ)ψ̇

ẏ + R sin(φ)
(
φ̇ + sin(θ)ψ̇

)
]

(132)
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where i is the unit vector associated with the X axis of the absolute reference frame, j is the unit vector
associated with the Y axis of the absolute reference frame, and vC is the absolute velocity vector of the contact
point C that can be explicitly computed as follows:

vC = Ṙ + ȦūC =
⎡

⎣
ẋ + R cos(θ)ψ̇

ẏ + R sin(φ)
(
φ̇ + sin(θ)ψ̇

)

ż − R cos(φ)
(
φ̇ + sin(θ)ψ̇

)

⎤

⎦ (133)

The nonholonomic constraint Jacobian matrix Dq̇ of the rolling disk system is given by:

Dq̇ =
[
1 0 0 0 0 R cos (θ)
0 1 0 R sin (φ) 0 R sin (φ) sin (θ)

]
(134)

The nonholonomic constraint quadratic velocity vector Qd,nh of the rolling disk is defined as follows:

Qd,nh =
[

Rψ̇ θ̇ sin (θ)

−Rφ̇ cos (φ)
(
φ̇ + ψ̇ sin (θ)

) − Rθ̇ ψ̇ cos (θ) sin (φ)

]
(135)

In the case of the rolling disk, one can analytically derive the composite matrices M̄, R̄, and K̄ associated
with the general stability analysis of this nonholonomicmultibody system by using the computational approach
developed in this paper and starting from the system mass matrix M, the system total body generalized force
vector Qb, the total constraint vector E, the total constraint Jacobian matrix J, and the total constraint quadratic
velocity vector Qd . However, the composite matrices of the rolling disk are too large to be written in a concise
form and, therefore, are not reported herein.

It is important to note that, in the case of the rolling disk, the magnitude of the angular velocity ω imposed
by employing a driven motion holonomic constraint can be employed as a free parameter for studying the
stability properties of the system. To this end, the linearization point of the configuration space used for the
stability analysis of the rolling disk is identified by the following generalized vectors:

q0 =

⎡

⎢
⎢⎢
⎢⎢
⎣

x0
y0
z0
φ0
θ0
ψ0

⎤

⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎣

0
0
R
π
2
0
0

⎤

⎥
⎥⎥
⎥⎥
⎦

, q̇0 =

⎡

⎢
⎢⎢
⎢⎢
⎣

ẋ0
ẏ0
ż0
φ̇0
θ̇0
ψ̇0

⎤

⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎣

−Rω
0
0
0
0
ω

⎤

⎥
⎥⎥
⎥⎥
⎦

, q̈0 = 0 (136)

As expected, the eigenvalues of the linearized system depend on the angular velocity ω used as a free
parameter of the stability study. In particular, there are two critical angular velocities equal toωc = ±3.4 (rad/s)
that delimit the border between an instability region and a marginally stable one, as it is apparent from the
stability map represented in Fig. 11, as well as by observing the root locus shown in Fig. 12, both referred to
the rolling disk system.

In Table 8, the eigenvalues of the rolling disk for ω = 1 (rad/s), ω = 3.4 (rad/s), and ω = 5 (rad/s) are
reported.
In Table 8, the eigenvalues resulting from the stability study of the rolling disk carried out with the proposed
method are used as the reference solution, whereas the eigenvalue errors with respect to the reference solution
arising from the application of the other fundamental techniques of applied mechanics are listed immediately
after. Moreover, for a value of the angular velocity equal to ω = −3.8 (rad/s), which is above the critical
value, the system is perturbed from the initial equilibrium state to verify its dynamic behavior. To this end, the
following set of initial conditions is considered:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xs = 0
ys = 0
zs = R
φs = π

2
θs = 0
ψs = 0

,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋs = −Rω
ẏs = 0
żs = 0
φ̇s = φ̇0 + ε

θ̇s = 0
ψ̇s = ω

, ε = 0.1 (137)

where xs is the initial horizontal displacement of the disk center of mass, ys is the initial lateral displacement
of the disk center of mass, zs is the initial vertical displacement of the disk center of mass, φs is the initial roll
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Fig. 11 Rolling disk stability map. The solid line ( ) represents the real part of the eigenvalues, while the dashed line
( ) represents the corresponding imaginary part. The critical angular velocities of the rolling disk are, respectively, equal to
ωc = ±3.4 (rad/s)
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Fig. 12 Rolling disk root locus. The solid line ( ) and the dashed line ( ) represent the eigenvalue pair of the system. The
square symbol (�) indicates the eigenvalue pair for ω = 0 (rad/s), while the circle symbol (◦) indicates the eigenvalue pair for
ω = 10 (rad/s). The critical angular velocities of the rolling disk are, respectively, equal to ωc = ±3.4 (rad/s) and are indicated
with the diamond symbol (�)

