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Abstract The present paper studies the anti-plane shear motion of an inhomogeneous elastic five-layered plate
amidst the four contrasting material setups. The asymptotic analysis method in regard to the various material
parameters is adopted for the study. The respective displacements, stresses and the Rayleigh-Lamb dispersion
relation corresponding to the antisymmetric anti-plane motion with perfect interlayer and traction-free (on the
outer faces) boundary conditions are determined. Furthermore, in order to analyze the said dispersion relation in
the presence of these contrasts, a unification of parameters was proposed. The overall cutoff frequencies and the
low-frequency estimates are determined for both the generalized and unified settings. A comparative analysis
between the unified Rayleigh-Lamb dispersion relation and the optimal shortened polynomial dispersion
relation is carried for each contrast. We also established some asymptotic formulae for the related unified
displacements and stresses.

Keywords Asymptotic analysis · Contrasting setups · Layered plate · Inhomogeneous structure · Surface
wave

1 Introduction

Elastic wave propagation through various kinds of composite and multilayered structures has been an area of
great interest in solid mechanics [1–5] and plays a pivotal role in many engineering professions including civil,
mechanical, automotive and aeronautics among others [6–10,12–15]. Some of these structures appearing in
multiply-bond layers include elastic beams, plates, laminates, panels, cylindrical shells and rods to mention a
few, see [16–24]. Besides, in multilayered composite structures, layers involving different constituents are put
together tomake a single structure dependingon the industrial or application needs. This need is basically geared
to exploit the advantages of different layers involved of weightlessness, strength, resistance, toughness and
stiffness in the high-density materials. Mathematically, various considerations have been carried out in the past
literature to study a variety of wave propagation phenomena arising in multilayered media. For instance, a very
good review on the buckling and bending analyses of vibrating sandwich beams and laminated composites are
demonstrated by Sayyad and Ghugal [25]. The layer-wise theory for sandwich plates and laminated composite
is developed using finite element formulation by Belarbi et al. [26], while that of the photovoltaic panels and
laminated glass are presented byNaumenko andEremeyev [27].On the three-layered plates that arise inmodern
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technology, a three-layered plate characterized by a thin soft core layer is analyzed using the shear deformation
theory (first-order) by Altenbach et al. [28], while its dispersion is investigated using the asymptotic approach
by Kaplunov et al. [29]. In [29], the plate is considered to be a strongly inhomogeneous layered plate with
varying stiffnesses and densities under the four contrast configurations. Additionally, inhomogeneous infinite
three-layered plates described by anti-plane shear motion are analyzed in regard to the low-frequency vibration
modes and in the presence of material contrasts by Prikazchikov et al. [30] and Baris [31], respectively. More
explicitly, the material contrasts that appear in [29–31] are characterized bymix stiff-soft materials that arise in
the design of modern structures including the photovoltaic panels, laminated glasses, electrostatic precipitators
and the typical sandwich plates, see also [32–34]. Furthermore, there has been a growing interest among
many researchers in the dynamicity of five-layered structures. For examples, the five-layered glass plates
recently appear in modern roofing, flooring and other glazing applications [35,36], while the five-layered
timber laminates in wooden buildings, surfaces and partitioning purposes with aim to controlling sounds and
less density [37]. In [35], the authors dealt with the free vibration analysis of a five-layered plate using Navier’s
method. More precisely, a three-layered plate with elastic core with viscoelastic skin layers was sandwiched
between elastic layers and analyzed in regard to varying material properties for the loss factor and frequency,
while in [36], a derivation of static deflection behavior of a five-layered plate composed of three laminated glass
and two polymeric interlayers was presented via the corresponding principle. In addition, a simply supported
five-layer sandwich plate in the presence of uniformly distributed transverse excitation was investigated by
Raissi et al. [38], while Khalil and Hadi [39] assessed a five-layer laminate of alternating fiber glass-polyester
composite layers for damage detection using lamb waves simulation [39], see also [40–48] and the references
therein for more related study on waves propagation and dispersion in various structures.

However, in this paper, we study the anti-plane shear motion of an isotropic inhomogeneous elastic five-
layered plate using the asymptotic analysis method in regard to the various material parameters (also known
as the multi-parametric analysis, [46]). The respective displacements and stresses in addition to the Rayleigh-
Lamb dispersion relation corresponding to the antisymmetric motion will be determined. Beside, it is vital
to note here that the antisymmetric motion associated with the five-layered plate with prescribed free-face
conditions possesses a global low-frequency regime, whereas its symmetric version does not, see Kaplunov
et al. [19] and Prikazchikova et al. [30] for similar considerations in the case of three-layered circular rods
and laminate, respectively. Further, we investigate the possibilities to obtaining an optimal estimate or rather
the range for the low-dimensionless parameters leading to the exact and approximate fundamental mode
with a zero cutoff frequency in relation to the Rayleigh-Lamb dispersion relation under the four contrasting
material setups recently examined in [29] and [30,31] for a plane and anti-plate wave propagation problems,
respectively. Also, the asymptotic behavior of the displacements and stresses in the respective layers will be
examined. Further, the paper is organized as follows: In Sect. 3, we give the general formulation of the problem
together with the four types of material contrasts to be examined. The Rayleigh-Lamb dispersion relation and
the cutoff frequency are determined in Sect. 4 for the generalized case and in Sect. 5 for the unified case of
the problem. The shortened polynomial dispersion analysis for the unified case in relation to the four contrasts
is given in Sect. 6, while Sect. 7 presented the asymptotic behaviors of the displacements and stresses in the
plate, and finally, Section 7 gives some concluding remarks.

