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Abstract The directional motion of a continuous worm induced by travelling the mass center of its body is
studied in this paper. To this end, a new locomotion gait is constructed to derive the condition that the worm can
move forward in one period. The interaction force between the worm body and environment is an anisotropic
dry friction. The governing equation describing worm-like motion is firstly considered as a quasi-static case
for a slow actuation history or for a larger friction. Then the solution of this equation is derived based on the
specific form of the tension and its continuous distribution along the worm body. Furthermore, through the
method of piecewise analysis of the motion, the expressions of the tension and the displacement along its body
in each stage are specifically calculated. The net displacement over one period is further obtained. As a result,
the condition that the directed motion of the worm can be effectively achieved. The results show that the worm
can keep the body length unchanged by means of the given locomotion gait during the motion process.

Keywords Worm-like motion · Anisotropic dry friction · Continuum · Locomotion gait · Quasi-static model

1 Introduction

With the rapid development ofworm-like soft robot application inmedicine delivery, pipeline cleaning, disaster
rescue, military detection, these robots have been attracting more and more attention of many researchers. For
the study on these robots, the researchers gain inspiration from the locomotion mechanism of some limbless
animals such as earthworm, snail, leech, slug and amoeba, which can effectively move in various environments
by regularly changing the shape of their bodies or by periodically changing the position of mass center of their
body. Then, it is found that there exist two key factors for the motion, the strategies of shape changes and
the interaction force between the worm body and the environment. Based on these two key factors, various
conditions for self-propelled system mimicking the motion of worm have been the focus of the attention of
many researchers. However, this problem still need to be further considered.

Among the current research on the strategies for shape change driving themotion ofworm,many scholars in
the past several years paid special attention to the propagation of the extensive and contractive wave. Tanaka et
al. [1] studied the locomotion of limbless crawlers driven by elongation–contraction waves propagating along
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the body axis. The result showed that the locomotion of these crawlers cannot occur when friction coefficient
is constant. Then, DeSimone et al. [2–5] used the extensive or contractive square wave to study a series of
problems related to the motility of crawlers based on quasi-static model. It is found that crawlers can move in a
constant friction coefficient environment. Apparently, this result is different from the one obtained by Tanaka.
For this problem, Bolotnik et al. [6] explained the reason why these two cases can happen. Specifically, two
kinds of different friction models were studied, namely, the first one is that the coefficient of friction is constant
for a mass element; the other one is given with the coefficient being constant for a length element. And it is
found that the locomotion is possible only for the second model.

On the other hand, many researchers considered that the motion of worm-like system interacting with
various environments is excited by changing the position of body center of mass. As a result, vibration-driven
system based on this locomotion mechanism has been presented. In fact, the condition that the directed motion
of this system can be achieved has been widely studied. It is found that the system can be driven forward only
when the system or the interaction force possess anisotropic characteristics. In other words, the result whether
the motion of this system can occur is different for different drive modes or in various environments. For the
single-module vibration-driven locomotion system with one internal mass, Chernousko et al. [7,8] studied the
motion of the system with linear viscous friction was actuated by internal velocity-controlled mode. The result
showed that the motion can be achieved only when this friction is anisotropic. If the interaction between the
system and environment is dry friction or nonlinear viscous one, the system can move even if this friction is
isotropic. While for the case of internal acceleration-controlled mode, the system with asymmetry can move in
an isotropic frictional environment. Furthermore, many scholars [9–12] further considered that the asymmetric
single-module system with two or three internal masses can achieve the rectilinear or planar motion of the
system in various environments, and analyzed the motion mechanism of this system. Besides, the motion of the
multiple-module system connected by spring elements or displacement actuators was further investigated [13–
16]. Zimmermann et al. [14–16] considered the condition that two-module system connected by the spring
with cubic nonlinearity or displacement actuator can move in various mediums. The results found that the
motion of the system can occur only in anisotropic environment if these two modules have the same mass. But
if this assumption is not satisfied, the system can move in isotropic environment. The above researches on the
vibration-driven system are based on the simplified model describing the motion of worm.While the condition
that a continuous worm-like system as mechanical model of worm-like soft robot can move in anisotropic
environment by changing the position of mass center of its body, is rarely studied and needs to be further
considered.