angular displacement of the disk, θs is the initial yaw angular displacement of the disk, ψs is the initial pitch
angular displacement of the disk, ẋs is the initial horizontal velocity of the disk center of mass, ẏs is the initial
lateral velocity of the disk center of mass, żs is the initial vertical velocity of the disk center of mass, φ̇s is
the initial roll angular velocity of the disk, θ̇s is the initial yaw angular velocity of the disk, ψ̇s is the initial
pitch angular velocity of the disk, and ε represents the perturbation. The time step employed for carrying out
the numerical simulation is Δt = 10−3 (s), whereas the time interval used for studying the dynamic behavior
of the rolling disk system is Ts = 60 (s). The numerical results of the dynamical simulation are shown in
Figs. 13 and 14.

In particular, Figs. 13a and 14a, respectively, represent the roll angular displacement and the yaw angular
displacement of the rolling disk,while the corresponding angular velocities are, respectively, shown in Figs. 13b
and 14b. The numerical results arising from the nonlinear dynamic analysis of the rolling disk confirm the
stability properties found by means of the linear stability analysis.
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Table 8 Rolling disk eigenvalues

Analytical methods Eigenvalues Eigenvalues Eigenvalues
(ω = 1.0 (rad/s) < ωc) (ω = 3.4 (rad/s) = ωc) (ω = 5.0 (rad/s) > ωc)

Proposed approach (reference) ±4.8722 0 ± 0.4570i 0 ± 5.7644i
Augmented formulation (error) 1.908 × 10−8 4.4640 × 10−7 2.2261 × 10−14

Embedded technique (error) 1.912 × 10−8 4.4538 × 10−7 2.2473 × 10−14

Amalgamated formulation (error) 1.900 × 10−8 4.4721 × 10−7 2.2233 × 10−14

Projection method (error) 1.821 × 10−8 4.4543 × 10−7 2.2209 × 10−14

Udwadia–Kalaba equations (error) 1.917 × 10−8 4.4622 × 10−7 2.2211 × 10−14
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(a) Roll angular displacement φ.
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(b) Roll angular velocity φ̇.

Fig. 13 Roll angular displacement φ and roll angular velocity φ̇ of the rolling disk in the stable region for ω = −3.8 (rad/s)

0 10 20 30 40 50 60
-0.2

-0.1

0

0.1

0.2

(a) Yaw angular displacement θ.

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

0.4

(b) Yaw angular velocity θ̇.

Fig. 14 Yaw angular displacement θ and yaw angular velocity θ̇ of the rolling disk in the stable region for ω = −3.8 (rad/s)

5.5 Watt centrifugal governor

The fifth and last example is a three-dimensional multibody model of a Watt regulator. In Fig. 15, a simplified
scheme of the mechanical system of interest is shown. In Fig. 15a, all the essential geometric information of
the mechanical model is reported. For the sake of clarity, the orientations and the origins of all the body-fixed
reference frames are shown in Fig. 15b. In Table 9, the numerical values used for all the physical parameters
necessary for the computer implementation of the multibody model are listed.
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(a) Geometric scheme. (b) Reference systems.
Fig. 15 Watt centrifugal governor multibody model

Table 9 Watt centrifugal governor physical parameters

Descriptions Symbols Data (units)

Reference bar length L 50 × 10−3 (m)
Reference bar radius R 2 × 10−3 (m)
Reference disk radius H 20 × 10−3 (m)
Spring geometric coefficient η

√
2 (−)

Spring unstretched length l0 7.07 × 10−3 (m)
Shaft mass ms 6 (kg)
Bar mass mb 4 (kg)
Slider mass mp 5 (kg)
Concentrated mass mc 3 (kg)
Spring stiffness coefficient k 2010 (N/m)
Damper viscous coefficient σ 10 (N × s/m)

Gravitational acceleration g 9.81 (m
/
s2)

The mechanical model of the Watt regulator is composed of six rigid bodies and eight kinematic joints.
The bodies that form the multibody system are the regulator shaft, the right crank, the right connecting
rod, the slider, the left connecting rod, and the left crank. These rigid bodies are identified with the label
i and are, respectively, numbered from i = 1 to i = 6. For simplicity, the six rigid bodies forming the
system are all modeled as cylinders. Moreover, an additional disk attached to the shaft is considered and two
concentrated masses, respectively, attached to the extremal points of the right and left connecting rods are also
included in the mechanical model to stress the centrifugal effects that influence the dynamical behavior of
the Watt regulator. The characteristic parameters that define the multibody system are three reference lengths,
respectively, identified with L , H , and R, as well as four reference masses, respectively, indicated with ms ,
mb,mp, andmc. The gravity acceleration is assumed to be acting along the vertical axis of the global reference
frame and is denoted as g. The mechanical model of the centrifugal governor is completed including an elastic
spring having a stiffness coefficient k and a viscous dashpot having a damping coefficient σ that act in parallel
between the additional disk attached to the shaft and the slider. Furthermore, another physical quantity of
interest that can significantly influence the system dynamical behavior is the unstretched length of the spring
that is denoted with l0. For simplicity, this parameter can be defined as a function of the reference length L as
l0 = ηL , where η is a positive real number. In Table 10, the geometric dimensions of the bodies that form the
multibody model of the centrifugal regulator and their inertial parameters are reported.
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Table 10 Watt centrifugal governor reference parameters