2 Problem fomulation

An anti-plane shear motion of an inhomogeneous elastic five-layered symmetric plate is considered. The plate
comprises of the inner core layer of thickness 2h1, the outer core layers of thickness h2 and the skin layers of
thickness h3. Further, as the plate is symmetric, the three layers of the plate are assumed to be different isotropic
materials of which the overall plate is placed symmetrically about the mid-layer at (0, 0) as shown in Fig. 1.

The two-dimensional equation of motion in (x1, x2) takes the form

∂σ i
13

∂x1
+ ∂σ i

23

∂x2
= ρi

∂2Ui

∂t2
, i = ic, oc, s, (1)

where xn(n = 1, 2) are the spatial variables, t is the temporal variable,Ui = Ui (x1, x2, t) are the out-of-plane
displacements for i = ic (inner core layer), i = oc (outer core layer) and i = s (skin layer). Further, the shear
stresses σ i

j3, ( j = 1, 2, ) defined, respectively, as

σ i
j3 = μi

∂Ui

∂x j
, j = 1, 2, (2)
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Fig. 1 A symmetric inhomogeneous five-layered plate

where μi are the stiffnesses, also known as the Lame’s elastic constants of motion. We also prescribe the
continuity conditions comprising of the continuity of displacements and stresses along the interfaces of the
layers as follows:

(a) Uic (x1, x2, t) = Uoc (x1, x2, t) , at x2 = ±h1,

(b) σ ic
23(x1, x2, t) = σ oc

23 (x1, x2, t), at x2 = ±h1,

(c) Uoc (x1, x2, t) = Us (x1, x2, t) , at x2 = ±(h1 + h2),

(d) σ oc
23 (x1, x2, t) = σ s

23(x1, x2, t), at x2 = ±(h1 + h2),

(3)

and the traction-free conditions on the outer faces as follows:

(e) σ s
23(x1, x2, t) = 0, at x2 = ±(h1 + h2 + h3). (4)

Furthermore, we investigate the anti-plane shear motion to the inhomogeneous five-layered plate under the
four contrasting material setups lately studied and given by ratios of the material constants via the following
asymptotic relations [29–31]:

(i)μ � 1, h ∼ 1, ρ ∼ μ,

(ii)μ � 1, h ∼ μ, ρ ∼ μ2,

(iii)μ � 1, h ∼ μ−1/2, ρ ∼ μ1/2,

(iv)μ � 1, h ∼ μ−2, ρ ∼ μ−3,

(5)

corresponding to a three-layered plate with stiff skin layers and light core, stiff thin skin layers and light
core, stiff skin layers and thin light core and light thin skin layers and light core layers, respectively. Also
in Eq. (5), μ, h and ρ are the Lame’s elastic constant (stiffness), thickness and density ratios, respectively.
Additionally, we will devise a means to use the relations given in Eq. (5) to analyze the dispersion relation of
a five-layered plate asymptotically. Note also that in a multi-layered or composite structure; it is pertinent to
note that consecutive layers are never exactly the same.

3 Asymptotic approach to Rayleigh-Lamb dispersion relation and cutoff frequency

We determine the Rayleigh-Lamb dispersion relation and cutoff frequency of the formulated problem given
in Eqs. (1)–(4). Also from Eqs. (1)–(2), we get the classical wave equation of the form

∂2Ui

∂x21
+ ∂2Ui

∂x22
= 1

c2i

∂2Ui

∂t2
, i = ic, oc, s, (6)
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where ci =
√

μi
ρi

, is the transverse speed. Now, if the harmonic solution of the form

Ui (x1, x2, t) = ui (x2)e
i(kx1−ωt),

is assumed, where i = √−1, k is the dimensional wavenumber and ω is the dimensional frequency; then the
solution of Eq. (6) becomes

ui (x2) = Ai cosh

(√
k2 − ω2

c2i
x2

)
+ Bi sinh

(√
k2 − ω2

c2i
x2

)
, i = s, oc, ic, (7)

where Ai , Bi , for i = s, oc, ic are constants to be determined from the prescribed continuity and boundary
conditions. Also, it is worth noting here that the solution determined in Eq. (7) was based on the assumption
that the five-layered plate under consideration is symmetric.

Furthermore, the formulated problem via the solutions obtained in Eq. (7) coupled to the boundary condi-
tions in Eqs. (3)–(4) posed a 5× 5 dispersion matrix given in “Appendix A”. Also from the dispersion matrix,
we obtain the Rayleigh-Lamb dispersion relation for the antisymmetric case given by

α2μ
∗ cosh (α2h)

(
α1hh∗μ sinh (α1) sinh

(
α3h

∗) + α3h
∗μ∗ cosh (α1) cosh

(
α3h

∗))

+ α3h
∗μμ∗ sinh (α2h)

(
α1μ

∗ sinh (α1) cosh
(
α3h

∗) + α3 cosh (α1) sinh
(
α3h

∗)) = 0,
(8)

with

α1 =
√
K 2 − �2, α2 =

√
K 2 − μ

ρ
�2, α3 =

√
K 2 − μ∗

ρ∗ �2, (9)

and the dimensionless frequency � and wavenumber K given by

� = ωh3
cs

, K = kh3, (10)

together with the following dimensionless parameters

μ = μs

μic
, μ∗ = μoc

μic
, μ∗ = μs

μoc
,

h =h1
h3

, h∗ = h2
h1

, h∗ = h2
h3

,

ρ = ρs

ρic
, ρ∗ = ρs

ρoc
,

(11)

where {μ,μ∗, μ∗}, {h, h∗, h∗} and {ρ, ρ∗} are the dimensionless stiffnesses, thicknesses and densities ratios,
respectively. We thus obtain the cutoff frequency from the Rayleigh-Lamb dispersion relation given in Eq. (8)
by setting K = 0 as follows

