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Abstract This paper presents a theoretical investigation on the response of free vibration of functionally graded
material (FGM) micro-plates with thermoelastic damping (TED). Continuous through thickness variation of
the mechanical and thermal properties of the FGM plate is considered. By employing the simplified one-way
coupled heat conduction equation and Kirchhoff’s plate theory, governing equations for the free vibration
of the FGM micro-plates with thermoelastic coupling effect are established, in which stretching-bending
coupling produced by the material inhomogeneity in the thickness direction is also considered. The heat
conduction equation with variable coefficients is solved effectively by a layer-wise homogenization approach.
Harmonic responses of the FGM micro-plates with complex frequency are obtained from the mathematical
similarity between the eigenvalue problems of the FGMmicro-plate with TED and that of the homogenous one
without TED. The presented analytical solutions are suitable for evaluating TED in FGM micro-plates with
arbitrary through-thickness material gradient, geometry and boundary conditions. Numerical results of TED
for a ceramic-metal composite FGM micro-plate with power-law material gradient profile are illustrated to
quantitatively show the effects of the material gradient index, the plate thickness, and the boundary conditions
on the TED. The results indicate that by adjusting the physical and geometrical parameters of the FGMmicro-
plate, one can get the minimum of the TED which is even smaller than that of the pure ceramic resonator.

Keywords Functionally graded materials · Micro-plates · Thermoelastic damping ·
Layer-wise homogenization approach · Inverse quality factor

1 Introduction

Along with the rapid advance of science and technology, resonators have been widely utilized in engineering
applications, especially in the micro/nanoelectromechanical systems (MEMS/NEMS), as sensors, actuators,
frequency-filters, logic switches, energy collectors, and so on. Mechanical models of the most of resonators
can be simplified as micro/nanoscale beams or plates. In order to design high performance MEMS, it needs
to minimize the energy dissipation, or to get higher quality factor of the resonators. However, there exist
inevitably various energy dissipation mechanisms in the resonators. Generally, the energy lost in the resonators
is produced by two kinds of source, the external energy dissipation and the intrinsic energy dissipation. The
external energy dissipation arising from the air damping and support damping can be minimized or eliminated
through reasonable structural design and manufacturing process. However, the internal energy dissipation,
such as the thermoelastic damping (TED) [1–4], is an energy dissipation mechanism of the system due to the
thermoelastic coupling between the thermal field and the strain field in the vibrating solid structures. In the
sense of the two-way coupled thermoelastic dynamics, TED originates from the irreversible heat flux flowing
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from the compressed parts with higher temperature to the stretched parts with lower temperature in vibrating
microscale structures, like resonators with a positive thermal expansion coefficient [4]. Unfortunately, it has
been consistently observed that the TED in the resonator will increase significantly with the decrease in the size
and will not be eliminated by improving the external conditions [5]. So, TED is the dominant internal energy
dissipation mechanism in the MEMS/NEMS. Therefore, to effectively and accurately estimate and evaluate
TED in the resonators is of great importance in the design of high-quality resonators.

Zener [2,3] firstly studied theTED in a thinmicrobeamwith flexural vibration based on the one-way coupled
heat conduction theory and Euler–Bernoulli beam theory. He developed an approximate analytical expression
for TED in a thin rectangular cross-sectional metallic beam, which is known as Zener’s formula. Lifshitz and
Roukes (L–R) [4] improved upon Zener’s work and developed exact and closed-form expressions for TED
and frequency shift in the rectangular cross-sectional microbeams using the quasi-1-D heat conduction theory.
Afterward, basis on Zener and L–R’s work, the quasi-1-D models are also used to estimate TED in micro-plate
resonators. Nayfeh and Younis [5], Sun et al. [6,7], Ali and Mohammadi [8] derived analytical solutions in the
L–R’s form for the TED in plate resonators based on one-way coupled quasi-1-D heat conduction equation
and classical plate theory. Salajeghe et al. [9] considered geometric nonlinearity effect on the quality factor of
microcircular plate in the sense of von Karman’s plate theory. The numerical results quantitatively showed the
effects of nonlinear deformation on the TED. Li et al. [10] carried out investigation on TED in fully clamped
circular and rectangular plate resonators and derived the inverse quality factor in L–R’s analytical form by
using the energy approach.

In order to improve the accuracy in evaluating the TED of micro- plate resonators, some authors used 2-D,
even 3-D heat conduction theories in the solution of the temperature filed [11–17]. Based on fully coupled
thermoelastic equations, Yi solved the complex eigenvalue problem related to TED of microcircular and
elliptical plates under going in-plane vibrations [11] by using finite element method (FEM). By considering
the temperature field changing simultaneously in the radial, circumferential and thickness directions, Pei [12]
investigated the TED of a rotating flexible micro-annular plate in the flexural vibration by a semi-analytical
approach. Adopting a 2-D and 3-D heat conduction theories, Fang et al. derived analytical solutions of TED
in the axisymmetric vibration of circular plate resonators [13] and rectangular micro-plates [14].

All the above investigations on the TED are related to the resonators made of isotropic and homogenous
materials. By considering stepwise inhomogeneity of material properties along the thickness direction, TED
in laminated composite micro-plates was studied in the literature of [15–22], where the micro-plates were
assumed to be composed by several isotropic and homogeneous layers with different material properties.
Among them, as an excellent pioneering work on TED in the laminated composite microstructures was carried
out by Bishop and Kinra [15,16]. They extended Zener’s work to N -layer composite structures with thermally
imperfect interfaces based on thermoelastic dynamics [15]. By using the thermal energy approach, Vengallatore
obtained the TED in a symmetric three-layer laminated rectangular plate with thermally perfect interfaces [17].
Sun et al. [18] performed an analytical investigation on the TED in a symmetric three-layer microcircular plate.
Furthermore, Liu et al. [19] carried out a theoretical analysis of thermoelastic damping in bilayered circular plate
resonators with two-dimensional heat conduction. More recently, Zuo et al. [20] and Wang et al. [21] studied
TED in a trilayered rectangular micro-plate with 1-D heat conduction and a bilayered rectangular micro-plate
with 3-D heat conduction employing the thermal energy approach, where the physical neutral surface was
introduced to delete the stretching-bending coupling. However, in the deriving of the physical neutral surface,
the thermal membrane force which is produced from the asymmetric distribution of the material properties
about the geometrically neutral surface is ignored.