Body name Body number Body half length Body mass

Ground 0 – –
Shaft 1 2L ms
Right crank 2 2L mb
Right connecting rod 3 L mb
Slider 4 H mp
Left connecting rod 5 L mb
Left crank 6 2L mb
Additional body a H mp
Right concentrated mass I – mc
Left concentrated mass I I – mc

Considering a three-dimensional space, the geometric configuration of each body is described using three
displacement coordinates, namely the Cartesian coordinates of the body reference point, respectively, denoted
as xi ≡ xi (t), yi ≡ yi (t), and zi ≡ zi (t), and three rotational coordinates, being the set of Euler angles,
respectively, denoted with φi ≡ φi (t), θi ≡ θi (t), and ψi ≡ ψi (t). Consequently, the generalized coordinate
vector denoted with qi ≡ qi (t) for each generic body i assumes the following simple form:

qi = [
xi yi zi φi θi ψi

]T (138)

where i = 1, 2, . . . , 6 indicates the number of the single rigid body. The vector of the generalized coordinates
of the multibody system is denoted with q ≡ q(t) and can be written as:

q = [
qT
1 qT

2 qT
3 qT

4 qT
5 qT

6

]T
(139)

Thus, themultibodymodel of theWatt regulator is described using a set of nq = 36 generalized coordinates.
Considering as rotational coordinates the set of Euler angles associated with the sequence X-Y-Z, the rotation
matrices of each body are defined as follows:

Ai = Ax̄i Aȳi Az̄i (140)

where Ai is the rotation matrix of the generic body i , while Ax̄i , Aȳi , and Az̄i denote the relative rotation
matrices associated with the rotations around the axes of the local reference frames that are, respectively, given
by:

Ax̄i =
⎡

⎣
1 0 0
0 cos(φi ) − sin(φi )
0 sin(φi ) cos(φi )

⎤

⎦ , Aȳi =
⎡

⎣
cos(θi ) 0 sin(θi )

0 1 0
− sin(θi ) 0 cos(θi )

⎤

⎦ (141)

and

Az̄i =
⎡

⎣
cos(ψi ) − sin(ψi ) 0
sin(ψi ) cos(ψi ) 0

0 0 1

⎤

⎦ (142)

The system mass matrix M and the system total body generalized force vector Qb can be, respectively,
written as:

M = diag(M1, M2, M3, M4, M5, M6) (143)

and
Qb = [

QT
b,1 QT

b,2 QT
b,3 QT

b,4 QT
b,5 QT

b,6

]T
(144)

where Mi and Qb,i , respectively, denote the mass matrix and the total body generalized force vector associated
with the generic body i that are identical to those of the spinning top reported in Equation 113. In particular,
the inertial contribution of the additional body is considered in the definition of the shaft mass matrix and its
corresponding inertia quadratic velocity vector, while the inertial contributions of the concentrated masses are,
respectively, included in the mass matrices of the right and left cranks and their corresponding inertia quadratic
velocity vectors. On the other hand, eight different sets of holonomic constraints are considered for describing
the kinematic joints of the multibody system employed as a mechanical model of the Watt regulator. The joint
types considered in the mechanical model are revolute joints, prismatic joints, universal joints, and spherical
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Table 11 Watt centrifugal governor kinematic joints

Kinematic
joint number

Kinematic
joint type

First body
number

Second body
number

First body
collocation
point

Second body
collocation
point

First body
local joint
axis
components

Second body
local joint
axis
components

1 Revolute 1 0 O O 0, 0, 1 0, 0, 1
2 Revolute 1 2 A A 0, 1, 0 0, 0, 1
3 Universal 2 3 B B 1, 0, 0 0, 0, 1
4 Spherical 3 4 C C – –
5 Prismatic 4 1 D O 0, 0, 1 0, 0, 1
6 Spherical 4 5 E E – –
7 Universal 5 6 F F 0, 0, 1 1, 0, 0
8 Revolute 6 1 G G 0, 0, 1 0, 1, 0

joints. The particular set of kinematic joints employed formodeling the centrifugal governor is cleverly selected
for avoiding redundancies in the holonomic algebraic constraint equations and, at the same time, to obtain a
spatial mechanism having n f = 2 degrees of freedom. The information relative to the nature of the mechanical
joints considered in the multibody model is reported in Table 11.

