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Abstract A new linear yield criterion in terms of principal stresses is developed for the purpose of overcoming
the analytical difficulty of mechanical parameters when using the nonlinear Mises yield criterion. This devel-
oped yield criterion is established through the parabola interpolation method and the mathematical averaging
method, which can be called as the mean influence factor yield criterion, or calledMIF yield criterion for short.
The yield locus of the criterion on the π-plane is an equilateral and non-equiangular dodecagon, lies between
the Tresca and TSS loci, and is very close to the locus of the Mises yield criterion. By comparing with the
classical yield criteria, the MIF yield criterion varies linearly with the Lode parameter and has a good accuracy
with experimental data. Moreover, based on the flow rule and the geometric projection of the principle stress
components, the specific plastic work rate of the yield criterion is also derived. The criterion and its specific
plastic work rate are used to solve the limit load of a simply supported circular plate and the forging of a
rectangular bar, and both the corresponding analytical solutions are obtained. The theoretical results for the
limit load and the forging force are in good agreement with the simulation and experimental data, respectively,
and are more accurate than the results calculated from other yield criteria.

Keywords Yield criterion · Plastic deformation · Limit load · Forging force · Analytical solution

1 Introduction

The development and utilization of material strength is a basic and important research content in the field of
metal deformation. With the research progress on the plastic forming process, the basic criterion for describing
material deformation has been paid more and more attention. At present, there are more than a few dozen kinds
of yield criteria proposed by many researchers.

For the yield criterion, the earliest mechanical research result was proposed by Coulomb [1] in 1776, which
is usually called the maximum strength theory. This theory assumes that if the plane shear stress exceeds the
resultant stress caused by the cohesive force and friction force, the material will deform in the form of sliding.
On the basis of blanking and extrusion experiments in 1864, the maximum shear stress theory was put forward
by Tresca [2]. He assumed that a metal will yield as long as the maximum shear stress reaches a limit value.
The calculation based on this criterion is relatively simple, but only the maximum principal shear stress is
considered. Thus, the Tresca yield criterion belongs to the single shear stress yield criterion. Based on this yield
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criterion, Saint-Venant [3] and Levy [4] have made further researches in rigid plastic theory. They pointed out
that the principal axes of plastic strain rate are the same as that of stress during metal forming process.

In 1913, vonMises proposed a new yield criterion that was originally proposed by Huber in 1904 [5,6]. He
considered a general yield condition that as long as the second deviatoric stress invariant reaches a certain value,
then themetal will transform from elastic deformation to plastic deformation. The influence of the intermediate
principal stress is also considered in the Mises yield criterion. After Hencky and Nadai’s [7] experiments, it is
known that theMises yield criterion can conform better to the experimental data. However, the expression of the
Mises criterion is nonlinear and does not consider the hydrostatic pressure. Later, vonMises [8] formulated the
Hill criterion in 1928 and demonstrated that at least five independent strain components are needed for plastic
deformation of a constant volume solid. For the research convenience, Hill [9] established a basic framework
for the classical theory of yield criteria, and extended the Mises criterion to his own yield criterion. In 1951,
Drucker and Prager [10,11] put forward a basic assumption about yield surface. It is considered that when
the material is yielding, the octahedral shear stress is linearly dependent on the octahedral normal stress. By
adding the hydrostatic pressure into the Mises formula, Drucker obtained a nonlinear yield criterion for soils
exhibiting the dilatancy during plastic flow, which has less usage in analytical investigation of metal forming
due to its complexity of the expression. Haigh and Westgaard [12] unified the forms of various criteria in the
three-dimensional principle stress space, and then proposed the conception of setting σ1, σ2, σ3 as the principal
axes to form the 3-D stress space. Each point in the space represents a stress state, and the yield surface can
be expressed by a curve in the stress space.