In this paper, we study that the motion of worm is actuated by changing the position of mass center
of its body in anisotropic dry friction environment and assume that the active distortion along worm body
is spatially uniform. As a result, the acceleration of time history of active distortion is considered as being
piecewise constant. Based on the assumption of a slow actuation history or for a larger friction, the quasi-static
equation describing worm-like motion is derived. Then a locomotion gait is constructed to solve this equation
on the basis of the continuous distributed tension along the worm body. Therefore, specific expressions of the
displacement and the tension are respectively calculated at each stage. After that, the net displacement over
one period is further deduced and the length of worm body is attained.

2 Formation of the equation of worm-like motion

The worm-like motion is described as shown in Fig. 1. Z1 = 0, Z2 = L denote the position of the rear end
and the front end of worm body in reference configuration, respectively. The position of worm for Z ∈ [0, L]
in reference configuration is continuously and reversely mapped to the current configuration for x(Z , t) ∈
[x1(t), x2(t)] written by

{
x1(t) = x(Z1, t) = Z1 + u(Z1, t) = u1(t)
x2(t) = x(Z2, t) = Z2 + u(Z2, t) = L + u2(t)

(1)

where u(Z , t) represents the displacement at position Z at time t , namely

u(Z , t) = x(Z , t) − Z . (2)

After that, we will deduce the equation of motion. Here, we consider the quasi-static model that the inertia
can be ignored. It can be actually observed that the motion of worm such as earthworm, elegans and maggot is
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Fig. 1 The motion of one-dimensional worm along the horizontal direction in an anisotropic medium

Fig. 2 Force analysis in the reference configuration

very slow and the intervals of acceleration are so short. It means that the rate of change of velocity is enough
small. Meantime, because of the small mass of worm (e.g., the mass of earthworm is 1–9g), it follows that
the inertia force does not dominate over other forces such as frictional force, tension or elastic force. On the
other hand, it is mainly concerned that the worm moves forward with a nearly constant velocity. As a result,
the change of momentum during each periodic motion is very small such that the inertia force is much less
than other forces. In addition, the motion of elegans on a solid surface was discussed in [17]. The mass and
maximal acceleration of elegans were measured, and the size range of frictional force was estimated. It was
found that the order of frictional force is much greater than the one of inertia force. The other authors [1,18–20]
also discussed that inertia is negligible. Furthermore, to obtain the equation describing the motion of worm,
forces acting on an infinitesimal element of its body during motion in the reference configuration are displayed
in Fig. 2, where Fe(Z , t), f (Z , t), Fa(Z , t) denotes the density of elastic force, friction density and the one
of actuator force controlling the elastic deformation of its body, respectively. Then, the forces balance of the
infinitesimal element are expressed as

Fe(Z + dZ , t) − Fe(Z , t) + Fa(Z + dZ , t) − Fa(Z , t) + f (Z , t)dZ = 0. (3)

Then, we divide each side of Eq. (3) by dZ and let dZ tend to zero to obtain the following equation given by

F ′
e(Z , t) + F ′

a(Z , t) + f (Z , t) = 0, (4)

where Fe(Z , t) = E Au′(Z , t)E is Young’s modules; A is the cross-sectional area; the prime stands for
differentiating with respect to Z . Here, let K = E A and Fa(Z , t) = K ε0(Z , t). Then Eq. (4) is simplified as

T ′(Z , t) + f (Z , t) = 0, (5)

where T (Z , t) = K (u′(Z , t) − ε0(Z , t)) is the internal tension of worm’s body [1,18]. Here,
It is found in [1,18] that the term ε0(Z , t) is called as spontaneous strain at Z and time t . And it is

also regarded as active distortion that identifies the change of rest length of living organism. In fact, it is
pretty common for spontaneous strain charactering the phase transition of several smart materials, such as
shape memory alloy, liquid crystal elastomer. In this paper, we consider that the actuator force Fa(Z , t) is
uniformly distributed along the worm body. Namely, it is independent of the position Z and is denoted by
Fa(Z , t) = K ε0(t) for Z ∈ [0, L].