As discussed below, the analytical expressions of a generic holonomic constraint vector that is labeled
with the integer number k and is used in the multibody model of the centrifugal governor, is denoted with
Ck ≡ Ck(qi , q j , t), where qi ≡ qi (t) and q j ≡ q j (t) are the generalized coordinate vectors associated with
the generic rigid bodies i and j involved in the kinematic pair. In particular, the analytical expression of the
constraint equations associated with the revolute joint is given by the following constraint vector:

Ck =
⎡

⎣
ri (Pi ) − r j (Pj )

(vi2)
T

v j
1

(vi3)
T

v j
1

⎤

⎦ (145)

where Pi is the first point belonging to the first body involved in the kinematic pair labeled with the integer
number i , Pj is the second point belonging to the second body involved in the kinematic pair labeled with the
integer number j , ri (Pi ) is the global position vector of the point Pi , r j (Pj ) is the global position vector of
the point Pj , vi1 is the global direction vector of the joint axis individuated with respect to the first body of

the kinematic pair, v j
1 is the global direction vector of the joint axis individuated with respect to the second

body of the kinematic pair, vi2 and vi3 are two global vectors that are orthogonal to the joint axis vector defined

with respect to the first body of the kinematic pair, while v j
2 and v j

3 are two global vectors that are orthogonal
to the joint axis vector defined with respect to the second body of the kinematic pair. In particular, one can
express the global direction vectors associated with the joint axis of each body in terms of the corresponding
local direction vectors as follows:

{
vi1 = Ai v̄i1, vi2 = Ai v̄i2, vi3 = Ai v̄i3
v j
1 = A j v̄

j
1, v j

2 = A j v̄
j
2, v j

3 = A j v̄
j
3

(146)

where the direction vectors v̄i1, v̄i2, and v̄i3 are defined with respect the body i local reference frame, while

the direction vectors v̄ j
1, v̄ j

2 , and v̄ j
3 are defined with respect the body j local reference frame, as shown in

Table 11. The analytical expression of the constraint equations associated with the universal joint is given by
the following constraint vector:

Ck =
[

ri (Pi ) − r j (Pj )

(vi1)
T

v j
1

]
(147)

The analytical expression of the constraint equations associated with the spherical joint is given by the
following constraint vector:

Ck = ri (Pi ) − r j (Pj ) (148)
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The analytical expression of the constraint equations associated with the prismatic joint is given by the
following constraint vector:

Ck =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

(vi2)
T (

ri (Pi ) − r j (Pj )
)

(vi3)
T (

ri (Pi ) − r j (Pj )
)

(vi1)
T

v j
2

(vi1)
T

v j
3

(wi )
T

w j − ci, j0

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

(149)

where wi and w j are two global direction vectors, respectively, associated with the rigid bodies i and j that
form the kinematic pair which are, respectively, defined as:

{
wi = aivi2 + bivi3
w j = a jv j

2 + b jv j
3

(150)

where ai , bi , a j , and b j are nonzero real numbers, whereas ci, j0 is the dot product of the global vectors wi

and w j evaluated at the initial instant of time. Considering the geometric information reported in Table 11,
the algebraic equations associated with the kinematic joints can be particularized for each kinematic pair,
where the integer numbers i and j are, respectively, employed for identifying the first and second body of the
kinematic pair. By doing so, the total constraint vector C relative to the multibody model of the Watt regulator
can be written as follows:

C = [
CT
1 CT

2 CT
3 CT

4 CT
5 CT

6 CT
7 CT

8

]T
(151)

where C1, C2, and C8 are constraint vectors modeling revolute joints, C3 and C7 are constraint vectors
modeling universal joints, C4 and C6 are constraint vectors modeling spherical joints, and C5 is a constraint
vector modeling a prismatic joint. On the other hand, one nonholonomic constraint equation is employed to
impose a prescribed time law for the angular velocity of the shaft that is identified by the generalized velocity
coordinate ψ̇1. For this purpose, one can write:

D = ψ̇1 − fω (152)

where the nonholonomic constraint equation used to define the rotational velocity law of the shaft is based on
a piecewise cubic function denoted with fω and given by:

fω =
{(

3τ 2 − 2τ 3
)
ω, 0 ≤ τ < 1

ω, τ ≥ 1
, τ = t

Tc
(153)

where t is the time variable, ω is the imposed steady-state constant angular velocity, and Tc is the total duration
of the transient of the piecewise cubic function. The total number of holonomic and nonholonomic algebraic
constraints involved in themultibodymodel of themechanical system is nc = 35. At this stage, as in the case of
the other demonstrative examples presented before, by means of simple mathematical manipulations one can
readily obtain the holonomic constraint Jacobian matrix Cq, the nonholonomic constraint Jacobian matrix Dq̇,
the holonomic constraint quadratic velocity vector Qd,h , and the nonholonomic constraint quadratic velocity
vector Qd,nh . Subsequently, by using the proposed approach and considering the analytical expression of the
system mass matrix M as well as the mathematical form of the system total body generalized force vector Qb,
the composite mass, damping, and stiffness matrices M̄, R̄, and K̄ can be analytically derived. However, the
analytical expressions of the vector and matrix quantities mentioned before are too long and complex to be
written in a concise form and, therefore, are not reported in the paper.