Comparing the traditional laminated composite micro-plates, functionally graded material (FGM)
microbeams and plates with tailored, or in advance designed continuous variation of the material properties in
the thickness direction have the advantage of the material properties over the individual constituents and can
satisfy many specific demands in different engineering applications. Moreover, in the micro/nanoengineering
fields, FGMmicro/nanobeam/plate structures have been found applications in the MEMS/NEMS [22–34]. As
a result, studies on the static and dynamic responses of FGMmicrostructures have attracted extensive attentions
of the researchers. In those investigations, free vibration of FGM microbeams [22,23], circular and annular
plates [24–26], and rectangular plates [27–29] were analyzed based on different plate theories by considering
the size-dependent effect using the modified couple stress theory.

However, it can be found that in those investigations on the free vibration response of the microstructures,
only a few contributions are focused on the effect of the thermoelastic coupling deformation on the vibration
response of themicrostructures [30–34]. Among these, Azizi et al. [30] investigated TED in a clamped-clamped
FGM piezoelectric microbeam with the constituents of silicon and piezoelectric materials. They examined the
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effects of the volume fraction of the piezoelectric constituent, geometry and ambient temperature on the TED.
Zhong et al. [31] performed an analytical study on the TED in a clamped FGMEuler–Bernoullimicrobeamwith
material properties varying as exponential law through the thickness. However, in the mathematical modeling,
they also ignored the stretching–bending couplingwhich should be considered when thematerial properties are
asymmetric about the geometrical middle surface. Emami and Alibeigloo [32] present an analytical solution
of TED in a simply supported FGM microbeam based on the one-way coupled heat conduction equation and
Timoshenko beam theory. By expanding the variable coefficients and the temperature rise field in the forms of
the Taylor series, the heat conduction equation with variable coefficients is solved analytically for temperature
increment. By using the same approach to deal with the heat conduction equation, the authors [33] carried
out a study on the TED in a simply supported rectangular FGM micro-plate based on the first-order shear
deformation theory and the modified strain gradient theory. Recently, Li et al. performed theoretical analyses
of TED in the vibrating FGMmicrobeams [34] and microcircular plates [35] with the mechanical and thermal
properties continuous varying along the beam depth and plate thickness under different boundary conditions.
A layer-wise homogenization approach was first developed and effectively used to solve the heat conduction
equation with variable coefficients for arbitrary material gradient functions.

From the above review of the existing investigations on the TED of micro-plates we know that the most
of the studies are related to homogenous or laminated microresonators. Only very a few papers referred to
the non-homogenous micro-plates resonators with material properties varying continuously in the thickness
directions. Comparing with the homogenous plate resonators, the coefficients of heat conduction equation
for the FGM micro-plate resonators are variable, or functions of the thickness coordinate. Moreover, due to
the distribution of material properties to be asymmetric about the geometrically neutral surface, there exists
stretching–bending coupling in the thermal-elastic vibration. So, analysis on TED FGM micro-plates with
arbitrary material gradient in the thickness direction and subjected to different boundary constraints is still the
open research topic to be examined.

In the current research, we will carry out a theoretical analysis of TED in FGM micro-plates on the basis
of the previous work [35]. Firstly, by using the one-way coupled thermoelastic dynamics and Kirchhoff’s
plate theory, one-way coupled dynamic equations governing the free vibration and the heat conduction of the
FGM micro-plates will be established by accurately considering the effects of stretching–bending coupling.
Then, the resulted quasi-1-D heat conduction equation with variable coefficients will be approximately solved
by using the layer-wise homogenization approach developed by the authors [35]. Furthermore, analytical
expression for TED in FGM plates defined by the inverse quality factor is derived by using the complex
frequency approach. We will showmathematically that the theory, the methodology and the solution presented
will be suitable for evaluating the TED of thin FGM micro-plates with arbitrary through-thickness material
gradient, geometry and boundary conditions. Finally, by specifying the material properties varying as power-
law functions, numerical results of the TED in FGM rectangular plates are presented to show the validity of
theory and methodology. Effects of the material gradient index, plate thickness, the aspect ratio, the vibration
modes and boundary conditions on the TED and on the through thickness distribution of the temperature will
be analyzed quantitatively. In addition, the temperature distribution along the plate thickness will be firstly
illustrated for different material gradient profiles.

2 Mathematical formulation of the problem

For the convenience of mathematical derivation, we consider a thin FGM micro rectangular plate with length
a, width b and depth h. Cartesian coordinate system (x, y, z) is taken, as shown in Fig. 1, to describe the free
vibration of the plate with TED. The x − y plane is located in the geometrically mid-surface of the plate, and
the z-axis is normal to the mid-surface and in the thickness direction. Therefore, z = h/2 and z = − h/2 define
the top and the bottom surface of the plate, respectively. It is assumed that the plate is made of two different
homogenous material components with their volume fractions varying continuously in the thickness direction
as arbitrary continuous functions. As a result, all the effective mechanical and thermal material properties are
continuous functions of coordinate, z.