Then, it is assumed that there are no the tension acting on two ends, and one obtains the following boundary
conditions {

T (0, t) = Ku′(0, t) − K ε0(0, t) = 0,
T (L , t) = Ku′(L , t) − K ε0(L , t) = 0. (6)
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Fig. 3 The periodic motion of worm induced by changing the position of mass center in the anisotropic surface

Then, the density of the dry friction between worm body and contact surface is given by

f (Z , t) = f (u̇(Z , t)) =
⎧⎨
⎩

μ−, if u̇ < 0,
fv, if u̇ = 0,
−μ+, if u̇ > 0,

(7)

where fv ∈ [−μ−, μ+
]
. Here, μ− and μ+(μ− > μ+ > 0) are threshold forces per unit body length in

reference configuration to be overcome for sliding to occur, which implies that it is easy for worm to slide
along the positive direction.

Based on the above relations, the solution of equation will be deduced in the next section.

3 The gait construction

In the previous section, we have derived the quasi-static equation controlling worm-like motion. This section
will construct a new locomotion gait to solve the problem of themotion induced by the change of the position of
mass center ofwormbody in anisotropic dry friction environment. In fact, themotionof the limbless animals like
earthworm, maggot, and sea cucumber belongs to the scope of this motion mechanism. Their motion direction
is opposite with the one of the change of mass center of a worm’s body in an anisotropic environment. The
motion of vibration-driven system with internal moving mass is in fact based on this mechanism. In addition,
Desimene et al. [18] studied themotility of crawlers actuated by breathing deformationmodes on the directional
substrates and mainly considered the direction of the head and the tail end is opposite each other. The result
showed that the crawlers can occur only when spontaneous strain is enough large. For it, the problem that this
condition should be weakened needs to be further studied, that is, it is worthwhile to consider further how
to construct a new locomotion gait for the directional motion of these worms more efficiency. Therefore, we
consider the other situation that the motion with same direction at two ends can be realized by the change of
mass center as shown in Fig. 3.

Specifically, this figure reflects the periodic motion of an elastic rod with uniformly distributed actuators,
which is regarded as a simplified model of a worm’s body, when the position of mass center travels over one
period (i.e., from to the right-hand extreme position and return to the original extreme position again). Here,
Fig. 3 firstly shows that the mass center of its body moves forward to the right-hand extreme position, and then
it starts to move backward and reaches the left-hand extreme position. After that, it starts to move forward and
reaches the right-hand extreme position again, and it is shown that the periodic motion of a worm is completed
at this time and the displacement is denoted as �u.

To further describe the locomotion gait of a worm-like system, some equations in Sect. 2 should be firstly
transformed.

According to Eqs. (5) and (7), one has

T ′(Z , t) =
⎧⎨
⎩

−μ−, if u̇ < 0,
− fv, if u̇ = 0,
μ+, if u̇ > 0,

(8)

where fv ∈ [−μ−, μ+
]
and the tension expression can be written by

T (Z , t) = K (u′(Z , t) − ε0(t)). (9)
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Fig. 4 Time history of active distortions exerted on the worm with 2p-period. a The relation between ε1(t) and t in the interval
[0, L0]. b The relation between ε2(t) and t in the interval [L0, L]

Then, the positional relation between any two points Z1 and Z2 on the worm body is derived as

u(Z2, t) = u(Z1, t) +
∫ Z2

Z1

(T (Z , t)/K + ε0(t))dZ . (10)

If u̇(Z , t) = 0 for ∀Z ∈ U0(Z0), where U0(Z0) denotes a neighborhood of Z0, then it follows from Eq. (9)
that

Ṫ (Z0, t) = −K ε̇0(t). (11)

Meantime, consider that the time history of active distortions is given by the 2p-periodic quadratic parabola
graph in Fig. 4, namely the acceleration of its change is piecewise constant. Here, the active distortion in
positional interval [0, L0] is typically given as ε0(t) = ε1(t). The other one [L0, L] can be denoted as
ε0(t) = ε2(t). Then one obtains

ε1(t) = α1(t
2 − 2pt), t ∈ [0, 2p], (12)

and

ε2(t) = −α2(t
2 − 2pt), t ∈ [0, 2p]. (13)

Actually, ε0(t) can indicate various active distortions (e.g., sawtooth form [18], sinusoidal form [1]).
To deduce the net displacement of worm motion over one period based on Eqs. (8) and (9), the process

from the start to the end of the motion over one period is specifically given as depicted in Fig. 4. Here, the
positions of several special points are listed as follows

XL1 = L0 + μ+
μ+ + μ−

(L − L0), XR1 = μ−
μ+ + μ−

L0, XL2 = μ+
μ+ + μ−

L0, XR2

= L0 + μ−
μ+ + μ−

(L-L0), (14)

where

XL2 + XR1 = L0, XL1 + XR2 = L − L0. (15)