The stability of the multibody model of the Watt centrifugal governor was analyzed in four different
reference configurations. The first analysis was carried out in a reference configuration of static equilibrium,
namely when ω = 0 (rad/s) and the mechanical system is at rest. The other three reference configurations
were obtained by linearizing the equations of motion around the dynamic equilibrium configurations found for
three different angular velocities which are ω = 10 (rad/s), ω = 20 (rad/s), and ω = 30 (rad/s). In particular,
the static equilibrium configuration used as the first reference configuration was analytically calculated and
numerically verified as follows. First of all, a particular configuration which corresponds to a specific value
of the angle α represented in Fig. 15a was chosen. Then, the numerical value of the spring stiffness k was
analytically computed for imposing that the geometric configuration prescribed before is a configuration of
static equilibrium for the mechanism that forms the centrifugal regulator. Furthermore, a dynamical simulation
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Fig. 16 Angular displacement α and angular velocity α̇ of the right crank. The solid line ( ) corresponds to ω = 10 (rad/s),
the dashed line ( ) corresponds to ω = 20 (rad/s), and the dotted line ( ) corresponds to ω = 30 (rad/s)
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(a) Vertical displacement z4.
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Fig. 17 Vertical displacement z4 and vertical velocity ż4 of the slider. The solid line ( ) corresponds to ω = 10 (rad/s), the
dashed line ( ) corresponds to ω = 20 (rad/s), and the dotted line ( ) corresponds to ω = 30 (rad/s)

was run to verify that the configuration selected as a reference is indeed a static equilibrium configuration.
The numerical values used for performing the dynamical simulations are listed in Table 10. In particular,
the static equilibrium configuration is set for αs,e = 5π

/
3 = 5.236 (rad). Subsequently, starting from the

configuration of static equilibrium, three dynamic simulations were performed for three different values of
the angular velocity ω imposed to the shaft of the Watt regulator. As expected, after a short transient, the
constant velocity imposed by means of the nonholonomic constraint was reached by the mechanism. Once the
reference angular velocity is maintained by the centrifugal governor, the reference configurations of dynamic
equilibrium are, respectively, identifiedwith the angular displacements of the right crank, namely αd,e = 5.566
(rad), αd,e = 5.885 (rad), and αd,e = 6.050 (rad), which, respectively, correspond to the three values used for
the angular velocity imposed on the shaft, that is, ω = 10 (rad/s), ω = 20 (rad/s), and ω = 30 (rad/s). In
order to demonstrate this fact, the numerical results of the dynamical simulations are represented in Figs. 16
and 17.

In Fig. 16a, b, the angular displacement ψ2 and the angular velocity ψ̇2 of the right crank, which, respec-
tively, coincides with the angle α and its time derivative α̇, are, respectively, shown in correspondence of the set
of three angular velocities imposed on the shaft of the centrifugal governor. Figure 17a, b, respectively, repre-
sents the vertical displacement and the vertical velocity of the slider obtained from the dynamical simulations
carried out in the same conditions. The time step used for all the dynamical simulations is Δt = 10−3 (s),
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Table 12 Watt centrifugal governor eigenvalues

Analytical Method Eigenvalues
(ω = 0 (rad/s))

Eigenvalues
(ω = 10.0 (rad/s))

Eigenvalues
(ω = 20.0 (rad/s))

Eigenvalues
(ω = 30.0 (rad/s))

Proposed approach − 0.1648 ± 8.1383i − 0.2720 ± 12.762i − 0.3273 ± 17.721i − 0.3417 ± 23.037i

while the time span used for analyzing the dynamics of the centrifugal regulator system is Ts = 30 (s).
Finally, the stability analysis of the Watt regulator was performed using the proposed method considering as
reference configurations the generalized position of static equilibrium and the three generalized positions of
dynamic equilibrium found through the use of numerical simulations based on the nonlinear dynamical model.
As expected, the centrifugal governor results to be qualitatively stable in all the four generalized positions
taken into account. This fact is quantitatively confirmed by the eigenvalue analysis, as shown from the list of
significant system eigenvalues reported in Table 12.