2.1 Equations of motion

Herein, we consider the thin micro-plate with small vibration. So, the Kirchhoff’s plate theory is used
to establish the governing equations of the FGM micro-plate in free vibration with TED. Based on this
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Fig. 1 Geometry and coordinates of a functionally graded micro-plate

plate theory, considering the in-plane stretching, displacement field of the FGM micro-plates is given by
[36–38]

u(x, y, z, t) = u0(x, y, t) − z
∂w0

∂x
(1a)

v(x, y, z, t) = v0(x, y, t) − z
∂w0

∂y
(1b)

w(x, y, z, t) = w0(x, y, t) (1c)

where t is time; u , v, and w are the components of the displacement in x , y, and z, directions, respectively;
u0, v0 and w0are the components at the points of geometrically middle surface, which are produced by the
stretching–bending coupling deformation due to the asymmetric variation of the material properties in the
thickness direction. If the plate is homogenous, or if it is functionally graded but the variation of the material
properties is symmetrical about the geometrical middle surface, it gives u0 = v0 = 0.

By using the linear strain-displacement relations and the Hooke’s law [36], we can arrive at the following
relations of the resultant membrane forces and the bending moments
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where(ε0x , ε
0
y, γ

0
xy) and (κx , κy, κxy)are the in-plane strain and curvature components respectively, given by
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The resultant membrane forces and the bending moments in Eqs. (2) and (3) are defined by

(Nx , Ny, Nxy) =
∫ h/2

−h/2
(σx ,σy ,τxy)dz (5a)

(Mx , My, Mxy) =
∫ h/2

−h/2
(σx ,σy ,τxy)zdz (5b)

(NT , MT ) =
∫ h/2

−h/2

α(z)E(z)H

1 − μ
(1, z)dz (5c)

where σx , σy and τxyare stress components; H(x, y, z, t) = T (x, y, z, t)−T0 is the variation in the temperature
T with respect to the equilibrium temperature (or reference temperature) T0; E(z), μ and α(z) are the Young’s
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modulus, Poisson ratio and linear coefficient of thermal expansion, respectively. The stiffness coefficients in
Eqs. (2) and (3) are given as follows

(A11, A12, A33) =
∫ h/2

−h/2

E(z)

1 − μ2

(
1, μ,

1 − μ

2

)
dz (6a)
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zE(z)

1 − μ2

(
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2

)
dz (6b)
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(
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2

)
dz (6c)

It is easy to show that these stiffness coefficients satisfy relations of

A12 + 2A33 = A11, B12 + 2B33 = B11, D12 + 2D33 = D11 (7)

In the sense of the classical plate theory, by ignoring the in-plane inertia forces, equations of motion for the
free vibration of the FGM micro-plates are given by [36]

∂Nx

∂x
+ ∂Nxy

∂y
= 0 (8)

∂Nxy

∂x
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= 0, (9)
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∂2w0

∂t2
(10)

whereI0 = ∫ h/2
−h/2 ρ(z)dz, ρ(z) is the mass density.

By substituting Eqs. (2)–(5) into Eqs. (8)–(10), and using the relations given in Eq. (7), we get equations
of motion in terms of displacement components

A11
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∂2u0
∂y2

+ (A12 + A33)
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where ∇2 =
(

∂2

∂x2
+ ∂2

∂y2

)
is the Laplace operator and ∇4 = ∇2∇2.

Calculating derivatives of Eqs. (11) and (12), respectively, with respect to x andy, adding respective sides,
and using Eq. (7), we obtain

∇2
(

∂u0
∂x

+ ∂v0

∂y

)
= z0∇4w0 + 1

A11
∇2NT (14)

Finally, by using Eq. (14) to eliminate the in-plane displacements in Eq. (13), we arrive at equation of motion
only in terms of the transverse deflection w0 as follows:

Deq∇4w0 + I0
∂2w0

∂t2
+ ∇2MT − z0∇2NT = 0 (15)

whereDeqis the equivalent flexural rigidity; z0 represents position of the physical neutral surface. They are
defined by

Deq = D11 − B2
11/A11, z0 = B11/A11 (16)

Notably, in Eq. (15) the thermal membrane force NT and bending moment MT depend on the temperature rise
filed which is coupled with the strain field, or the kinematic parameters. They will be finally determined in
terms of the deflection of the plate. However, in the analysis of vibration subjected to external thermal loadings,
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the temperature rise field is determined independently by solving the uncoupled heat conduction equation with
its initial and boundary conditions.

In the absence of constraints at the boundaries to prevent the in-plane movements, the membrane forces
will vanish. Thus, from Eq. (2), we have

A11
∂u0
∂x

+ A12
∂v0

∂y
− B11

∂2w0

∂x2
− B12

∂2w0

∂y2
− NT = 0 (17a)

A12
∂u0
∂x

+ A11
∂v0

∂y
− B12

∂2w0

∂x2
− B11

∂2w0

∂y2
− NT = 0 (17b)

A33

(
∂u0
∂y

+ ∂v0

∂x

)
− 2B33

∂2w0

∂x∂y
= 0 (17c)

Usually, the variation of the Poisson ratio of the FGM plate in the thickness direction changes very little
comparing with other physical parameters. So, in order to facilitate the analysis, the Poisson ratio is assumed
to be constant in the following analysis. Then, the stiffness parameters satisfy relations, A11B12 = A12B11
and A12 = μA11, B12 = μB11. Consequently, by solving Eq. (17) we can arrive at

ε0x = ∂u0
∂x

= z0
∂2w0

∂x2
+ NT

A11
, (18a)

ε0y = ∂v0

∂y
= z0

∂2w0

∂y2
+ NT

A11
, (18b)

γ 0
xy = ∂u0

∂y
+ ∂v0

∂x
= 2z0

∂2w0

∂x∂y
(18c)

Equation (18) shows that the membrane strains (strain at the geometrical middle surface) of the FGM plate
consist of two part. The one is produced by stretching–bending coupling and the other is contributed by the
thermalmembrane force due to the thermally non-homogeneity of thematerial property and the non-symmetric
temperature rise distribution about the geometrical middle surface as shown in Eq. (5c). Therefore, only for the
homogenous material micro-plate, or the FGMmicro-plate with the material properties varying symmetrically
about the geometrical middle surface, the membrane strains will vanish due to z0 = 0 and NT = 0 at the
same time. Otherwise, the thermal membrane force is not equal to zero and it will contribute to the membrane
strains, and further to the TED.