√
ρ∗ cos

(
h

√
μ

ρ
�

)(
hh∗μ

√
ρ∗ sin(�) sin

(
h∗

√
μ∗
ρ∗ �

)
− h∗μ∗

√
μ∗ cos(�) cos

(
h∗

√
μ∗
ρ∗ �

))

+ h∗μ∗
√

μρ sin

(
h

√
μ

ρ
�

) (√
μ∗ρ∗ sin(�) cos

(
h∗

√
μ∗
ρ∗ �

)
+ cos(�) sin

(
h∗

√
μ∗
ρ∗ �

))
= 0.

(12)

From Eq. (12), we get the predicted single cutoff frequency as

� ≈
√

μ∗ρ∗
hμr1

� 1, (13)

over the low-frequency range
(

μ∗ρ∗

μr1
� h � ρr1

μ∗ρ∗

)
∩

(
μ∗(h∗)2μ∗

μr1
� h � ρr1

μ∗ρ∗

)
, (14)
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Fig. 2 Dispersion curves from Eq. (8) for the non-estimated range case with the following parameter: ρ = 0.77, ρ∗ = 0.9, h∗ =
7.7, h∗ = 8.7, μ∗ = 0.83, μ∗ = 0.012, μ = 0.2, h = 1.0

where

r1 = μ∗
(
h∗ + ρ∗) + h∗ρ∗.

It is worth mentioning here that the low frequency is attained when � � 1, while long-wave motion is
achieved when K � 1, [2].

Further, the polynomial dispersion relation is determined by the application of Taylor’s series expansion
method from Eq. (8) as:

μ∗μ∗ + γ1K
2 + γ2K

4 + γ3K
2�2 + γ4�

2 + γ5�
4 + γ6K

2�4 + γ7K
4�2 + ... = 0, (15)

see, “Appendix B” for γl , (l = 1, 2, ..., 7). Dispersion curves from the exact dispersion relation Eq. (8) are
plotted in Fig. 2 for the non-estimated range andFig. 3 for the estimated range of zero cutoff frequencies, respec-
tively. As anticipated, the cutoff frequency is not observed in Fig. 2 since the choice of parameters is outside
the estimated range given in Eq. (14); while lowest low frequency is achieved in Fig. 3 over the stated range.

The displacements and stresses in the respective layers are found to be

Uic =h3
sinh

(
α2hξ2ic

)

α2
,

σ ic
13 =iμicK

sinh
(
α2hξ2ic

)

α2
,

σ ic
23 =μic cosh

(
α2hξ2ic

)
,

(16)

Uoc =h3
α2

(
sinh (α2h) cosh

(
α3h

∗ξ2oc
) + β cosh (α2h) sinh

(
α3h

∗ξ2oc
))

,

σ oc
13 =iμoc

K

α2

(
sinh (α2h) cosh

(
α3h

∗ξ2oc
) + β cosh (α2h) sinh

(
α3h

∗ξ2oc
))

,

σ oc
23 =μoc

α3

α2

(
sinh (α2h) sinh

(
α3h

∗ξ2oc
) + β cosh (α2h) cosh

(
α3h

∗ξ2oc
))

,

(17)

and

Us =h3λ
(
cosh

(
α1

(
ξ2s + h∗ + h

)) − tanh
(
α1

(
h∗ + h + 1

))
sinh

(
α1

(
ξ2s + h∗ + h

)))
,

σ s
13 =iμs Kλ

(
cosh

(
α1

(
ξ2s + h∗ + h

)) − tanh
(
α1

(
h∗ + h + 1

))
sinh

(
α1

(
ξ2s + h∗ + h

)))
,

σ s
23 =μsα1λ

(
sinh

(
α1

(
ξ2s + h∗ + h

)) − tanh
(
α1

(
h∗ + h + 1

))
cosh

(
α1

(
ξ2s + h∗ + h

)))
,

(18)
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Fig. 3 Dispersion curves from Eq. (8) for the estimated range case with the following parameter: ρ = 0.22, ρ∗ = 0.012, h∗ =
1.1, h∗ = 0.64, μ∗ = 0.3, μ∗ = 169, μ = 0.183, h = 1.0

where

β = α2hh∗
α3h∗μ∗

, λ = sinh (α2h) cosh (α3h∗) + β sinh (α3h∗) cosh (α2h)

α2[cosh (α1 (h∗ + h)) − sinh (α1 (h∗ + h)) tanh (α1 (h∗ + h + 1))] , (19)

coupled to the corresponding scaled variables

ξ2ic = x2
h1

, 0 ≤ x2 ≤ h1,

ξ2oc = x2 − h1
h2

, h1 ≤ x2 ≤ h1 + h2,

ξ2s = x2 − (h1 + h2)

h3
, h1 + h2 ≤ x2 ≤ h1 + h2 + h3.

(20)

Note that we omitted the exponential factor ei(kx1−ωt) in Eqs. (16)–(18).