Therefore, for all the angular velocities considered, all the generalized positions of dynamic equilibrium
found are asymptotically stable since they correspond to complex conjugate eigenvalues having negative real
parts. In fact, for the set of physical parameters considered, the multibodymodel of theWatt governor is always
stable in the case of both static and dynamic equilibrium configurations. Qualitatively, this mechanical system
becomes more stable with the growth of the angular velocity. At the same time, as one could expect from
practical experience, an increase in the frequency of oscillation can be noted since the imaginary part of the
system eigenvalues become larger when the angular velocity of the shaft is increased. In particular, both the
modules of the real and imaginary parts of the system eigenvalues increase when the module of the angular
velocity grows. It is also important to note that this last numerical example clearly shows the advantages of
the method proposed in this paper considering a multibody model that is relatively more complex than the
other systems presented in the section of numerical results. More importantly, the proposed method allows for
performing the indirect stability analysis of a multibody system in a simple and effective manner even in a case
in which the other well-established methods of applied mechanics turn out to be unsuitable for the analysis
since they involve excessively complex symbolic-numeric computations. For this reason, only the numerical
results arising from the eigenvalue analysis carried out by using the technique devised in this paper are reported
in Table 12.

5.6 Discussion

In this section, five simple exampleswere presented for demonstrating the effectiveness of the proposedmethod
and compare it with other analytical techniques available in the literature. As expected, despite the presence of
fundamental differences in the analytical approaches used for studying the stability starting from the same sets
of equations of motion, the results of the stability analysis of the benchmark systems considered as numerical
examples are the identical, thereby validating the efficacy of the analytical technique developed in this work.
In particular, the five numerical examples considered in this section showed that the method presented in this
paper leads to a simple analytical formulation of the stability problem, as well as a straightforward computer
implementation of the vector and matrix quantities involved in the definition of the subroutines necessary for
performing dynamical simulations. Furthermore, the method developed in this work proved to be effective
for describing both holonomic and nonholonomic systems in the same computational framework. In fact,
the numerical results obtained from the use of the proposed approach coincide with those arising from the
implementation of the fundamental analytical techniques of applied mechanics.

For the first four demonstrative examples presented in this section, two types of dynamic analysis are
consecutively performed, that is, a linear stability analysis and a nonlinear transient analysis. The first type of
dynamic analysis allows for obtaining useful information about the nonlinear system stability (or instability)
by observing the values of the eigenvalues of the linearized system state matrix. After that, the nonlinear
transient analysis can be used to validate and verify the stability information obtained from the analysis of
the linearized system. In the fifth numerical example, on the other hand, the sequence of the two analysis
was reversed; that is, first a set of configurations of dynamic equilibrium was found by means of nonlinear
dynamical simulations that used the static equilibrium configuration as initial condition and, subsequently, a
set of linear stability problems was solved for assessing the stability of the system in the neighborhood of the
steady-state configuration found at the end of the transient analysis.
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For all the systems considered as numerical examples, both the linear andnonlinear analyseswere performed
by using a general-purpose computer program developed by the authors in the multiparadigm numerical
computing environment referred to as MATLAB. To this end, the six analytical methods of interest for this
investigation (the proposed approach together with the augmented formulation, the embedding technique,
the amalgamated formulation, the projection method, and the Udwadia–Kalaba equations) were implemented
following amixedmethodology, namely by using a hybrid symbolic-numeric approach to analyze the nonlinear
equations of motion and the linearized state-space model. In particular, the MATLAB built-in function called
EIG that is based on the Schur decomposition algorithm was employed for determining the eigenvalues of the
generalized state matrices, whereas theMATLAB built-in function called ODE113 based on the variable-order
Adams–Bashforth–Moulton predictor–corrector scheme was used for the numerical solutions of the equations
of motion since these subroutines turned out to be the most reliable built-in functions of MATLAB suitable
for the present work [85,86].

As can be seen from the numerical experiments described in this section, the proposed analytical method
is well suited to study both holonomic and nonholonomic multibody mechanical systems and gives the same
numerical results of the other well-known analytical approaches. In particular, the most interesting results are
those relative to the stability maps of the spinning top and of the rolling disk models. Even though the first is a
holonomic system while the second is a nonholonomic one, the stability results of these mechanical systems
have some aspect in common, as one could intuitively expect in advance. First of all, as can be seen in Figs. 6,
7, 8 and 12, both systems show a symmetric behavior as far as the stability with respect to the variation of the
angular velocity parameter is concerned. In fact, regardless of the direction of the motion, there is a critical
angular velocity denoted with ωc that marks the transition between the unstable and the marginally stable
regions. The same behavior is observed if the motion of the system is reversed. Thus, if the angular velocity of
the system is above the critical value denoted with ωc and the system is slightly perturbed from its equilibrium
configuration, it will stably oscillate around that position. As shown in Figs. 8, 9, 13 and 14, both the spinning
top and the rolling disk have a periodic dynamic response as a result of a small perturbation when they are
rotating faster than the critical angular velocity, while the systems are unstable for the same perturbation when
their angular velocity is below the critical value ωc.