2.2 Equation of heat conduction

In the case of absence of external thermal loads, temperature field in the FGMplates is governed by the one-way
coupled heat conduction equation as follows [1]:

∂

∂x

(
k
∂H

∂x

)
+ ∂

∂y

(
k
∂H

∂y

)
+ ∂

∂z

(
k
∂H

∂z

)
= ρC

∂H

∂t
+ αET0

1 − 2μ

∂e

∂t
(19)

where k and C are the thermal conductivity and the specific heat which are given functions of coordinate, z; e
is the cubic dilation which is calculated by

e = εxx + εyy + εzz = 1 − 2μ

1 − μ

(
ε0 − z∇2w

) + 1 + μ

1 − μ
αH (20)

The derivation of Eq. (20) in detail is given in the Appendix.
For thin homogenous micro-plates, the previous researchers show that the difference between the value

of the thermoelastic damping predicted by the 1-D heat conduction equation and that by 2-D, even 3-D heat
conduction equation is very small [13,14]. Therefore, by ignoring the terms of in-plane temperature gradient
in Eq. (19) [5–10,30–35] and considering the cubic dilation in Eqs. (20) and (19) reduces to the following
quasi-one-dimensional heat conduction equation:

∂

∂z

(
k
∂H
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)
= ρC
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+ αET0

1 − μ

∂
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(
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)
(21)



Analysis of free vibration of functionally graded material micro plates 1291

It needs to noted that, herein a higher-order small quantity ofρC is neglected in Eq. (21) [5–10,17–21,30–35].
It is obvious that the coefficients of Eq. (21) are variable because all the material parameters in it (except for
the Poisson) are functions of the coordinate, z, for the FGM plates.

3 Harmonic response of the free vibration

By assuming the vibration is harmonic, the dynamically thermo-mechanical responses of the FGM plate
resonator can be expressed by

(u0, v0, w0, H) = (ū(x, y), v̄(x, y), w̄(x, y), H̄(x, y, z))eiωt (22)

where ω is the complex natural frequency including TED; i = √− 1; the quantities with a top bar are the
amplitudes, or the shape modes, of the displacements and the temperature change, respectively. Substitution
from Eq. (22) into Eqs. (15) and (21) yields

Deq∇4w̄ + ∇2 (
M̄T − z0 N̄T

) − I0ω
2w̄ = 0 (23)

∂

∂z

(
κ

∂ H̄

∂z

)
= iω

[
ρC H̄ + αET0

1 − μ

(
ε̄0 − z∇2w̄

)]
(24)

with

ε̄0 = ∂ ū

∂x
+ ∂v̄

∂y
(25)

(N̄T, M̄T) =
∫ h/2

−h/2

α(z)E(z)

1 − μ
H̄(x, y, z)(1, z)dz (26)

4 Solution of the eigenvalue problem

Firstly, we solve the heat conduction equation (24) to find temperature modes in terms of the kinematic
parameters related to the structural modes. Due to the inclusions of the variable coefficients, it is difficult
to find analytical solution of it by direct analytical approach. Instead, we use a layer-wise homogenization
approach developed by the authors [34,35] to solve heat conduct equation (24) under the adiabatic boundary
conditions at the top and bottom surfaces.

In the sense of the layer-wise homogenization approach, the transversely non-homogenous FGM plate is
assumed to be divided into finite numbers (N ) layers and the effective material properties in each layer are
considered approximately to be constant. Accordingly, Eq. (24) is discretized into N differential equations
with constant coefficients defined in the different divided layers as following

∂2 H̄ j

∂z2
+ r2j H̄ j = s j

(
ε̄0 − z∇2w̄

)
, (z j < z < z j+1, j = 1, 2, . . . , N ) (27)

where H̄ j (x, y, z) is the temperature amplitude defined in the j-layer; parameters r j and q j are defined by

r j =
√

− iωρ jC j

k j
= (i − 1)

√
ωρ jC j

2k j
, s j = iωE jα j T0

(1 − μ)k j
(28)

The values of the mechanical and thermal parameters with subscripts, j , are evaluated at the middle surface,
z̄ j = (z j + z j+1)/2. By solving Eq. (27) for each layer, and using the adiabatic boundary conditions at the
top and bottom surfaces and continuation conditions at the interfaces, analytical solutions of the temperature
rise field defining in the divined layers can be finally arrived at [34,35]:

H̄ j = Ā j ε̄0 + B̄ j∇2w̄, (z j < z < z j+1, j = 1, 2, . . . , N ) (29)
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with

Ā j = Ā1 j sin r j z + B̄1 j cos r j z + s j/r
2
j (30a)

B̄ j = Ā2 j sin r j z + B̄2 j cos r j z − s j z/r
2
j (30b)

where constants Ā1 j , B̄1 j , Ā2 jand B̄2 j are related to the geometry, the material properties and the frequency
of the FGM micro-plate.