In fact, these points can be derived when the tension reaches the maximum value.
Then it is seen from Fig. 5 that the symbol of the velocity u̇(Z , t) can be assigned. Namely, the interval

[0, L] is partitioned into six disjoint sub-intervals wrote by

[0, L] = IL2(t) ∪ I01(t) ∪ IR1(t) ∪ IL1(t) ∪ I02(t) ∪ IR2(t). (16)

Here, these sub-intervals are presented according to the following two cases
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Fig. 5 The moving process of worm at different times of the time interval [0,3p]

Case 1 Worm moves forward when the body center of mass moves backward. Then one has
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇(Z , t) > 0, for Z ∈ IL2(t)
u̇(Z , t) = 0, for Z ∈ I01(t)
u̇(Z , t) < 0, for Z ∈ IR1(t)

⎫⎬
⎭ if ε̇1(t) < 0,

u̇(Z , t) < 0, for Z ∈ IL1(t)
u̇(Z , t) = 0, for Z ∈ I02(t)
u̇(Z , t) > 0, for Z ∈ IR2(t)

⎫⎬
⎭ if ε̇2(t) > 0.

(17)

This case is shown Fig. 4 when t ∈ [0, p]. Specifically, the tension reaches the maximal allowable value when
t = τ1. However, the conditions ε̇1(t) < 0 for Z ∈ [0, L0] and ε̇2(t) > 0 for Z ∈ [L0, L] are still satisfied at
this time. Hence, this case will continue until ε̇1(t) = 0 and ε̇2(t) = 0, and then the relation t = p is derived.
In addition, it is observed from Fig. 4 that the other time interval t ∈ [2p, 3p] is included in this case as well.
However, since the tension of the fully relaxed state of a worm is equal to zero when t = 0, i.e., T (Z , 0) = 0,
On the other hand, it can be obtained that T (Z , 2p) = −μ−Z due to the continuity of the change of the tension
in motion. It is shown that the initial value of the tension for t ∈ [0, p] is apparently different from the one of
the tension for t ∈ [2p, 3p]. Therefore, the periodic motion of a worm does not start from the initial instant
t = 0

Case 2 Worm moves backward when the mass center moves forward. Namely,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇(Z , t) < 0, for Z ∈ IL2(t)
u̇(Z , t) = 0, for Z ∈ I01(t)
u̇(Z , t) > 0, for Z ∈ IR1(t)

⎫⎬
⎭ if ε̇1(t) > 0,

u̇(Z , t) > 0, for Z ∈ IL1(t)
u̇(Z , t) = 0, for Z ∈ I02(t)
u̇(Z , t) < 0, for Z ∈ IR2(t)

⎫⎬
⎭ if ε̇2(t) < 0.

(18)

This case is shown in Figs. 4 and 5 when t ∈ [p, 2p]. The maximum value of the tension is reached at instant
time t = p + τ2, then keeping this value unchanged till t = 2p. The conditions ε̇1(t) > 0 for Z ∈ [0, L0] and
ε̇2(t) < 0 for Z ∈ [L0, L] are still satisfied for t ∈ [p + τ2, 2p) until the relations ε̇1(t) = 0ε̇2(t) = 0 are
derived, i.e., the maximal contraction and extension are achieved at t = 2p. Here, the values of the parameters
τ1τ2 and τ3 can be derived according the above analysis, and given in next section.
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It follows from Eq. (8) and the boundary condition (6). As for the first case ε̇1(t) < 0, ε̇2(t) > 0, one has

IL2(t) ⊆ [0, XR1], IR1(t) ⊆ [XR1, L0], IL1(t) ⊆ [L0, XL1], IR2(t) ⊆ [XL1, L]. (19)

Then, the tension satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T (Z , t) = μ+Z , for Z ∈ IL2(t),
T (Z , t) ≤ μ+Z , for Z ∈ I01(t) ∩ [0, XR1],
T (Z , t) ≤ −μ−(Z − L0), for Z ∈ I01(t) ∩ [XR1, L0],
T (Z , t) = −μ−(Z − L0), for Z ∈ IR1(t) ∪ IL1(τ ),
T (Z , t) ≥ −μ−(Z − L0), for Z ∈ I02(t) ∩ [L0, L0 + XL1],
T (Z , t) ≥ μ+(Z − L), for Z ∈ I02(t) ∩ [L0 + XL1, L],
T (Z , t) = μ+(Z − L), for Z ∈ IR2(t).