4 Unified Rayleigh-Lamb dispersion relation and cut-off frequency

Due to the varying parameters posed by the problem as can be seen in from Eq. (11), we therefore aim in this
section to unify these parameters in order to be able to carry out further analysis in the next section for the
four contrasting material setups mentioned. Thus, we unify the posed parameters as a case of interest under
the following realistic assumptions that:

(1) the length of the outer core layer is a multiple of the length of the inner core layer, i.e., h2 = ηh1, with
η ∈ R

+\{0, 1},
(2) the Lame’s elastic constant of the outer core layer is a multiple of the Lame’s elastic constant of the inner

core layer, i.e., μoc = δμic, for δ ∈ R

+\{0, 1}, and
(3) the density of the outer core layer is a multiple of the density of the inner core layer, i.e., ρoc = γρic, where

γ ∈ R

+\{0, 1}.
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Thus with the above assumptions, Eq. (11) now reduces to

h =h1
h3

, h∗ = η, h∗ = ηh,

μ = μs

μic
, μ∗ = δ, μ∗ = 1

δ
μ,

ρ = ρs

ρic
, ρ∗ = 1

γ
ρ,

(21)

where η, δ and γ are the unification (controlling/scaling) parameters.
Therefore, with the present development outlined in the above equation, the Rayleigh-Lamb dispersion

relation given in Eq. (8) reduces to the new unified Rayleigh-Lamb dispersion as follows

α1μ sinh (α1) (α3δ sinh (α2h) cosh (α3ηh) + α2 cosh (α2h) sinh (α3ηh))

+ α3δ cosh (α1) (α3δ sinh (α2h) sinh (α3ηh) + α2 cosh (α2h) cosh (α3ηh)) = 0,
(22)

where

α1 =
√
K 2 − �2, α2 =

√
K 2 − μ

ρ
�2, α3 =

√
K 2 − γμ

δρ
�2. (23)

From Eq.(22), the resultant cutoff frequency and the predicted single cutoff frequency are, respectively,
found as proceeded to be

√
γ δ cos

(
ηh

√
γμ

δρ
�

) (√
ρμ sin(�) sin

(
h

√
μ

ρ
�

)
− cos(�) cos

(
h

√
μ

ρ
�

))

+ sin

(
ηh

√
γμ

δρ
�

) (
γ δ cos(�) sin

(
h

√
μ

ρ
�

)
+ √

ρμ sin(�) cos

(
h

√
μ

ρ
�

))
= 0,

(24)

and

� ≈
√

δρ

hμr2
� 1, (25)

over the range

δρ

μr2
� h � r2

δ
, (26)

where

r2 = δρ + ηρ + γ δηh.

Similarly, expanding all the hyperbolic functions of the unified Rayleigh-Lamb dispersion given in Eq.
(22) by virtue of the Taylor’s series expansion, we get the unified polynomial dispersion relation as follows

δ + G1K
2 + G2K

4 + G3K
2�2 + G4�

2 + G5�
4 + G6K

2�4 + G7K
4�2 + ... = 0, (27)
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Fig. 4 Dispersion curves from Eq. (22) for the non-estimated range case with the following parameter: η = 0.45, δ = 20, γ =
14, ρ = 0.8, μ = 0.07, h = 1

where

G1 = δ

2
+ h(δ + η)μ + h2

(
δη + η2

2
+ 1

2

)
δ,

G2 = δ

24
+ h

(
δ

6
+ η

6

)
μ + h2

(
δη

2
+ η2

4
+ 1

4

)
δ + h3

(
1

2
δη2 + δ

6
+ η3

6
+ η

2

)
μ,

G3 = − δ

12
− h

(
δ

3
+ η

3

)
μ − h2

( (
γ δη

2ρ
+ γ η2

4ρ
+ δ

4ρ

)
μ + δ2η

2
+ δη2

4
+ δ

4

)

− h3
((

γ η3

6δρ
+ γ η2

2ρ
+ δ

6ρ
+ η

2ρ

)
μ2 +

(
δη2

2
+ δ

6
+ η3

6
+ η

2

)
μ

)
,

G4 = − δ

2
− h(δ + η)μ − h2

(
γ δη

ρ
+ γ η2

2ρ
+ δ

2ρ

)
μ,

G5 = δ

24
+ h

(
δ

6
+ η

6

)
μ + h2

(
γ δη

2ρ
+ γ η2

4ρ
+ δ

4ρ

)
μ + h3

(
γ η3

6δρ
+ γ η2

2ρ
+ δ

6ρ
+ η

2ρ

)
μ2,

G6 =h2
(

γ δη

12ρ
+ γ η2

24ρ
+ δ

24ρ

)
μ + h2

(
δ2η

24
+ δη2

48
+ δ

48

)
,

G7 = − h2
(

γ δη

24ρ
+ γ η2

48ρ
+ δ

48ρ

)
μ − h2

(
δ2η

12
+ δη2

24
+ δ

24

)
,

...

(28)

Therefore we are now at the liberty to consider the aforementioned contrasting setups in Sect. 2, Eq. (5)
having unified the dimensionless parameters. It is worth noting here that based on the unification assumptions
that led to the new relations given Eq. (21); that the outer core layers are strongly depend on the material prop-
erties of the inner core layer. Also, Eq. (5) remains the same for both the five-layered plate under consideration
and the three-layered plates analyzed in [29–31].