According to Eqs. (26) and (29), we obtain the amplitudes of the resultant thermal membrane force and
bending moment

N̄T = β11ε̄0 + β12∇2w̄, M̄T = β21ε̄0 + β22∇2w̄ (31)

in which the analytical expressions of coefficientsβi jare given in the “Appendix”.
Furthermore, by using Eqs. (18), (22), (25) and (31), we can obtain the quantities ε̄0, N̄T, and M̄T in terms

of w̄ as following

ε̄0 = β̄∇2w̄, (32a)

N̄T = fN∇2w̄, (32b)

M̄T = fM∇2w̄ (32c)

where

fN = β11β̄ + β12, fM = β21β̄ + β22, β̄ = (1 + μ)B11 + 2β12

(1 + μ)A11 − 2β11
. (33)

where fN and fM are functions of the complex frequency, ω. Then, by using Eqs. (32), we can rewrite the
structural vibration equation, Eq. (23), in the standard form of

∇4w̄ − λ2w̄ = 0 (34)

where

λ =
(

cI0
Dr (1 + c f )

)
ω, (35a)

f (ω) = fM (ω) − z0 fN (ω)

Dr
(35b)

c = Dr

Deq
, (35c)

Dr = Erh3

12(1 − μ2)
(35d)

Herein, Er and Dr are theYoung’smodulus and the flexural rigidity of the reference homogenousmaterial plate
which it is assumed to be made from the bottom surface material of the FGM plate. Constant c represents effect
of the material inhomogeneity on the flexural rigidity with c = 1corresponding to the reference homogenous
plate; f (ω) is a complex function of frequency, ω, the imaginary part of which measures the TED in the
vibrating FGM micro-plate.

In the special case that the FGMplate reduces to the reference homogenous plate without TED ( f (ω) = 0),
Eq. (35) reduces to

∇4w̄∗
0 − λ∗2

0 w̄∗
0 = 0, with λ∗2

0 = I ∗
0 ω∗2

0

Dr
(36)

in which ω∗
0 is the isothermal frequency of the reference homogenous plate and w̄∗

0 is the related mode shape;
I ∗
0 = ρr h. For the same edge constraints, such as for the simply supported (S), the clamped (C) and the free
(F) edges, we can show that the boundary conditions of Eq. (34) are the same with those of Eq. (36). The detail
mathematical proofs of this conclusion can be found in the “Appendix”. Therefore, mathematical similarity
between Eqs. (35) and (36) gives the relationship between the eigenvalues (frequencies) as follows [36]
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ω = ω0
√
1 + c f (ω) (37)

where ω0 = ω∗
0/

√
cφ̄0 is the natural frequency of isothermal FGM plate [36]; ϕ̄0 = I0/I ∗

0 is an inertial
parameter. The corresponding mode shape function, w̄, of the FGM micro-plate is proportional to that of the
reference homogenous plate, w̄∗

0 . Examining the coefficients in Eq. (31) and the definition of Eq. (35b), one
can see that Eq. (37) is a complicated transcendental equation about the complex frequency, ω. Therefore, it
is difficult to find the root of this equation. However, due to the TED is very weak in the free vibration of the
FGMmicro-plate, we may approximately replace f (ω) in the square root of Eq. (37) by f (ω0), the dissipation
relation, Eq. (37), becomes [4,6,7,35]

ω = ω0
√
1 + c f (ω0) (38)

The frequency of the reference homogenous plate can be expressed by

ω∗
0 = �∗

0

a2

√
Dr

ρr h
(39)

where�∗
0 is a dimensionless frequency parameter only depending on the geometry and the boundary conditions

of the reference homogenous plate which can be easily found in the literature [37,38], or even in the text books
[39]. It is well known that for a rectangular plate with the four edges simply supported (SSSS), analytical
solution of �∗

0 is given by

�∗
0 =

(
r2 + s2

δ2

)
π2, (r, s = 1, 2, . . . , ) (40)

whereδ = a/b.
Finally, by using the complex frequency approach [4–7,30–35], the TED is given in the terms of the inverse

quality factor, Q−1, as follows

Q−1 = 2

∣∣∣∣
Im(ω)

Re(ω)

∣∣∣∣ (41)

where Re(ω) and Im(ω) are the real and the imaginary parts of the complex frequency, respectively.
Herein,we should note that the above theoretical analyses or themathematical formulations validate the thin

FGMmicro-plates with arbitrary through-thickness material gradient profile, arbitrary geometry and arbitrary
boundary constraints.

5 Numerical results and discussions

In the following numerical computing, FGM micro-plate is assumed to be composited by the constituents of
metal (Ni) and ceramic (Si3N4). Furthermore, material properties of the FGMmicro-plate are assumed to vary
along the thickness from the full ceramic to the full metal as the following power functions [33–36]

P = Pm

[
1 +

(
Pc
Pm

− 1

)(
1

2
+ z

h

)n]
(42)

where,ζ = z/h, n ∈ [0,∞) represent the material gradient parameter with n = 0 and n → ∞ corresponding
to the full ceramic and the full metal plates, respectively; Pc = P(h/2)and Pm = P(− h/2) refer to the thermal
and mechanical properties of the full ceramic at the top surface and those of full metal at the bottom surface,
respectively. Herein, we select the full metal plate as the reference homogenous material plate, i.e. Pr = Pm .
The mechanical and thermal properties of the metal (Ni) and ceramic (Si3N4) at reference temperature,
T0 = 300K, are listed in Table 1.

First, in order to check the convergence of the layer-wise homogenization approach, we plotted a curve of
the TED of the FGM square plate with SSSS boundary conditions varying with the divided layer number, N
in Fig. 2, from which it can be found that this method convergence speed is so quick that the TED is accurate
enough once N > 300.
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Table 1 Material properties of the constituents of the FGM micro-plate (T0 = 300 K) [17,35]

Constituents E (GPa) ρ (kg/m3) k (W/mK) C (J/kgK) α (10−6/K) μ

Ni (PT) 210 8900 92 438.2 13.0 0.3
Si3N4(Pb) 250 3200 8 937.5 3.0 0.3

10 100 1000
1.14

1.16

1.18

1.20

1.22

1.24

1.26
10-4

Q
-1

N

n = 1, a = b = 200μm

Fig. 2 TED in a SSSS square FGM micro-plate varying with the increasing divided layers, N (n = 1, a = b = 200µm,
h = 2µm)

Table 2 Values of the TED (Q−1 × 105) of a homogenous (full ceramic) square micro-plate with SSSS edges obtained by the
present approach and by the analytical solution in L–R’s form [10] (in the first mode, a = b = 200µm)

0.5 1 1.5 1.8 2 4 6 12 14 16
(h/µm)