(20)

Due to the continuous distribution of tension along the worm body, we can obtain that the equality in Eq. (20)
holds only at the boundary, namely, I01(t) = {XR1} and I02(t) = {XL1}, then tension reaches its extreme
admissible value given by ⎧⎨

⎩
T (Z , t) = μ+Z , for 0 ≤ Z ≤ XR1,
T (Z , t) = −μ−(Z − L0), for XR1 ≤ Z ≤ XL1,
T (Z , t) = μ+(Z − L), for XL1 ≤ Z ≤ L .

(21)

Similarly, for the second case ε̇1(t) > 0, ε̇2(t) < 0, one has

IL2(t) ⊆ [0, XL2 ], IR1(t) ⊆ [XL2 , L0], IL1(t) ⊆ [L0, XR2 ], IR2(t) ⊆ [XR2 , L]. (22)

Then the tension satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T (Z , t) = −μ−Z , for Z ∈ IL2(t),
T (Z , t) ≥ −μ−Z , for Z ∈ I01(t) ∩ [0, XR1],
T (Z , t) ≥ μ+(Z − L0), for Z ∈ I01(t) ∩ [XR1, L0],
T (Z , t) = μ+(Z − L0), for Z ∈ IR1(t) ∪ IL1(t),
T (Z , t) ≤ μ+(Z − L0), for Z ∈ I02(t) ∩ [L0, L0 + XL1],
T (Z , t) ≤ −μ−(Z − L), for Z ∈ I02(t) ∩ [L0 + XL1, L],
T (Z , t) = −μ−(Z − L), for Z ∈ IR2(t).

(23)

Here, the equality in Eq. (23) only holds at the boundary I01(t) = {XL2}, I02(t) = {XR2} due to the continuity
of the tension, and the corresponding relations can be expressed as⎧⎨

⎩
T (Z , t) = −μ−Z , for Z ∈ [0, XL2),
T (Z , t) = μ+(Z − L0), for Z ∈ [XL2 , XR2 ],
T (Z , t) = −μ−(Z − L), for Z ∈ [XR2 , L].

(24)

This result shows that the worm is moving forward around the stationary points XL2 and XR2 when the position
of the mass center of its body moves backward.

4 The solution of motion problem

In Sect. 2, we have constructed the locomotion gait of a worm. This section will analyze and solve the motion
problem of the worm-like system at different stages according to the constructed gait.

Next, based on the continuity of the tension T (Z , t) in the moving process of worm at different time
intervals, the expressions of the tension and the net displacement of the worm at any points can be specifically
deduced in each interval.

To simplify the following analysis, three specific time values are first given as

τ1 = Kpα1−
√
Kα1

(
Kp2α1−μ+XR1

)
Kα1

, τ2 =
√

Kα1(μ−+μ+)XL2
Kα1

,

τ3 = Kpα1−
√
Kα1

(
Kp2α1−(μ−+μ+)XL2

)
Kα1

.

(25)
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Fig. 6 The tension T (Z , t) along the worm body at different time intervals for the directional distributed friction

Here, the values of these parameters τ1τ2 and τ3 can be calculated according to the analysis of the tension in
the above section. Then, six stages of the motion are discussed as follows.

Stage 1 When t ∈ [0, τ1]. Notice that the initial conditions u(Z , 0) = 0 and T (Z , 0) = 0 are satis-
fied. In addition, it follows from (20) that the worm is stationary at the beginning of this stage, namely,
I01(0) = [0, L0], I02(0) = [L0, L]. Meantime, it is seen from Eq. (11) that the tension at every point is strictly
monotonous until it reaches the extreme values (21) as shown in Fig. 6a. According to the continuity of the
tension and the relations (8), (11), (12) and (13), the following expressions can be derived

T (Z , t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ+Z , for Z ∈ [0,C11(t)],
Kα1(−t2 + 2pt), for Z ∈ [C11(t),C12(t)],
−μ−(Z − L0), for Z ∈ [C12(t),C13(t)],
−Kα2(−t2 + 2pt), for Z ∈ [C13(t),C14(t)],
μ+(Z − L), for Z ∈ [C14(t), L].