In recent decades, there have been great achievements in the study of yield criteria. In 1983, Yu [13,14] put
forward the TSS yield criterion. He assumed that a material will yield when the combination of the two larger
principal shear stresses attains a critic value. The yield locus of the TSS yield criterion is a hexagon which
circumscribes the Mises circle on the yield plane. The loci of other yield criteria, such as Tresca and Mises
yield criteria, usually won’t exceed the TSS yield criterion, that is, the TSS yield criterion provides the upper
bound of the results. Later, Yu [15] proposed the UYC yield criterion, whose expression is composed of two
maximal principal shear stresses with different weighting coefficients, and the yield curve is discontinuous.
In 2005, Yu et al. [16] considered that although the twin shear stress yield criterion considered the influence
of the intermediate principal stress, the influence of the minimum shear stress on material strength is still
not taken into account. Therefore, a three-shear stress yield criterion was also proposed. In the analysis of
plastic failure of pipeline, a yield criterion called ASSY was proposed by Zhu et al. [17,18]. This criterion is
the average of the Tresca and the Mises yield criterion and is also a nonlinear function. It has been applied
successfully in predicting the failure pressure of pipeline. In order to explain the yield conditions of ductile and
brittle materials, Barsanescu et al. [19] proposed a modified Mises yield criterion by introducing a modified
coefficient in terms of the maximum strain energy andmaximum distortion energy. For homogeneous isotropic
materials, Gu et al. [20] proposed two failure formulas for two different cases of tension and compression. He
assumed that shape distortion and volume dilation would lead to material failure, while volume contraction,
such as hydrostatic compression, would impede the failure. Pei et al. [21] introduced a normal stress space
consisting of three normal stresses in the material coordinate system to express the interaction between stress
tensor and material structure. Then, the anisotropic Matsuoka–Nakai (AMN) criterion is proposed to describe
the anisotropic shear strength of rock based on geometric factors rather than algebraic tensors. Böhlke et al.
[22] analyzed the correlation of the elastic and plastic anisotropy with experimental and theoretical method and
developed a phenomenological model which can estimate the plastic anisotropy of the polycrystal. Recently,
based on dislocation theory, several modern physical models that capable of predicting work hardening have
been initiated by Langer et al. [23,24] and further devolved by Le et al. [25,26].

On the basis of predecessors’ researches, it can be seen that: The Tresca yield criterion usually gives
the lower bound solution, and the TSS yield criterion usually gives the upper bound solution; the predictive
precision of the Mises yield criterion is high but its formula is nonlinear, which is very hard to be used in
obtaining the analytical solution of mechanical parameters. So, it is desire to seek a high precise yield function
whose expression has linear characteristic and can close well to the Mises yield criterion.

Based on this idea, this paper attempts to obtain the characteristic points of the influence factor of the
intermediate principal stress from the expressions of the three yield criteria, i.e., the Tresca, Mises, TSS
yield criteria, and to establish a parabolic function through the calculated characteristic points. The present
characteristic point is obtained through the parabolic interpolation method and the mathematical averaging
method and a new linear yield criterion in terms of principal stresses is developed. The calculation solution
with the proposed yield criterion is verified by the experimental data, and a good agreement is found. The yield
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criterion and the derived specific plastic work rate are also applied to the calculation of the limit load and the
forging analysis of rectangular bar, respectively, and the corresponding analytical solutions are obtained.

2 Derivation of the MIF yield criterion

2.1 Mathematical derivation

In 1864, Tresca has made a famous assumption that yielding occurs when the maximum shear stress of a
material reaches its limit [2]. According to his assumption, the following expression to describe the yielding
of a material can be written as

f Tresca = σ1 − σ3 − σs = 0 (1)

where σ1 is the first principle stress, σ3 is the third principle stress, σs is the yield strength of a material.
TheMises yield criterion was proposed by vonMises [3] in 1913, which suggests that yielding of a materiel

occurs if the invariant of the second deviatoric stress reaches a critical value. Mathematically, the Mises yield
criterion can be expressed as

f Mises = (σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 − 2σ 2

s (2)

where σ2 is the intermediate principle stress.
Equation shows (2) that the Mises yield criterion is a nonlinear function of σ1, σ2, σ3, which is difficult to

be used in obtaining analytical solutions of mechanical parameters, although it will not cause any problems
from a numerical point of view. As given, a linearization of this criterion is still worthwhile.

The twin shear stress (TSS) yield criterion was developed by Yu [13] in 1983. It suggests that yielding
occurs if the combination of the two larger principal shear stresses satisfies the following relation:

f TSS = σ1 − 1

2
(σ2 + σ3) − σs = 0, σ2 ≤ 1

2
(σ1 + σ3) (3a)

f TSS = 1

2
(σ1 + σ2) − σ3 − σs = 0, σ2 ≥ 1

2
(σ1 + σ3). (3b)

The yield loci of the above criteria are shown in Fig. 1. In this figure, the Mises locus is a circle, the
Tresca locus is an inscribed regular hexagon of the Mises circle, and the TSS locus is a circumscribed regular

Fig. 1 Different yield loci on the π-plane
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Fig. 2 The curve of parabolic equation

hexagon of the Mises circle. It is seen that the points F , D, and B are on the Tresca, Mises, and TSS yield
loci, respectively.
The above three yield criteria can be generalized to the following linear form:

σ1 − m

2
σ2 −

(
1 − m

2

)
σ3 = σs, σ2 ≤ 1

2
(σ1 + σ3)

(
1 − m

2

)
σ1 + m

2
σ2 − σ3 = σs, σ2 ≥ 1

2
(σ1 + σ3)

(4)

where the criterion with m = 0 refers to the Tresca yield criterion, the criterion with m = 2(2− √
3) refers to

the approximated Mises yield criterion in a linear form [14], and the criterion with m = 1 refers to the TSS
yield criterion.