2.5853 2.0631 6.7862 11.113 14.255 11.861 4.0466 0.5576 0.3539 0.2395
2.5853 [10] 2.0631 6.7864 11.113 14.255 11.866 4.0482 0.5579 0.3550 0.2396

By reducing thematerial to be full ceramic (n = 0), analytical solutionof theTEDfor theSSSShomogenous
plate was derived in the L–R’s form by Li et al. [10] by using the energy approach, which is expressed by

Q−1 = 1 + μ

1 − μ

Eα2T0
ρC

6

ξ2

(
1 − 1

ξ

sinh ξ + sin ξ

cosh ξ + cos ξ

)
, ξ = h

√
ω0ρC

2k
(43)

Herein, values of physical parameters in Eq. (43) are given by those of the ceramic (Si3N4)in Table 1. A
comparison between the values of TED for the full ceramic square micro-plate with SSSS boundary conditions
estimated byEq. (43) and by the present approach are listed in Table 2 for some specified values of the thickness.
Moreover, in Fig. 3, we illustrated the continuous variation of the TED with the thickness, h. It can be seen
obviously that a good agreement between the results shows the validity and effectiveness of the present approach
to analyze the TED of the homogenous micro- plates.

From the above analysis, we know that the TED comes from the thermal membrane force and bending
moment produced by the temperature gradient in the thickness direction. So, we firstly analyze the variation
of the temperature field along the plate thickness. By substituting Eq. (32a) into Eq. (29), the temperature field
can be expressed stepwise as functions of coordinate, z, as follows

H̄ j (x, y, z) = ( Ā j β̄ + B̄ j )∇2w̄, (z j < z < z j+1, j = 1, 2, . . . , N ) (51)

where ∇2w̄ is a function of coordinates x and y given by the vibration modes of the FGM plate. So, the
variation of the temperature field in the thickness direction can be determined by
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Fig. 3 Comparison of the TED for a full metal square plate with SSSS edges obtained by the present approach and by L–R’s
analytical solution form [10] (in the first mode, a = b = 200µm)

τ j (z) = H̄ j

a∇2w
= 1

a
( Ā j β̄ + B̄ j ), (z j < z < z j+1) (44)

For the specified value of the thickness, h = 1µm, 3µm and 5µm, Fig. 4 illustrates the real part of the
through thickness temperature variation, Re(τ ), of the FGM micro-plates with different values of the power
index, n. Examining those curves corresponding to different values of n, it can be seen that thematerial gradient
or the inhomogeneity in the materials has a significant influence on the distribution of the temperature filed
along the thickness, which is produced by the complicated thermoelastic coupling dynamic deformations and
strengthened by the material inhomogeneity. It is obvious that the curves of the FGM plates deviate from
the geometric neutral surface where the temperature rise is negative due to the stretching–bending coupling
and that they approach to the curves of the full ceramic (n = 0) and full metal (n = 107) plates at the top
and bottom surfaces, respectively. In addition, the distribution of the temperature field in the plate thickness
direction also accords with the mechanism of the energy dissipation that the energy loss originates in the
irreversible flow of heat from the hotter region to be compressed to the colder region to be stretched in the
vibrating plate due to the thermoelastic coupling [1–4]. Moreover, along with the increase in the thickness, the
temperature amplitudes at the top and the bottom surfaces increase.

From Eqs. (30) and (41) one can seen that the TED depends closely on the isothermal frequency of the
FGMmicro-plate. Figure 5 shows continuous variation of the TED in the square FGMmicro-plate versus ω0in
the fundamental modes for different values of the material gradient index, n, under SSSS and CCCC (with all
the four edges clamped) boundary conditions. From it one can see that as the increase in the value of ω0 the
TED firstly increases until it attains the maximum value, Q−1

max, then decreases monotonously. The frequency
corresponding to the peak value of TED gives a definite value of the plate thickness which is called the critical
thickness, denoted by hcr. Along with the increase in the material gradient index, n, or the increment of the
volume fraction of metal, both the TED and the critical thickness increase.

Figure 6 displays the characteristic curves of TED versus the material gradient index, n, for some specified
values of plate thickness in a SSSS FGM square micro-plate. From it we can see that the TED reaches the
minimum roughly at n = 4.20 for the very thin micro-plate (h � 3µm). So, it may be possible to design a
higher quality plate resonator with the lowest TED smaller than that of the full ceramic plate.

Figure 7 shows the relation between the TED and the thickness of the SSSS square FGM micro-plate
corresponding to the first four vibration modes. It can be seen that that the maximum values of TED of the
micro-plate with different vibration modes are the equal. However, the values of the corresponding critical
thickness decrease along with the increase in the order of the vibration modes. In Fig. 8, we plotted the curves
of TED of a SSSS rectangular FGM micro-plate versus the thickness for different values of the aspect ratio,
a/b. It can be seen that the maximum values of TED keep the same for the plates with different values of the
aspect ratio, but the critical thickness decreases along with the increase in it.

Figure 9 shows the continuous variation of the TEDversus the plate thickness of the FGMmicro-plates with
different boundary conditions which are CCCC, CFCF (clamped at x = 0, a and free at y = 0, b), SSSS, SFSF
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Fig. 5 Variation of TED with frequency ω0 in the FGM micro-square plates in the first vibration mode for different values of n.
a SSSS, b SSSS

(simply supported at x = 0, a and free at y = 0, b) and CFFF (clamped at x = 0 and free at the other three
edges). It is observed from this figure that the peak values of the TED remain the same for the four different
edge constraints. However, the values of the related critical thicknesses decrease along with the increase in
the rigidity of boundary constraints. The values of the dimensionless fundamental frequency parameter,�∗

0,
of the related homogenous square plates with four kind boundary conditions as mentioned above are given in
Table 3 [38,39].