In summary, except in the case of the last demonstrative example, for all the dynamical models of simple
mechanical systems considered in the paper, the numerical results of the stability analysis arising from the
proposed approach are substantially the same as those obtained by using other well-established methods
implemented in the case of both holonomic and nonholonomic multibody systems. The proposed method,
therefore, can be used with high confidence and represents a viable analytical approach for modeling and
studying complex multibody mechanical systems. Furthermore, by observing the performance of the proposed
method in comparison with the conventional approaches used in the dynamics of multibody systems, the
following simple conclusions can be drawn. In the case of the stability problem relative to an open-chain
multibody system modeled by a relatively small number of generalized coordinates and algebraic constraints,
as the first four numerical examples presented in the paper, both the proposed method and the conventional
techniques found in the literature can be indifferently used leading to the same set of numerical results.
Conversely, when one deals with a closed-chain multibody system characterized by a relatively large number
of generalized coordinates and algebraic constraints, as in the case of the fifth and last numerical example
considered in this work, the conventional techniques aimed at performing the stability analysis fail. This is
because these techniques involve a very large computational burden associatedwith the symbolicmanipulations
necessary for calculating the generalized acceleration vector and the vector of Lagrange multipliers involved
in the linearization process. In this last case, which is very common in multibody applications of engineering
interest, the challenging issues encountered during the analysis of complex systems can be effectively and
efficiently solved by using the stability method devised in this paper.

6 Summary, conclusions, and future directions of research

This paper is part of a broad research plan devised by the authors considering three important fields of research,
namely the kinematics and dynamics of multibody mechanical systems [87–89], the analytical methods for
constructing effective control policies suitable for guiding the dynamic behavior of nonlinear systems [90–92],
and the computational techniques for estimating and/or identifying the output response of a mechanical system
in relation to prescribed inputs bymeans of an in-depth analysis of past input-output data sets [93–95]. Thus, this
investigation is focused on the study of the stability properties of multibodymechanical systems and is aimed at
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subsequent developments of control laws and identification patterns. In this paper, a new method for analyzing
the stability characteristics of multibody mechanical systems is proposed. Multibody systems are mechanical
systems whose motion is limited by the action of position-level kinematic joints (holonomic constraints) as
well as by the presence of special dynamic behaviors prescribed by velocity-level and/or acceleration-level
algebraic equations (nonholonomic constraints). Therefore, the stability analysis of this family of mechanical
systems is particularly challenging.

The methodology developed in this paper considers the general case in which the multibody system of
interest is described by a nonlinear set of differential-algebraic equations resulting from the application of the
basic principle of classical mechanics, such as the D’Alembert–Lagrange principle of virtual work combined
with the Lagrange multipliers technique. The differential-algebraic equations of motion are subsequently
linearized around the configuration point of interest in the state space to carry out a stability analysis employing
a special spectral decomposition. While the solution of the eigenproblem obtained following the traditional
approaches described herein is straightforward, the main difficulty resides in the analytical determination
of the generalized acceleration vector of the multibody system under consideration. To this end, several
formulation approaches can be used leading to various degrees of complexity. On the other hand, unlike the
standard approaches commonly used in the literature, the proposed method allows for operating directly on the
original set of nonlinear equations ofmotion, without resorting to transformation techniques for eliminating the
presence of the constraint generalized force vector that lead to equivalent sets of nonlinear ordinary differential
equations describing themotionof themultibody systemof interest. For this purpose, an appropriate generalized
eigenvalue problem is defined considering the linearization of the differential-algebraic equations of motion
in order to evaluate the stability of a general multibody mechanical system around a given set point, without
altering the original index-three structure of the dynamic equations. The generality of the method developed
in this work allows for performing a straightforward implementation in general-purpose multibody computer
codes and can significantly extend their capabilities of analysis also in the case of more complex mechanical
systems.