We thus present the dispersion curves from the unified exact dispersion relation Eq. (22) in Figs. 4 and 5
for the non-estimated and estimated (Eq. (26) of zero cutoff frequencies) ranges, respectively.
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Fig. 5 Dispersion curves from Eq. (22) for the estimated range case with the following parameter: η = 0.45, δ = 20, γ =
14, ρ = 0.03, μ = 0.05, h = 1.0

5 Shortened polynomial dispersion relations

In this section, we approximate the obtained unified polynomial dispersion relation in Eq. (27) in connection
to the four contrasting material setups to obtain the corresponding optimal shortened polynomial dispersion in
each setup. It is worth mentioning here that we consider η to be ∈ (0, 1) and δ, γ > 1 for the ordering analysis.

5.1 Stiff skin layers, inner core dependant outer core layers and light inner core layer (μ � 1, h ∼ 1, ρ ∼ μ)

Here, the outer skin layers are made up of stiff material while both the inner core layer and the outer core layers
are made up of different soft materials, that is, they are not identically the same, (also, similar assumption is
made in the subsequent cases).

So, on using the present setup, it can be seen from Eq. (28) that the following behavior

G1 ∼ G2 ∼ δ, G3 ∼ G4 ∼ G5 ∼ G6 ∼ G7 ∼ γ δη, (29)

is obtained at the leading orders, where

G1 = δ

2
+

(
δη + η2

2
+ 1

2

)
δ,

G2 = δ

24
+

(
δη

2
+ η2

4
+ 1

4

)
δ,

G3 = −
(

δ2η

2
+ δη2

4
+ δ

3

)
−

(
γ δη

2
+ γ η2

4
+ δ

4

)
ν,

G4 = − δ

2
−

(
γ δη + γ η2

2
+ δ

2

)
ν,

G5 = δ

24
+

(
γ δη

2
+ γ η2

4
+ δ

4

)
ν,

G6 =
(

δ2η

24
+ δη2

48
+ δ

48

)
+

(
γ δη

12
+ γ η2

24
+ δ

24

)
ν,
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G7 = −
(

δ2η

12
+ δη2

24
+ δ

24

)
−

(
γ δη

24
+ γ η2

48
+ δ

48

)
ν,

... (30)

where ν = μ
ρ

∼ 1. Thus, we obtain the shortened polynomial dispersion relation as follows

δ + G1K
2 + G2K

4 + G3K
2�2 + G4�

2 + G5�
4 = 0. (31)

We, therefore, normalize the dimensionless frequency and wave number in Eq. (31) using

�2 = μ�2, K 2 = μK 2∗ , (32)

to obtain
δ

μ
+ G1K

2∗ + μG2K
4∗ + μG3K

2∗�2 + G4�
2 + μG5�

4 = 0, (33)

and thereafter make use of a near cutoff asymptotic expansion of the form

�2 = �2
0 + μ�2

1 + μ2�2
2 + ... (34)

Substituting Eq. (34) into (33), we get

�2
0 = δ, �2

1 = −δ2

2
+ δ

(
δη + 1

2
η2 + 1

)
K 2∗ , (35)

and yielding the optimal shortened dispersion relation below

δ

(
δη + η2

2
+ 1

)
K 2 − 1

μ
�2 + δ

(
1 − δ

2
μ

)
= 0. (36)

Thus, we give in Fig. 6 the lowest dispersion branch for the exact (black solid line) and the short-
ened polynomial (dashed red line) unified dispersion relations (22) and (36) for the set of parameters
η = 0.45, δ = 20, γ = 14, ρ = 0.0076, μ = 0.0072, h = 1.1.

5.2 Stiff thin skin layers, inner core dependant outer core layers and light inner core layer (μ � 1, h ∼ μ,
ρ ∼ μ2)

Using the present setup, the following behavior can be obtained from Eq. (28)

G1 ∼ G2 ∼ G3 ∼ G4 ∼ G5 ∼ δ, G6 ∼ G7 ∼ μ, (37)

where

G1 = δ

2
+ h2

(
δ2η + δη2

2
+ δ

2

)
,

G2 = δ

24
+ h2

(
δ2η

2
+ δη2

4
+ δ

4

)
,

G3 = − δ

12
− h

(
γ δη

2
+ γ η2

4
+ δ

4

)
ν,

G4 = − δ

2
− h

(
γ δη + γ η2

2
+ δ

2

)
ν,

G5 = δ

24
+ h

(
γ δη

2
+ γ η2

4
+ δ

4

)
ν,

G6 =ν

(
γ δη

12
+ γ η2

24
+ δ

24

)
μ,

G7 = − ν

(
γ δη

24
+ γ η2

48
+ δ

48

)
μ,

...

(38)
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Fig. 6 Lowest dispersion branch for the exact (black solid line) and shortened polynomial (dashed red line) dispersion relations
Eqs. (22) and (36)

Fig. 7 Lowest dispersion branch for the exact (black solid line) and shortened polynomial (dashed red line) dispersion relations
Eqs. (22) and (39)

where h ∼ μ, ν = μ2

ρ
∼ 1. Therefore, we obtain the shortened polynomial dispersion relation as follows

δ + G1K
2 + G2K

4 + G3K
2�2 + G4�

2 + G5�
4 = 0. (39)

So, we give in Fig. 7 the lowest dispersion branch for the exact (black solid line) and the shortened poly-
nomial (dashed red line) dispersion relations (22) and (39) using the parameters η = 0.45, δ = 20, γ =
14, ρ = 0.007, μ = 0.59, h = 0.968.
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5.3 Stiff skin layers, inner core dependant outer core layers and thin light inner core layer (μ � 1, h ∼ μ−1/2,
ρ ∼ μ1/2)