In order to further show the thermoelastic dissipation effect in the free vibration of the FGM micro-plate,
the frequency shift, [Re(ω) − ω0]/ω0, and attenuation, Im(ω)/ω0, of the SSSS and the CCCC square FGM
micro-plates with n = 1 and a = b = 300µm varying along with the thickness, h, are depicted in Fig. 10.
We can see that the frequency shift increases monotonously with the increase in the plate thickness. However,
the attenuation first increases and then decrease with the plate thickness, reaching the maximum value at the
critical thickness (hcr = 5.54µm for CCCC plate and hcr = 6.77µm for SSSS plate) at which the frequency
shift increases the most rapidly and the energy lost reaches the highest.

Furthermore, as a benchmark for other researchers to check the numerical results in their studies, for
some specified increasing values of the material gradient index, n, the values of the maximum TED and the
corresponding values of the critical thickness for the square FGMmicro-platewith the five boundary conditions
are listed in Table 4. Again, similar with that illustrated in Figs. 5 and 9, we can see that the critical thickness
increases along with the increase in the material gradient index, n, or with the increase in the volume fraction
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Fig. 6 TED in a SSSS FGMmicro-square plate varying continuously with parameter n for some specified values of the thickness
(a = b = 200µm). a h = 1µm; b h = 2µm; c h = 3µm; d h = 4µm; e h = 5–9µm
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Fig. 7 TED varying continuously with the thickness in a SSSS FGM micro-plate vibrating in the first four modes (n = 1,
a = b = 200µm)
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Fig. 8 Thickness dependence of TED in a SSSS FGM micro rectangular plate with different values of aspect ratio (a/b), in the
first vibrating mode (n = 1, a = 200µm)

of the metal, for all the five kind boundary conditions. On the other hand, for a fixed value of n, the values of the
critical thickness increase along with the decrease in the level of boundary constrains, however, the maximum
values of the TED maintain constant. In other words, by enhancing the stiffness of the boundary constraints
one could not change the maximum of the TED but can lower the critical thickness of the FGM micro-plate.

Finally, we quantitatively examine the influence of the stretching-bending coupling, or the thermal mem-
brane force NT, on the TED of the FGM micro-plates. In Table 5, we list the values of TED of a square FGM
micro-plate (a = b = 300µm, h = 4µm) with and without [by setting fN (ω) = 0 in Eq. (39)] considering
the stretching–bending coupling for some specified values of index, n, in the fundamental vibration mode
under CCCC and SSSS boundary conditions, respectively. In this table, we also give the values of the relative
error of the TED resulting from ignoring the thermal membrane force. Furthermore, in Fig. 11, we illustrate
the continuous variation of the relative error versus the material gradient parameter,n, of the SSSS micro-plate
for different values of the length, a = b = 100µm, 200µm, 300µm. From the numerical results, we can see
that for a fixed value of the power-law index, n, the value of the TED of considering the stretching–bending
coupling is larger than that of ignoring the coupling. In addition, the effects of thermal membrane force on
the TED depend on the level of the inhomogeneity of the material property. The maximum relative error is
about 1.4% which evaluated at n = 1.5. However, the relative errors keep almost the same for different values
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Fig. 9 TED versus the thickness in a FGM micro-plate with different boundary conditions in the first vibrating modes (n = 1,
a = b = 300µm)

Table 3 The dimensionless fundamental frequencies of the homogenous square plate with different boundary conditions [37,39]

BCs CCCC CFCF SSSS SFSF CFFF

�∗
0 3.646π2 2.257π2 2π2 0.9758π2 0.3980π2
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0
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0
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0
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Fig. 10 Frequency shift and attenuation versus the plate thickness in the CCCC and SSSS FGM micro-square plate in the first
vibration mode. (n =1, a = b = 300µm)

of the length. So, in order to get more accurate evaluation of TED for the FGM microbeam/plate resonators
with the asymmetrical variation of the material properties through the thickness about the geometrical middle
surface, the effects of the stretching-bending effect on the TED should be considered. Otherwise, the TEDwill
be underestimated.

6 Conclusions

Governing equations for thermoelastic coupling vibration of functionally graded micro-plates with arbitrary
through-thickness material gradient profile are established based on the one coupled heat conduction theory
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Table 4 Values of the maximum TED, Q−1
max × 104, and the related critical thickness, hcr (µm), of a square FGMmicro-plate for

some specified values of n in the first vibration mode under different boundary conditions (a = b = 200µm)

BCs n

0 0.2 0.5 1 2 4 10 100 105

CCCC 2.22 2.94 3.59 4.23 4.83 5. 23 5.47 5.59 5.61
CFCF 2.61 3.46 4.22 4.96 5.67 6.14 6.41 6.56 6.58
SSSS 2.71 3.61 4.39 5.17 5.90 6.39 6.68 6.83 6.85
SFSF 3.45 4.58 5.58 6.56 7.49 8.12 8.48 8.67 8.70
CFFF 4.65 6.18 7.52 8.85 10.10 10.95 11.44 11.69 11.73
Q−1

max × 104 2.0645 4.3103 6.7509 9.5058 12.445 15.096 18.622 24.016 24.992

Table 5 TED (Q−1
max × 104) of a square FGM micro-plate with and without considering the effects of the thermal membrane

force for some specified values of n in the first vibration mode (a = b = 300µm, h = 4µm)

BCs n

0 0.2 0.5 1 2 4 10 100 106

CCCC 1.3933a 4.2762 6.0290 6.3710 6.0055 5.8101 6.3087 7.6338 7.8786
1.3933b 4.2903 6.0813 6.4544 6.0857 5.8594 6.3246 7.6341 7.8786
0c 0.3289 0.8688 1.3111 1.3346 0.8489 0.2508 0.0035 0