In order to evaluate the influence of the intermediate principal stress on yielding, Eq. (4) is rewritten as

σ1 − σ3 = βσs (5)

whereβ = 2/
√
3 + μ2

d is the influence factor of the intermediate principal stress, andμd is theLodeparameters,
written as [27]

μd = σ2 − σ1+σ3
2

σ1−σ3
2

(6)

The intermediate principal stress σ2 = [σ1 + σ3 + μd(σ1 − σ3)]/2 can be substituted into the above yield
criteria, then the β can be calculated. The case with β = 1 corresponds to the Tresca criterion, β = 2/

√
3

corresponds to the Mises criterion, and β = 4/3 corresponds to the TSS criterion.
From the above correspondence between m and β, we can construct a parabolic equation through these

three points, i.e., (0, 1), (4 − 2
√
3, 2/

√
3), (1, 4/3), which can be expressed as

β = 2√
3 + μ2

d

=
√
3

18
m2 + 6 − √

3

18
m + 1 (7)

Equation (7) shows that the Lode parameter is related to the m. Based on Eq. (7), the corresponding
parabolic curve, β versus m, is illustrated in Fig. 2.

In this figure, βm is the mean value of the βTresca and βTSS, i.e., βm = (βTresca + βTSS)/2 = 7/6, which
is calculated here to derive a new yield criterion that can lies in between the Tresca and the TSS yield criteria.
Substituting it into the parabolic equation, the value of m can be solved out as (1 − 2

√
3 + √

13)/2.
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Fig. 3 The yield locus of the Mises criterion

Therefore, the new yield criterion can be called as the mean influence factor yield criterion, abbreviated as
MIF yield criterion.

Thus, the yield function of the MIF yield criterion in terms of principal stresses can be expressed as

f MIF
A′E = σ1 − 1 − 2

√
3 + √

13

4
σ2 − 3 + 2

√
3 − √

13

4
σ3 = σs, σ2 ≤ σ1 + σ3

2
(8a)

or

f MIF
B′E = 3 + 2

√
3 − √

13

4
σ1 + 1 − 2

√
3 + √

13

4
σ2 − σ3 = σs, σ2 ≥ σ1 + σ3

2
(8b)

The equation shows that the yielding of a materiel occurs when the linear combination of the stress
componentsσ1,σ2,σ3 is in accordancewith the coefficient of 1,−(1 − 2

√
3 + √

13)/4,−(3 + 2
√
3 − √

13)/4
or (3 + 2

√
3 − √

13)/4, (1 − 2
√
3 + √

13)/4, −1. Compared with the Mises yield criterion, it can be seen
that the proposed yield criterion can provide the calculation advantage due to its linearity. However, it should
be noted that since the new yield criterion is a piecewise function and its yield locus at each intersected point,
such as the point E in Fig. 1, is discontinuous. This indicates that its differentiable ability is not as good as
that of the Mises yield criterion. Before using this new yield criterion, it is necessary to analyze the stressed
characteristics of a specific structure, i.e., σ2 ≥ (σ1 + σ3)/2 or σ2 ≤ (σ1 + σ3)/2, and then to determine which
piecewise function is suitable.

2.2 Yield locus of the MIF yield criterion

In the principal stress space, the vector
⇀

OP, as shown in Fig. 3, is a resultant vector which is combined of the

vector components
⇀

OP1,
⇀

OP2, and
⇀

MP.
By geometrical projection, it can be seen that the point P corresponds to the point D on the π-plane. From

Figs. 1 and 2, the projection of the OD on the π-plane can be calculated as:
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Fig. 4 The yield locus of MIF criterion on the π-plane

OG = OB =
√
2

3
σ1 = 1

cos 30◦ ·
√
2

3
σs = 2

√
2

3
σs (9)

σ1 = 2√
3
σ3, σ3 = 0, σ2 = σ1 + σ3

2
(10)

OH = GD =
√
2

3
σ2 = 2

√
2

3
σs · sin 30◦ =

√
2

3
σs, σ2 = σs√

3
(11)

Substituting σ1, σ2, σ3 into the Mises yield criterion function, then we can have

f Mises
D = 1√

2

√(
2√
3
σs − σs√

3

)2

+
(

σs√
3

)2

+
(

− 2√
3
σs

)2

= σs (12)

The result in Eq. (12) means that yielding of the material with the stress state at the point D occurs.
Substituting σ1, σ2, and σ3 into the MIF yield criterion, it produces

f MIF
D = 2√

3
σs − 1 − 2

√
3 + √

13

4
· 1√

3
σs = 0.989578σs (13)

The coefficient of σs in Eq. (13) is smaller than 1, which means that this stress state at E has not yielded
according to the MIF yield criterion. Thus, the yield point E must be outside of D. The distance between E
and D is determined by the difference between the two formulas on the π-plane. Therefore, the length of ED
can be calculated

ED =
√
2

3

(
f MIF
D − f Mises

D

) = 0.0085095σs (14)

That is to say, the location of point E is 0.0085095σs outside of D. By connecting A′E , B ′E , we can get
the locus of the MIF criterion, which is illustrated in Fig. 4.