(26)

where

C11 (t) = K
(
2pt−t2

)
α1

μ+ , C12 (t) = L0μ−−2Kptα1+Kt2α1
μ− ,

C13 (t) = μ−L0+2Kptα2−Kt2α2
μ− , C14 (t) = Lμ+−2Kptα2+Kt2α2

μ+ .
(27)

At the end of this stage t = τ1, one obtains

T (Z , τ1) =
{
Tmax(Z), for Z ∈ [0, L0),
Tmin(Z), for Z ∈ [L0, L]. (28)

Then, there only exist two points XR1 ∈ I01(t) and XL1 ∈ I02(t) in the interval [0, L] such that the worm only
at these two points is still stationary, namely,

u(XR1, τ1) = 0, u(XL1, τ1) = 0. (29)
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Hence, using Eq. (10), the displacement of worm at every point Z is attained as follows

u(Z , t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ktα1(t−2p)+μ+Z)2

2Kμ+ , for Z ∈ [0,C11(t)),
0, for Z ∈ [C11(t),C12(t)],
− (μ−(L0−Z)+Kα1t(t−2p))2

2Kμ− , for Z ∈ [C12(t), L0],
− (μ−(Z−L0)+Kα2t(t−2p))2

2Kμ− , for Z ∈ [L0,C13(t)],
0, for Z ∈ [L0,C13(t)],
((Z−L)μ++Kα2t(2p−t))2

2Kμ+ , for Z ∈ [C14(t), L].

(30)

Based on the continuity of the displacement at the position ofmass center Z = L0, namely, limZ→L+
0
u(Z , t) =

limZ→L−
0
u(Z , t). Here, the terms Z → L+

0 and Z → L−
0 denote that the position Z tends toward Z = L0

from positive and negative direction, respectively. After calculating this equation, one has

α1 = α2. (31)

Stage 2 When t ∈ [τ1, p]. At the beginning of this stage for t = τ1, the tension T (Z , t) reaches the extreme
value as seen in the relation (21) in terms of Eq. (28). But the equalities ε̇1(t) < 0 and ε̇2(t) > 0 at this time
still hold until the time t = p. Thus, the extreme value of the tension is fixed during this time. Meantime, the
worm is still stationary at these two points Z = XR1 and Z = XL1 , namely

u(XR1, t) = 0, u(XL1, t) = 0, t ∈ [τ1, p]. (32)

According to Eqs. (10) and (32), we can obtain the expression of net displacement at every point Z in the time
t = τ1

u(Z , t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
Z−XR1

)(
μ+

(
Z+XR1

)+2Kt(t−2p)α1
)

2K , for Z ∈ [0, XR1],(
XR1−Z

)(
μ−

(
Z−2L0+XR1

)+2Kt(2p−t)α1
)

2K , for Z ∈ [XR1, L0],(
XL1−Z

)(
μ−

(
Z−2L0+XL1

)+2Kt(t−2p)α2
)

2K , for Z ∈ [L0, XL1],(
Z−XL1

)(
μ+

(
Z+XL1−2L

)+2Kt(2p−t)α2
)

2K , for Z ∈ [XL1, L].

(33)

It follows from that the relation (31) and the continuity of displacement around the position Z = L0, namely,
limZ→L+

0
u(Z , t) = limZ→L−

0
u(Z , t), then one has

L = 2L0. (34)

Stage 3 When t ∈ [p, p + τ2]. During this time interval, the position of mass center of the worm body starts
to move forward, the one around two ends will slightly slid backward. Namely, the equalities ε̇1(t) > 0 and
ε̇2(t) < 0 are still satisfied at this time. In addition, the worm is stationary at the beginning of this time
interval. Then, it follows from Eq. (11) that the values of the tension at the positional intervals [0, L0] and
[L0, L] gradually decrease and increase, until they reach the maximum and minimum admissible values,
respectively. Specifically, these relations are listed as

T (Z , t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μ−Z , for Z ∈ [0,C31(t)],
−Kα1(t − p)2 + μ+Z , for Z ∈ [C31(t), XR1],
−Kα1(t − p)2 + μ−(Z − L0) for Z ∈ [XR1,C32(t)],
μ+(Z − L0), for Z ∈ [C32(t),C33(t)],
Kα2(t − p)2 − μ−(Z − L0), for Z ∈ [C33(t), L0 + XL1],
Kα2(t − p)2 − μ+(Z − L), for Z ∈ [L0 + XL1,C34(t)],
−μ(Z − L), for Z ∈ [C34(t), L],

(35)
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where

C31 (t) = K (p−t)2α1
μ−+μ+ , C32 (t) = L0 − K (p−t)2α1

μ−+μ+ ,

C33 (t) = L0 + K (p−t)2α2
μ−+μ+ , C34 (t) = L − K (p−t)2α2

μ−+μ+ .
(36)

At the time t = p + τ2, the tension reaches the corresponding extreme value, that is

T (Z , p + τ2) =
{
Tmin(Z), for Z ∈ [0, L0],
Tmax(Z), for Z ∈ [L0, L].