Using the current setup, it can be deduced from Eq. (28) that the following asymptotic relation at the leading
powers is obtained to be

G1 ∼ G2 ∼ G3 ∼ G6 ∼ G7 ∼ μ−1, G4 ∼ G5 ∼ μ−1/2, (40)

with

G1 = δ

2
+ 1

μ

(
δη + η2

2
+ 1

2

)
δ,

G2 = δ

24
+ 1

μ

(
δη

2
+ η2

4
+ 1

4

)
δ,

G3 = −
(

γ η3

6δ
+ γ η2

2
+ δ

4
+ η

2

)
− 1

μ

(
δ2η

2
+ δη2

4
+ δ

4

)
,

G4 = − δ

2
− 1√

μ

(
γ δη + γ η2

2
+ δ

2

)
,

G5 =
(

γ η3

6δ
+ γ η2

2
+ 5δ

24
+ η

2

)
+ 1√

μ

(
γ δη

2
+ γ η2

4
+ δ

4

)
,

G6 = 1

μ

(
δ2η

24
+ δη2

48
+ δ

48

)
,

G7 = − 1

μ

(
δ2η

12
+ δη2

24
+ δ

24

)
,

...

(41)

Thus, we obtain the following shortened polynomial dispersion relation

δ + G1K
2 + G2K

4 + G3K
2�2 + G4�

2 + G5�
4 = 0. (42)

We equivalently set μ = 1/β2 in Eq. (42) and further normalize the resultant equation using the following
dimensionless frequency and wave number

�2 = β�2, K 2 = βK 2∗ . (43)

Furthermore, the near cutoff asymptotic expansion is needed by the problem which takes the form

�2 = �2
0 + β�2

1 + β2�2
2 + ... (44)

Substituting Eq. (44) into the resultant equation of (42) coupled to the normalization in (43), we get

�2
0 = δ, �2

1 = δ

2
(K 2∗ − δ), (45)

and yielding the optimal shortened dispersion relation below

δ

2
K 2 − 1

β
�2 + δ

(
1 − β

δ

2

)
= 0. (46)

Also, we give in Fig. 8 the lowest dispersion branch for the exact (black solid line) and the shortened
polynomial (dashed red line) dispersion relations (22) and (46) using the parameters η = 0.45, δ = 20, γ =
14, ρ = 0.0628, β = 0.095, h = 1.
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Fig. 8 Lowest dispersion branch for the exact (black solid line) and shortened polynomial (dashed red line) dispersion relations
Eqs. (22) and (46)

5.4 Light thin skin layers, inner core dependant outer core layers and light inner core layer (μ � 1, h ∼ μ−2,
ρ ∼ μ−3)

Using the present setup, it can be deduced from Eq. (28) that the following asymptotic relation

G1 ∼ G2 ∼ G3 ∼ G4 ∼ G5 ∼ μ−1, G6 ∼ G7 ∼ γ δη, (47)

with

G1 = δ

2
+ 1

μ
(δ + η),

G2 = δ

24
+ 1

μ

(
δ

6
+ η

6

)
,

G3 = −
(

γ δη

2
+ γ η2

4
+ δ

3

)
− 1

μ

(
γ η3

6δ
+ γ η2

2
+ δ

2
+ 5η

6

)
,

G4 = −
(

γ δη + γ η2

2

)
− 1

μ
(δ + η),

G5 =
(

γ δη

2
+ γ η2

4
+ 7δ

24

)
+ 1

μ

(
γ η3

6δ
+ γ η2

2
+ δ

3
+ 2η

3

)
,

G6 =
(

γ δη

12
+ γ η2

24
+ δ

24

)
,

G7 = −
(

γ δη

24
+ γ η2

48
+ δ

48

)
,

...

(48)

In the same manner as in above, we obtain the following shortened polynomial dispersion as follows

δ + G1K
2 + G2K

4 + G3K
2�2 + G4�

2 + G5�
4 = 0. (49)
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Fig. 9 Lowest dispersion branch for the exact (black solid line) and shortened polynomial (dashed red line) dispersion relations
Eqs. (22) and (49)

Figure 9 gives the lowest dispersion branch for the exact (black solid line) and the shortened polynomial
(dashed red line) dispersion relations (22) and (49) using the parameters η = 0.88, δ = 20, γ = 18, ρ =
0.000306, μ = 14.6, h = 0.0045.

6 Asymptotic behavior for the displacements and stresses

In this section, we study the asymptotic behaviors of the obtained displacements and stresses in the respective
layers given in Sect. 4, Eqs. (16)–(18). It is also vital to note that these asymptotic behaviors are studied for the
unified displacements and stresses at the leading order by employing the assumptions made in Sect. 5, Eq. (21)
on the exact displacements and stresses. We thus obtain the following unified formulae from Eqs. (16)–(18):

Uic =h3
sinh

(
α2hξ2ic

)

α2
,

σ ic
13 =iμicK

sinh
(
α2hξ2ic

)

α2
,

σ ic
23 =μic cosh

(
α2hξ2ic

)
,

(50)