The length of the side of the dodecagon and the apex angle are calculated as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan� FB ′E =
(√

2

3
σs −

√
2

2
σs + ED

)/
1

2

√
2

3
σs = 0.2887931

� FB ′E = arctan(0.2887931) = 16.11◦
� OB ′E = 16.11◦ + 60◦ = 76.11◦
� OEB ′ = 180◦ − 30◦ − 76.11◦ = 73.89◦

B ′E = B ′F
cos16.11◦ = 1

2

√
2

3
σs

1

cos16.11◦ = 0.4249352σs

(15)

Thus, the locus of the MIF yield criterion is a non-equiangular dodecagon which intersects with the Mises
circle. Six points of the dodecagon coincide with the Mises circle, the apex angle is 152.22◦; the other six
points are outside of the Mises circle, the distance between the points and the circle is 0.0085095σs, the apex
angle is 147.78◦. The side length of the dodecagon is 0.4249352σs.
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2.3 Plastic work rate per unit volume

It is known that the stress component σi j satisfies the equation f (σi j ) = 0, and the strain rate tensor ε̇i j satisfies
the Levy–Mises flow rule [28], written as

ε̇i j = dλ
∂ f

∂σi j
(16)

When the stress point is on the line A′E described by Eq. (8a), then according to Eq. (16), we can have

ε̇1 : ε̇2 : ε̇3 = dλ : −1 − 2
√
3 + √

13

4
dλ : −3 + 2

√
3 − √

13

4
dλ (17)

Similarly, from Eqs. (8b) and (16), we can have

ε̇1 : ε̇2 : ε̇3 = 3 + 2
√
3 − √

13

4
dμ : 1 − 2

√
3 + √

13

4
dμ : −dμ (18)

At a corner point, the strain rate components can be obtained by the linear combination of those on the
two associated lines [29]. According to this theory, the strain rate at the present point E can be mathematically
expressed by

ε̇i = dλ
∂ f MIF

A′E
∂σi

+ dμ
∂ f MIF

B′E
∂σi

(19)

Thus, the ratio of the strain rate components at the point E can be obtained as

ε̇1 : ε̇2 : ε̇3 =
(
dλ + 3 + 2

√
3 − √

13

4
dμ

)
: 1 − 2

√
3 + √

13

4
(dμ − dλ) :

−
(
3 + 2

√
3 − √

13

4
dλ + dμ

)
(20)

If we select ε̇1 = dλ+ (3 + 2
√
3 − √

13)/4 dμ, then the rest two strain rate components can be expressed
as:

ε̇2 = 1 − 2
√
3 + √

13

4
(dμ − dλ); ε̇3 =

(
−3 + 2

√
3 − √

13

4
dλ − dμ

)
(21)

Taking notice of ε̇max = ε̇1, ε̇min = ε̇3, we can have

ε̇max − ε̇min = 7 + 2
√
3 − √

13

4
(dλ + dμ); (dλ + dμ) = 4(ε̇max − ε̇min)

7 + 2
√
3 − √

13
(22)

It can be noticed that σ2 = (σ1 + σ3)/2 at the point E , so we can calculate from Eq. (8) that

σ1 − σ3 = 8

7 + 2
√
3 − √

13
σs (23)

The plastic work rate per unit volume (or called the specific plastic work rate) can be calculated as

D(ε̇i j ) = σ1ε̇1 + σ2ε̇2 + σ3ε̇3

= σ1

(
dλ + 3 + 2

√
3 − √

13

4
dμ

)
+ 1 − 2

√
3 + √

13

4
σ2(dμ − dλ)

+ σ3

(
−3 + 2

√
3 − √

13

4
dλ − dμ

)
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Fig. 5 Comparison of MIF and experimental data

= 7 + 2
√
3 − √

13

8
(σ1 − σ3)(dμ + dλ)

= 7 + 2
√
3 − √

13

8
× 8

7 + 2
√
3 − √

13
σs × 4

7 + 2
√
3 − √

13
(ε̇max − ε̇min)

= 4

7 + 2
√
3 − √

13
(ε̇max − ε̇min) (24)

2.4 Experimental verification

In order to compare the above-mentioned criteria, the TSS, Mises and the MIF yield criteria can be expressed
by the Lode parameters μd . As given, the TSS yield criterion can be written as

σ1 − σ3

σs
=

{ 4+μd
3 , −1 ≤ μd ≤ 0

4−μd
3 , 0 ≤ μd ≤ 1

(25)

Similarly, the Mises yield criterion can be expressed as

σ1 − σ3

σs
= 2√

3 + μ2
d

, −1 ≤ μd ≤ 1 (26)