The analytical approach proposed in this investigation is compared with other viable methods used in the
field of applied dynamics by means of simple numerical experiments based on benchmark multibody systems
subjected to holonomic and/or nonholonomic constraints. For this purpose, five demonstrative examples are
considered to provide a step-by-step illustration of the mathematical formulation and the computer imple-
mentation of the stability technique introduced in the paper. The first illustrative example is focused on the
study of the stable equilibrium configuration of a physical pendulummodeled as a two-dimensional multibody
system constrained by kinematic joints of holonomic nature. The second numerical example is concerned with
the determination of the unstable configuration of a two-dimensional wheeled inverted pendulum in which
position-level constraints are present in addition to velocity-level algebraic equations. The third numerical
example is a three-dimensional spinning top subjected only to holonomic constraints of which the critical
angular velocity associated with the motion of precession is found. The fourth numerical example deals with
the construction of the stabilitymap of a disk rollingwithout slipping on a horizontal plane and, therefore, it can
be readily used for demonstrating the effectiveness of the proposed approach in the case of a three-dimensional
multibody system subjected to both holonomic and nonholonomic constraints. The fifthmultibody system con-
sidered as an illustrative example is a simple three-dimensional model of a Watt centrifugal governor that is
modeled using holonomic and nonholonomic constraints, of which the stability is studied and the config-
uration of dynamic equilibrium is identified by using a nonlinear transient analysis starting from the static
equilibrium configuration. In order to perform a comprehensive comparative analysis, five well-established
analytical approaches are considered for obtaining reference solutions, namely the augmented formulation, the
embedding technique, the amalgamated formulation, the projection method, and the fundamental equations
of constrained motion. All the numerical results found by using the computational methods mentioned before
and the proposed analytical technique showed a very good agreement. However, in the case of the stability
analysis of the Watt centrifugal governor, which represents a slightly more complicated problem compared
with the other illustrative examples considered in the paper, the conventional methods for the stability analysis
turned out to be inapplicable because of the complex symbolic manipulations required. In this last case, on the
other hand, the method proposed in this paper represents a viable solution that provides consistent numerical
results.

Several interesting directions can be followed in future research works. First, the stability method devised
in this investigation could be further extended to the general case in which rigid body contacts take place and,
at the same time, the motion of the multibody system of interest is limited by holonomic as well as nonholo-
nomic algebraic constraints. To this end, one could consider first the nonlinear equations of motion involving
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nongeneralized coordinates necessary for identifying the collocation of the contact point on the surfaces of
the rigid body pair in contact. Subsequently, the stability method developed in this paper, which is based on
the definition of a general eigenvalue problem, could be reformulated by considering a composite coordinate
vector in which the vector of generalized coordinates, the vector of nongeneralized coordinates, and the vector
of Lagrange multipliers are simultaneously present. By doing so, the analysis of more complex multibody
mechanical systems could become feasible. For example, one could study the stability properties of vehicle
systems modeled as constrained multibody systems that are interesting for engineering applications such as
bicycles, motorcycles, ground vehicles, bogies, railroad cars, and mobile robotic systems. More importantly,
one could devise nonlinear control strategies for stabilizing unstable configurations of suchmultibodymechan-
ical systems identified by using an extension of the computational approach introduced in this work. Another
important aspect that could be explored in future research studies is the use of the proposed method for the
stability study of multibody systems constituted of rigid and flexible components whose deformation intro-
duces additional degrees of freedom due to the material flexibility. These challenging issues will be addressed
in future investigations.
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Appendix A

In this appendix, themain equations describing four alternative computational algorithms for the determination
of the generalized acceleration vector of a multibody system are synthetically reported.

A.1 Embedding technique

qi = Biq (154)

Ĩ =
[

O
I

]
, Jc =

[
J
Bi

]
, wc =

[−Qd
0

]
(155)

J̄c = J−1
c Ĩ, w̄c = J−1

c wc (156)

Mi,i = J̄Tc MJ̄c, Qi = J̄Tc (Qb + Mw̄c) (157)

Mi,i q̈i = Qi (158)

q̈ = J̄cq̈i − w̄c (159)

A.2 Amalgamated formulation

qi = Biq (160)

Ĩ =
[

O
I

]
, Jc =

[
J
Bi

]
, wc =

[−Qd
0

]
(161)

J̄c = J−1
c Ĩ, w̄c = J−1

c wc (162)

Mam =
⎡

⎣
M I O
I O −J̄c
O −J̄Tc O

⎤

⎦ , qam =
⎡

⎣
q̈

−Qc
q̈i

⎤

⎦ , Qam =
⎡

⎣
Qb

−w̄c
0

⎤

⎦ (163)
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Mamqam = Qam (164)

q̈ = Bqqam (165)

A.3 Projection method

qi = Biq (166)

Ĩ =
[

O
I

]
, Jc =

[
J
Bi

]
(167)

J̄c = J−1
c Ĩ (168)

Mpr =
[

J̄Tc M
J

]
, Qpr =

[
J̄Tc Qb
Qd

]
(169)

Mpr q̈ = Qpr (170)

A.4 Fundamental equations of constrained motion: Udwadia–Kalaba equations

M∗ = M + JTJ, Q∗
b = Qb + JTQd (171)

q̈ = (
M∗)−1Q∗

b + (
M∗)−1JT

(
JM∗JT

)+ (
Qd − J

(
M∗)−1Q∗

b

)
(172)
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