Uoc =h3
α2

(
sinh (α2h) cosh

(
α3ηhξ2oc

) + β cosh (α2h) sinh
(
α3ηhξ2oc

))
,

σ oc
13 =iδμic

K

α2

(
sinh (α2h) cosh

(
α3ηhξ2oc

) + β cosh (α2h) sinh
(
α3ηhξ2oc

))
,

σ oc
23 =δμic

α3

α2

(
sinh (α2h) sinh

(
α3ηhξ2oc

) + β cosh (α2h) cosh
(
α3ηhξ2oc

))
,

(51)

and

Us =h3λ
(
cosh

(
α1

(
ξ2s + ηh + h

)) − tanh (α1 (ηh + h + 1)) sinh
(
α1

(
ξ2s + ηh + h

)))
,

σ s
13 =iμs Kλ

(
cosh

(
α1

(
ξ2s + ηh + h

)) − tanh (α1 (ηh + h + 1)) sinh
(
α1

(
ξ2s + ηh + h

)))
,

σ s
23 =μsα1λ

(
sinh

(
α1

(
ξ2s + ηh + h

)) − tanh (α1 (ηh + h + 1)) cosh
(
α1

(
ξ2s + ηh + h

)))
,

(52)
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Table 1 Asymptotic formulae for setups (i) and (ii)

Setup (i) (μ � 1, h ∼ 1, ρ ∼ μ) Setup (ii) (μ � 1, h ∼ μ, ρ ∼ μ2)

Uic h3ξ2ic h3hξ2ic

σ ic
13 iμic

√
μK∗ξ2ic iμic

√
μhK∗ξ2ic

σ ic
23 μic μic

Uoc h3
(
1 + η

δ
ξ2oc

)
h3

(
h + η

δ
hξ2oc

)

σ oc
13 i K∗δμic

√
μ

(
1 + η

δ
ξ2oc

)
i K∗δμic

√
μ

(
h + η

δ
hξ2oc

)
σ oc
23 μic μic

Us h3
(
1 + η

δ

)
h3h

(
1 + η

δ

)

σ s
13 iμs

√
μK∗

(
1 + η

δ

)
iμs

√
μK∗h

(
1 + η

δ

)

σ s
23 μsμ

(
K 2∗ − �2

) (
1 + η

δ

) (
ξ2s − 1

)
μsμh

(
K 2∗ − �2

) (
1 + η

δ

) (
ξ2s − 1

)

Table 2 Asymptotic formulae for setups (iii) and (iv)

Setup (iii) (μ � 1, h ∼ μ−1/2, ρ ∼ μ1/2) Setup (iv) (μ � 1, h ∼ μ−2, ρ ∼ μ−3)

Uic h3hξ2ic h3hξ2ic

σ ic
13 iμic

√
μhK∗ξ2ic iμic

√
μhK∗ξ2ic

σ ic
23 μic μic

Uoc h3
(
h + η

δ
hξ2oc

)
h3

(
h + η

δ
hξ2oc

)

σ oc
13 i K∗δμic

√
μ

(
h + η

δ
hξ2oc

)
i K∗δμic

√
μ

(
h + η

δ
hξ2oc

)

σ oc
23 μic

(
(K 2∗ − γ

δ

√
μ�2)δηξ2oc + 1

)
μic(1 − ηγμ�2)

Us h3h
(
1 + η

δ

)
h3h

(
1 + η

δ

)

σ s
13 iμs

√
μK∗h

(
1 + η

δ

)
iμs

√
μK∗h

(
1 + η

δ

)

σ s
23 μsμh

(
K 2∗ − �2

) (
1 + η

δ

) (
ξ2s − 1

)
μsμh

(
K 2∗ − �2

) (
1 + η

δ

) (
ξ2s − 1

)

where

β = α2

α3δ
, λ = sinh (α2h) cosh (α3ηh) + β sinh (α3ηh) cosh (α2h)

α2[cosh (α1h (η + 1)) − sinh (α1h (η + 1)) tanh (α1 (ηh + h + 1))] , (53)

also valid for the scaled intervals in Eq. (20) with h2 = ηh1; where α j ( j = 1, 2, 3) are given in Eq. (23).
Thus, we present the asymptotic formulae in Table 1 for setups (i) and (ii) and Table 2 for setups (iii) and (iv)
by using the following dimensionless normalized qualities: �2 = μ�2, K 2 = μK 2∗ .

7 Conclusion

In conclusion, the antisymmetric anti-plane shear dispersion of an elastic five-layered plate is analyzed via the
asymptotic analysis. The five-layered plate considered is made up of three different layers of varying material
properties arranged in a symmetrical form as shown in Fig. 1. The obtained exact Rayleigh-Lamb dispersion
relation was further analyzed for the best fundamental mode approximations (estimates) and its corresponding
polynomial dispersion relation. Furthermore, due to the number of dimensionless problem parameters posed
by the system comprising of 3 thicknesses, 3 stiffnesses (Lame’s elastic constants) and 2 mass densities; a uni-
fication of parameters was necessary to further analyze the problem for the determination of optimal shortened
polynomial dispersion relations in connection to the four contrasting material setups as examined in [29–31]
for a three-layered laminate. It is remarkable to mention that within the estimated range, more modes are
observed in the present study in comparison with the three-layered case [30,31]. Finally, since the unification
of parameters has been proposed in this paper to further analyze the Rayleigh-Lamb dispersion relation and
to be able to carry out all the analysis involved, it is highly recommended that a procedure leading to the said
analysis should be devised without the unification.
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Appendix A

The dispersion matrix posed by the problem in Sect. 4 is as follows:
⎛
⎜⎜⎜⎝

sinh (p1) − cosh (p2) − sinh (p2) 0 0
0 cosh (p3) sinh (p3) − cosh (p4) − sinh (p4)

cosh (p1) Ricμic − sinh (p2) Rocμoc − cosh (p2) Rocμoc 0 0
0 sinh (p3) Rocμoc cosh (p3) Rocμoc − sinh (p4) Rsμs − cosh (p4) Rsμs
0 0 0 sinh (p5) cosh (p5)

⎞
⎟⎟⎟⎠ ,

with the following shortend terms in the matrix above

p1 = h1Ric, p2 = h1Roc, p3 = (h1 + h2) Roc, p4 = (h1 + h2) Rs, p5 = (h1 + h2 + h3) Rs,

where

Rs =
√
k2 − ω2

c2s
, Ric =

√
k2 − ω2

c2ic
, Roc =

√
k2 − ω2

c2oc
.