The MIF yield criterion can be written as

σ1 − σ3

σs
=

⎧⎨
⎩

8+(1−2
√
3+√

13)μd

7+2
√
3−√

13
, −1 ≤ μd ≤ 0

8−(1−2
√
3+√

13)μd

7+2
√
3−√

13
, 0 ≤ μd ≤ 1

(27)

According to the above rewritten expressions, the comparison of the Tresca, Mises, TSS, and the MIF
yield criteria is illustrated in Fig. 5. The experimental data of copper [30], the Ni-Cr-Mo steel [31], 2024-T4
aluminum [32], and the X52 and X60 pipeline steels [33] are also shown in this figure.

As shown in the figure, the TSS yield criterion gives the upper limit of the experimental data, the Tresca
yield criterion gives the lower limit, the result of the MIF yield criterion falls in between the above two criteria.
The MIF criterion fits the experimental data very well and has a high approximation degree to the Mises yield
criterion. As for the phenomenon that the TSS yield criterion violates various experimental data, which can
be attributed to the excessive weight coefficient for the second bigger principal shear stress from its original
yield assumption. This shortage has been pointed out by Yu in his subsequent work in Ref. [14].
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Fig. 6 Simply supported circular plate under linearly distributed load

Fig. 7 MIF locus in the plane stress state

3 Analysis of limit load of circular plate by the MIF yield criterion

3.1 Basic equation

A circular plate, with the maximum radius a and thickness h, undergoes a linearly distributed loading q , as
shown in Fig. 6.

In the figure, the r is defined as the variable radius in the range of 0 ∼ a. Due to the symmetry, the
equilibrium differential equation of the plate can be written as

d

dr
(rMr ) − Mθ = −

∫ r

0
rq(r)dr (28)

In the form of generalized stress, the radial bending moment Mr and the tangent bending moment Mθ can
be written as [34]

Mr =
∫ h

2

− h
2

σr zdr , Mθ =
∫ h

2

− h
2

σθ zdr (29)

In Eq. (29), σr is radial normal stress, σθ is tangential normal stress, and z is the coordinate which is
perpendicular to the circular plate plane.

In the form of generalized stress, the MIF yield criterion in the plane stress state is illustrated in Fig. 7.
The points A, B, and C in Fig. 7 correspond to the points E , F , and D in Fig. 6.

Because the deformation of the circular plate belongs to the plane stress problem, the MIF yield criterion
in plane stress state can be written as
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σθ − 1 − 2
√
3 + √

13

4
σr = σs, σr ≤ σθ

2
(30a)

3 + 2
√
3 − √

13

4
σθ + 1 − 2

√
3 + √

13

4
σr = σs, σr ≥ σθ

2
(30b)

The equations of AB and BC are derived from Eq. (30), written as

3 + 2
√
3 − √

13

4
Mθ + 1 − 2

√
3 + √

13

4
Mr = Mp (31a)

Mθ − 1 − 2
√
3 + √

13

4
Mr = Mp (31b)

where the plastic limit bending moment can be calculated by Mp = σsh2/4.

3.2 Calculation of the limit load

The calculating diagram of the limit load is shown in Fig. 6, and the q is defined as the linearly distributed load.
By assuming that the bending moment at the point F is equal to that at the point B in Fig. 6, and substituting
Eqs. (31a) and (31b) into Eq. (28), then the equilibrium equations of EF and FD can be written as

EF:

r · dMr

dr
= 4

3 + 2
√
3 − √

13
Mp − 4

3 + 2
√
3 − √

13
Mr − qr3

3a
(32a)

FD:

r · dMr

dr
= Mp − 3 + 2

√
3 − √

13

4
Mr − qr3

3a
(32b)

Equation (32a) is a first-order non-homogeneous linear differential equation. After calculation, the corre-
sponding homogeneous equation and its general solution can be solved as

d(Mp − Mr )

(Mp − Mr )
= − 4

3 + 2
√
3 − √

13

dr

r
(33a)

Mr = Mp − Cr
−4

3+2
√
3−√

13 (33b)

According to the constant variation method [35], the general stress of EF can be calculated as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mr = C1r
−4

3+2
√
3−√

13 + Mp − 3 + 2
√
3 − √

13

39 + 18
√
3 − 9

√
13

qr3

a
, C1 = −3 + 2

√
3 − √

13

4
C0

Mθ = −1 − 2
√
3 + √

13

3 + 2
√
3 − √

13
C1r

−4
3+2

√
3−√

13 + Mp + 1 − 2
√
3 + √

13

39 + 18
√
3 − 9

√
13

qr3

a

(34a)

Similarly, the general stress of FD can be calculated as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mr = C2r
− 3+2