SSSS 1.9434a 3.8333 4.1576 3.8705 3.4537 3.2782 3.5341 4.2645 4.3999
1.9434b 3.8458 4.1938 3.9214 3.4999 3.3061 3.5430 4.2646 4.3999
0c 0.3268 0.8697 1.3141 1.3373 0.8502 0.2510 0.0035 0

aIgnoring the thermal membrane force (NT = 0)
bConsidering the thermal membrane force (NT �= 0)
cRelative error=100× (TEDb − TEDa)/TEDa
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Fig. 11 The relative error between the values of TED in a SSSS FGM micro-plate with and without considering the thermal
membrane force versus the material gradient index

and classical plate theory. Analytical solution of temperature rise field is obtained in terms of the kinematic
parameters by solving the obtained constant coefficient heat conduction equations associated with the thermal
boundary and continuation conditions using the layer-wise homogenization approach. Complex frequency for
the free vibration of the FGM including TED is obtained utilizing the mathematical similarity between the
eigenvalue problems of the FGMplate and that of the reference homogenous one. The theory andmethodology
developed in this paper can be used to deal with the thermoelastic coupling vibration and evaluate the TED
in the thin FGM micro-plates with arbitrary through-thickness material gradient, geometry and boundary
constraints.

TheTED is influenced obviously by thematerial gradient. Thematerial inhomogeneity also has a significant
influence on the distribution of the temperature along the thickness. The temperature changes of the FGMplates
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at the geometric neutral surface are negative due to the stretching–bending coupling. The effects of the thermal
membrane force, or the stretching–bending coupling, on the TED in FGMmicro-plate are first accurately taken
into account in the solution. The numerical results show that for the FGM micro-plate with material gradient
profile being asymmetric about the geometric neutral surface, the stretching–bending coupling will lead to
an increase in the value of the TED. Quantitatively, it is shown that the maximum value of the relative error
between the values of the TED including the stretching–bending coupling and that ignoring the coupling is
less than1.5%, which evaluates roughly at n = 1.5.
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Appendix

The Hook’s law for thermal-elastic body gives

εx = 1

E

(
σx − μσy

) + αH (A-1)

εy = 1

E

(
σy − μσx

) + αH (A-2)

εz = −μ

E

(
σx + σy

) + αH (A-3)

From the above equations, we have

e = εx + εy + εz = 1 − 2μ

E

(
σx + σy

) + 3αH (A-4)

In which the stresses are expressed by

σx = E

1 − μ2

[
∂u0
∂x

− z
∂2w0

∂x2
+ μ

(
∂v0

∂y
− z

∂2w0

∂y2

)]
− αEH

1 − μ
(A-5)

σy = E

1 − μ2

[
∂v0

∂y
− z

∂2w0

∂y2
+ μ

(
∂u0
∂x

− z
∂2w0

∂x2

)]
− αEH

1 − μ
(A-6)

Substituting Eqs. (A-5) and (A-6) into Eq. (A-4), we arrive at Eq. (20) as follows

e = εxx + εyy + εzz = 1 − 2ν

1 − ν

(
∂u0
∂x

+ ∂v0

∂y
− z∇2w

)
+ 1 + ν

1 − ν
αH (A-7)

Coefficients in Eqs. (31) are given by

β̄11 =
N∑
j=1

α j E j

(1 − μ)

∫ z j+1

z j

(
Ā1 j sin r j z + B̄1 j cos r j z + s j/r

2
j

)
dz. (A-8)

β̄12 =
N∑
j=1

α j E j

(1 − μ)

∫ z j+1

z j

(
Ā2 j sin r j z + B̄2 j cos r j z − s j z/r

2
j

)
dz (A-9)

β̄21 =
N∑
j=1

α j E j

(1 − μ)

∫ z j+1

z j

(
Ā1 j sin r j z + B̄1 j cos r j z + s j/r

2
j

)
zdz (A-10)

β̄22 =
N∑
j=1

α j E j

(1 − μ)

∫ z j+1

z j

(
Ā2 j sin r j z + B̄2 j cos r j z − s j z/r

2
j

)
zdz (A-11)
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Now, we show the boundary conditions of Eq. (34) are the same as Eq. (36). By substituting Eq. (18) into
Eq. (3) and using Eq. (22) we have

M̄x = − Deq

(
∂2w̄

∂x2
+ μ

∂2w̄

∂y2

)
+ z0(1 + μ)N̄T − M̄T (A-12a)

M̄x = − Deq

(
∂2w̄

∂y2
+ μ

∂2w̄

∂x2

)
+ z0(1 + μ)N̄T − M̄T (A-12b)

M̄xy = − (1 − μ)Deq
∂2w̄

∂x∂y
(A-12c)

Then, by using Eq. (32c), we arrive at bending moment in terms of the deflection

M̄x = − Deq

(
∂2w̄

∂x2
+ μ

∂2w̄

∂y2

)
− DT∇2w̄ (A-13a)

M̄y = − Deq

(
∂2w̄

∂y2
+ μ

∂2w̄

∂x2

)
− DT∇2w̄ (A-13b)

M̄xy = − (1 − μ)Deq
∂2w̄

∂x∂y
(A-13c)

where

DT = fM (ω) − (1 + μ)z0 fN (ω) (A-14)

By ignoring the inertia force produced by the rotation, we have the following equilibrium equations

Q̄x = ∂ M̄x

∂x
+ ∂ M̄xy

∂y
, (A-15a)

Q̄y = ∂ M̄y

∂y
+ ∂ M̄xy

∂x
(A-15b)

where Q̄x and Q̄y are the resultant shear forces per unit length along the x- and the y-axes. Substitutions of
Eq. (A-13) into (A-15) give the resultant shear forces in terms of the deflection, respectively.

Q̄x = − (Deq + DT)
∂

∂x
∇2w̄, (A-16a)

Q̄y = − (Deq + DT)
∂

∂y
∇2w̄ (A-16b)

In summary, we have derived Eqs. (A-13) and (A-16) for the FGM micro-plate which are similar to those for
the reference homogenous plate. Of course, the natural boundary conditions for the two plates must also have
similar correspondence.
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