Note that the dimensionless form of the above formulae is used in the main text via Eqs. (9)–(11).

Appendix B

Some of the polynomial coefficients of Eq. (15) of Sect. 4 are as follows:

γ1 = 1

2

(
h∗)2 μ∗μ∗ + hh∗μμ∗ + hh∗μμ∗ + hμμ∗μ∗ + μ∗μ∗

2
,

γ2 = 1

6
h3μμ∗μ∗ + 1

6
h∗

(
h∗)2 hμμ∗ + 1

2

(
h∗)2 hμμ∗μ∗ + 1

4

(
h∗)2 μ∗μ∗ + 1

6

(
h∗)3 hμμ∗

+1

2
h∗hμμ∗ + 1

6
h∗h3μμ∗ + 1

6
h∗hμμ∗ + 1

6
hμμ∗μ∗,

γ3 = −1

6
h3μμ∗μ∗ − h∗h3μ2μ∗

2ρ
− h3μ2μ∗μ∗

6ρ
− h2μμ∗μ∗

4ρ
− (h∗)2 hμμ∗ (μ∗)2

2ρ∗

−h∗hμμ∗μ∗

2ρ∗ − (h∗)3 hμμ∗μ∗

3ρ∗ − h∗ (h∗)2 hμ (μ∗)2

6ρ∗ − (h∗)2 μ∗ (μ∗)2

4ρ∗

−1

6
h∗

(
h∗)2 hμμ∗ − 1

2

(
h∗)2 hμμ∗μ∗ − 1

4

(
h∗)2 μ∗μ∗ − 1

2
h∗hμμ∗,

γ4 = −h2μμ∗μ∗

2ρ
− h∗hμμ∗μ∗

ρ∗ − (h∗)2 μ∗ (μ∗)2

2ρ∗ − hμμ∗μ∗ − hh∗μμ∗ − μ∗μ∗

2
,

γ5 = h∗h3μ2μ∗

2ρ
+ h3μ2μ∗μ∗

6ρ
+ h2μμ∗μ∗

4ρ
+ (h∗)2 hμμ∗ (μ∗)2

2ρ∗ + h∗hμμ∗μ∗

2ρ∗

+h∗ (h∗)2 hμ (μ∗)2

6ρ∗ + (h∗)3 hμμ∗ (μ∗)2

6 (ρ∗)2
+ (h∗)2 μ∗ (μ∗)2

4ρ∗

+h∗h3μ2μ∗μ∗

6ρρ∗ + (h∗)2 h2μμ∗ (μ∗)2

4ρρ∗ + 1

6
h∗hμμ∗ + 1

6
hμμ∗μ∗,
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γ6 = 1

36
h3μμ∗μ∗ + h∗h3μ2μ∗

6ρ
+ h3μ2μ∗μ∗

18ρ
+ (h∗)3 hμμ∗μ∗

6ρ∗ + h∗ (h∗)2 hμ (μ∗)2

18ρ∗

+ (h∗)3 hμμ∗ (μ∗)2

12 (ρ∗)2
+ 1

36
h∗

(
h∗)2 hμμ∗ + 1

12

(
h∗)2 hμμ∗μ∗ + h∗h3μ2μ∗

12ρ

+h∗h3μμ∗μ∗

12ρ∗ + (h∗)3 h3μμ∗ (μ∗)2

36 (ρ∗)2
+ h∗ (h∗)2 h3μ2 (μ∗)2

12ρρ∗ + h∗h3μ2μ∗μ∗

12ρρ∗

+ (h∗)3 h3μ2μ∗μ∗

18ρρ∗ + h∗ (h∗)2 h3μ2μ∗

12ρ
+ (h∗)2 h3μ2μ∗μ∗

12ρ
+ (h∗)2 h2μμ∗μ∗

8ρ
,

γ7 = − 1

18
h3μμ∗μ∗ − h∗h3μ2μ∗

12ρ
− h3μ2μ∗μ∗

36ρ
− (h∗)3 hμμ∗μ∗

6ρ∗ − (h∗)2 hμμ∗ (μ∗)2

12ρ∗

−h∗ (h∗)2 hμ (μ∗)2

36ρ∗ − 1

18
h∗

(
h∗)2 hμμ∗ − 1

6

(
h∗)2 hμμ∗μ∗ − 1

12

(
h∗)3 hμμ∗

−h∗h3μ2μ∗
12ρ

− (h∗)3 h3μ2μ∗
36ρ

− (h∗)2 h3μμ∗ (μ∗)2

12ρ∗ − h∗h3μμ∗μ∗

12ρ∗

− (h∗)3 h3μμ∗μ∗

18ρ∗ − 1

12

(
h∗)2 h3μμ∗μ∗ − h∗ (h∗)2 h3μ2μ∗

12ρ
− (h∗)2 h3μ2μ∗μ∗

12ρ
,

...
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