√
3−√

13
4 + 4

3 + 2
√
3 − √

13
Mp − 4

45 + 6
√
3 − 3

√
13

qr3

a

Mθ = −1 − 2
√
3 + √

13

4
C2r

− 3+2
√
3−√

13
4 + 4

3 + 2
√
3 − √

13
Mp − 1 − 2

√
3 + √

13

45 + 6
√
3 − 3

√
13

qr3

a

(34b)

In Eq. (34), the boundary condition at the center of the plate is Mr |r=0 = Mθ |r=0 = Mp and at the edge
is Mr |r=a = 0. Then, C1 and C2 can be solved as

C1 = 0, C2 =
[
− 4

3 + 2
√
3 − √

13
Mp + 4

45 + 6
√
3 − 3

√
13

qr2

a

]
· a 3+2

√
3−√

13
4 (35)
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Fig. 8 Effect of different criteria on the limit load

It can be derived from Eqs. (31a) and (31b) that 2Mr |r=0 = Mθ |r=0 at the point B. By applying this
condition into Eqs. (34a) or (34b) and taking notice of C1 = 0, then the limit load can be calculated as

qMIF = 39 + 18
√
3 − 9

√
13

7 + 2
√
3 − √

13
· aMp

r30
(36)

Substituting qMIF
I and C2 into Eq. (34b) and taking notice of 2Mr |r=0 = Mθ |r=0, then the equation for the

radius r0 (i.e., the radius at point B in Fig. 6) where the tangential stress reaches the maximum value, can be
calculated as

[
0.8464

(
a

r0

)3

− 2.3993

]
·
(
a

r0

) 3+2
√
3−√

13
4 + 0.5529 = 0 (37)

It can be seen from Eq. (37) that the solution only relies on the value of a/r0. After calculation, the value
of r0 is 0.7577a. Thus, the limit load can be solved as

qMIF = 12.6436Mp

a2
(38)

3.3 Parametric analysis and FEM verification

For this problem, the limit load has ever been obtained based on the Tresca yield criterion directly and has also
been numerically simulated by the Mises yield criterion and fitted into a equation [36]. The analytical Tresca
solution and the Mises fitted expression can be shown as follows:

qTresca = 12Mp

a2
, qMises = 12.5829Mp

a2
(39)

The expression of the limit load based on the TSS yield criterion, denoted by qTSS, carried out by Yu et al.
[37], can be written as

qTSS = 5aMp

r20
, a ≈ 1.3889r0 (40)

There exists a plate with thickness h = 1mm. The yield stress of this plate is σs = 800MPa. The effect of
different yield criteria on the limit load is shown in Fig. 8.

It can be observed that the upper bound of the limit load is predicted by the TSS yield criterion, and the
lower bound of the limit load is predicted by the Tresca yield criterion. The predicted result based on the MIF
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Fig. 9 a Deformation shape; b effective stress contour

Fig. 10 Time–displacement (a) and load–displacement (b) curves at dangerous point

yield criterion is between those by the two criteria. The present result has a high approximation degree to that
of the Mises yield criterion.

The simply supported circular plate under a linear distributed load can also be modeled and analyzed
using the finite element method, which is carried out here to further check the correctness of the proposed
yield criterion. In the ANSYS, the Mises yield criterion implemented in the software is still used and the
simply supported circular plate is numerically simulated with the Plane 182 element. It can be assumed that
the material model is elastoplastic material, and the modulus of elasticity E is 200GPa, yield strength σs is
200MPa, strain-hardening modulus Er is 0MPa, Poisson’s ratio υ is 0.499, radius of the circular plate a is
0.2m, plate thickness 2h is 10mm. It should be noted that the metal-hardening effect has not been considered
in this simulation so as to keep consistent with the theoretical calculation in terms of a fixed σs. This becomes
the weakness of the present study, which will be modified in our further work.

After the simulation, the deformation shape and the effective stress contour of the circle plate under the
linear load can be obtained, as shown in Fig. 9.

It can be seen from Fig. 9 that the deflection at the center of the circular plate is the largest, and the closer
the circular plate approaches to the center, the larger the equivalent stress is. The center of the circular plate
will enter the yield state firstly and then the plastic zone will expand outward. At the center of the circular
plate, the time–displacement curve and load–displacement curve at dangerous point are shown in Fig. 10a, b.

From Fig. 10, it can be seen that there is a corresponding relationship between the time and load. The load
is diverged when the time step is 0.68534s, and the applied load is 2MPa. So, the simulated value of the limit
load can be solved as 2MPa × 0.68543 = 1.37068MPa.
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The relative error between the theoretical solution based on the MIF yield criterion and the numeri-
cal solution based on the Mises yield criterion is −12.85%, and the deviation is acceptable in engineering
application(<15%), which verifies the correctness of the analytical solution.

4 Forging analysis of a rectangular bar by the MIF criterion

4.1 Procedure description

Under the condition of 0.6 ∼ 0.5 < l/h < 6 ∼ 4, a rectangular bar is forged and pressed through a rough
hammer, which belongs to plane deformation problem. As shown in Figs. 11 and 12, the billet grid on cross
section has a parabolic shape. The adhesive zone completely covers the contact surface, and the broadside is
deformed as a single bulged shape. Thus, the contact friction stress can be written as

τ f = mσs√
3

(41a)

The value of m can be calculated by the Tarnovski� formula [37]:

m = f + 1

8

l

h
(1 − f )

√
f (41b)

Fig. 11 Grid of the rectangular part on the cross section after compression

Fig. 12 Coordinate system and displacement field
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where f is the sliding friction coefficient.

4.2 Displacement field

As shown in Fig. 11, because of the symmetry in the deformation zone, only one-fourth of the part is analyzed.
Therefore, the displacement field can be set as

ux = a0x + ax

(
1 − 3y2

h2

)(
1 − 1

3

x2

l2

)
, uy = −

[
a0y + ay

(
1 − y2

h2

)(
1 − x2

l2

)]
, uz = 0 (42)

Because of the plastic deformation caused by the forging process, there is a nonlinear relationship between
strain and displacement. In this case, the strain field can be determined by the Cauchy’s equation [27] which
describes the incremental relationship between displacement component and coordinate axis. Thus, the strain
field based on the above displacement field can be derived as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx = ∂ux
∂x = a0 + a

(
1 − 3y2

h2

) (
1 − 1

3
x2

l2

)

εy = ∂uy
∂y = −a0 − a

(
1 − 3y2

h2

) (
1 − 1

3
x2

l2

)

εz = ∂uz
∂z = 0

εxy = 1
2

(
∂ux
∂y + ∂uy

∂x

)
= −a 3xy

h2

(
1 − 1

3
x2

l2

)
+ a xy

l2

(
1 − 3y2

h2

)

εyx = 1
2

(
∂uy
∂x + ∂ux

∂y

)
= −a 3xy

h2

(
1 − 1

3
x2

l2

)
+ a xy

l2

(
1 − 3y2

h2

)

εxz = εzx = εyz = εzy = εz = 0

(43)

where a is the geometrical deformation coefficient.
According to the volume-constancy condition and the mean value theorem, we can obtain

�h · l =
∫ h

0
ux |x=l dy, a0 = �h

h
= ε (44)

It can be noticed that εx = εy = ε and the other strains are zero. Thus, the axes in Eq. (42) are principal
axes. Then it produces

εmax = a0 + a

(
1 − 3y2

h2

)(
1 − 1

3

x2

l2

)
, εmin = −

[
a0 + a

(
1 − 3

y2

h2

)(
1 − x2

l2

)]
(45)

4.3 Theoretical analysis and verification

4.3.1 Total energy functional

By referencing Eq. (24), the internal plastic deformation work can be written as

φ1 =
∫ l

0

∫ h

0
D(εik)dxdy = 4

7 + 2
√
3 − √

13
σs

∫ l

0

∫ h

0
(εmax − εmin)dxdy

= 8

7 + 2
√
3 − √

13
σs

∫ l

0

∫ h

0

[
a0 + a

(
1 − 3

y2

h2

) (
1 − x2

l2

)]
dxdy

= 8

7 + 2
√
3 − √

13
σsa0lh

(46)

According to Eq. (42), the friction work on the contact surface can be written as

φ2 = mσs√
3

∫ l

0
ux |y=hdx = mσsl2√

3

(
a0
2

− 5

6
a

)
(47)
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Summation of Eqs. (46) and (47) yields

φ = 8

7 + 2
√
3 − √

13
σsa0lh + mσsl2√

3

(
a0
2

− 5a

6

)
= 8

7 + 2
√
3 − √

13
σsεlh + mσsl2√

3

(
ε

2
− 5a

6

)
(48)

From the balance principle of the internal work and the external work and taking notice of p̄ = P/l × 1,
ε = a0 = �h/h, K = 2k = 2σs/

√
3, then the stress effective factor can be calculated as

nσ = p̄

K
= 1.0095 + ml

4h
− 5a

12ε

ml

h
(49)

4.3.2 Determination of the geometrical coefficient a

From Eq. (42) and Fig. 12, the displacement of C ′in the x direction can be written as

ux |x=l,y=h = a0l − 4

3
al = �h

h
l − 4

3
al (50)

Similarly, the displacement of C in the x direction can be written as

ux |x=l,y=0 = a0l + 2

3
al = �h

h
l + 2

3
al (51)

The area of S3 can be calculated by the area of S1 minus the area of S2. Substituting Eq. (51) into the
following equation, it produces

S3 = 2b

3
h1 = l�h − ux |x=l,y=hh1 = l�h −

(
�h

h
l − 4

3
al

)
h1 (52)

Solving Eq. (52), then one can determine that

a = b

2l
− 0.75

(
�h

h1
− ε

)
(53)

where b = OC − OB = lm − ls, depending on the actual measurement.

4.3.3 Experiment verification

A lead workpiece was compressed at the speed of 25mm/min on a press machine. The size of the workpiece
is H0 = 2h0 = 40mm, L0 = 2l0 = 38mm, B = 58mm. The material coefficient f is 0.5 measured by a ring
upsetting experiment [37]. After compressing, the size of the workpiece is H1 = 2h1 = 36mm, Lmid = 2lmid
is 43mm, Lsurface = 2lsurface is 40mm, the measured forging force is 57.6kN.

For theoretical calculation,we can get b = lmid−lsurface = 1.15mm, ε = �h/h0 = 0.1, t = �h/v = 4.8 s,
ε̇ = ε/t = 0.0208 s−1.

Because of the volume-constancy condition, it can be obtained that 2 × 20 × 19 = 2 × 18l1, then l1 is
21.111mm. Thus, l/h can be obtained as

l

h
= (l0 + l1)/2

(h0 + h1)/2
= 1.056 (54)

Substituting the above parameters into Eqs. (52) and (41) , it produces

a = 1.5

2 × 19
− 0.75 ×

(
2

18
− 0.1

)
= 0.031 (55)

m = 0.5 − 0.125 × 1.056 × 0.5 × √
0.5 = 0.547 (56)

Substituting ε = 0.1, l̄/h̄ = 1.056, a = 0.031, m = 0.547 into Eq. (48), it produces

nσ = p̄

K
= 1.0797 (57)
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Fig. 13 Comparison of the stress factor of the MIF and the Mises yield criteria

According to ε and ε̇, the value of σs can be determined as 20.15MPa [38], then the total deformation force
can be calculated as

P = 1.155σs · nσ · L · B = 58.297 kN (58)

When compared with the measured value, the relative error of the above result is

�1 = 58.297 − 57.6

57.6
× 100% = 1.21% (59)

4.4 Comparison with Tarnovski�’s result

For this problem, Tarnovski� has ever proposed the following results based on the Mises yield criterion
[39]:

a

ε
= 0.4167m l

h

0.213 + 0.648 l2

h2
+ 0.026 h2

l2

(60)

nσ =
[
1 +

(a
ε

)2 (
0.213 + 0.648

l2

h2
+ 0.026

h2

l2

)] 1
2

+ m
l

h

(
0.25 − 0.416

a

ε

)
(61)

The Shwarz inequality has been used for amplification for obtaining Eq. (61). Thus, the result is a numerical
solution.

Substituting l/h = 1.056 and m = 0.547 into above equation, it produces

a

ε
= 0.251 , nσ = 1.1139 (62)

Thus, the total pressure P can be calculated as P = 1.155(σs · nσ · L · B) = 60.14 kN. When compared
with the measured value, the relative error between them is

�2 = 60.14 − 57.6

57.6
× 100% = 4.41% (63)

It can be obtained from �1 and �2 that the results based on two criteria are both bigger than actual one,
but the result of the MIF criterion is more precise. What is more, the MIF criterion is a linear yield criterion,
and its specific plastic work rate is also linear, which creates the condition of obtaining the analytical solution,
i.e., Eq. (49).
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The stress effective factor nσ calculated by two criteria can be obtained and is shown in Fig. 13.
It can be observed that the results of the MIF are slightly lower. The analytical solution, Eq. (49), is

much more simple than Tarnovski�’s result, Eq. (61). Additionally, it can be obtained from Fig. 13 that nσ

increases with increasing l/h.

5 Conclusions

(1) By considering the difference of the intermediate principle stresses of the Tresca, Mises, and TSS yield
criteria, a new yield criterion shown as a dodecagon is proposed through the method of parabolic inter-
polation and mathematical averaging. The locus of the criterion is an equilateral and non-equiangular
dodecagon. The apex angles of the yield locus are 152.22◦ and 147.78◦, and the length of the side of the
dodecagon is 0.4249352σs.

(2) The proposed yield criterion coincides well with experimental data and varies linearly with the Lode
parameter. The yield criterion lies in between the Tresca and TSS yield criteria, and approaches well to
the Mises yield criterion.

(3) The limit load of the simply supported circular plate calculated by this criterion is a function of a and h.
The load reaches the limit when r0 = 0.7577a, and the relative error between the theoretical solution and
the numerical solution is 12.85%.

(4) The specific work rate D(ε̇i j ) is derived as 4/(7 + 2
√
3 − √

13)σs(ε̇max − ε̇min). It can be used in the
analysis of the forging force of a rectangular bar, and the analytical solution can be obtained. The result
indicates that the stress state coefficient increases with the increase of l/h. The predicted value calculated
by the MIF criterion is very close to the actual measurement.
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