(37)

Meantime, the following equations can be obtained

u(XL2 , P + τ2) = u(XL2 , P), u(XR1, P + τ2) = u(XR1, P),
u(XL1, P + τ2) =, u(XL1, P), u(XR2 , P + τ2) = u(XR2 , P).

(38)

By employing Eqs. (10) and (38), the displacement at this time interval can be calculated as

u(Z , t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
t (t − 2p) Z + p2XR1

)
α1 − Z2μ−+μ+X2

R1
2K − K (p−t)4α2

1
2(μ−+μ+)

, for Z ∈ [0,C31 (t)]
u(Z , p), for Z ∈ [C31 (t) ,C32(t)]
1
2 (2

(
t (−2p + t) Z − (p − t)2 L0 + p2XR1

)
α1+

μ+(Z−L0)
2

K + μ−
(
L0−XR1

)2
K + K (p−t)4α2

1
μ−+μ+ ), for Z ∈ [C32(t), L0],

1
2

(
μ+(Z−L0)

2

K + μ−
(
L0−XL1

)2
K + K (p−t)4α2

2
μ−+μ+

)
+

(
(2p − t) t Z + (p − t)2 L0 − p2XL1

)
α2, for Z ∈ [L0,C33(t)],

u(Z , p), for Z ∈ [C33(t),C34(t)],
α2

(
2t(−2p+t)(L−Z)(μ−+μ+)−K (p−t)4α2

)
2(μ−+μ+)

+

+ (L−XL1)
(
μ+

(−L+XL1

)+2kp2α2
)−(L−Z)2μ−

K , for Z ∈ [C34(t), L].

(39)

Stage 4When t ∈ [p+ τ2, 2p]. According to the results in stage 3, it is clearly seen that the tension distributed
along the worm body reaches the corresponding extreme value (21) at t = p + τ2 , and keeps this value
unchanged till t = 2p. During this time interval, the position of worm around two ends moves backward when
the mass center of the body travels forward, i.e., ε̇1(t) > 0 and ε̇2(t) < 0. In addition, based on the above
analysis, it is found that the points Z = XL2 and Z = XR2 stand still as shown in Fig. 6. Then one has

u(XL2 , t) = u(XL2 , p + τ2), u(XR2 , t) = u(XR2 , p + τ2), t ∈ [p + τ2, 2p]. (40)

Using Eqs. (10) and (40), the expressions of the displacement at every point are obtained as

u(Z , t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ−
(
X2
L2

−Z2
)
+μ+

(
X2
L2

−X2
R1

)
2K

+ (
t (t − 2p) Z − (p − t)2 XL2 + p2XR1

)
α1, for Z ∈ [0, XL2 ],

μ+
(
Z2−2ZL0+2L0XL2−X2

R1

)
2K+ (

t (t − 2p) Z − (p − t)2 XL2 + p2XR1

)
α1, for Z ∈ [XL2 , L0],

μ+
(
Z(Z−2L0)+2LXL1−X2

L1
+2(L0−L)XR2

)
2K

+ (
(2p − t) t Z − p2XL1 + (p − t)2 XR2

)
α2, for Z ∈ [L0, XR2 ],

μ−
(
2L−Z−XR2

)(
Z−XR2

)+μ+
(
2L−XL1−XR2

)(
XL1−XR2

)
2K

+ (
(2p − t) t Z − p2XL1 + (p − t)2 XR2

)
α2, for Z ∈ [XR2 , L].

(41)
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Stage 5 When t ∈ [2p, 2p + τ3]. During this time, the worm starts to be driven forward as the position of
mass center gradually moves backward, i.e., ε̇1(t) < 0 and ε̇2(t) > 0. Then it follows from Eq. (11) that the
tension at the positional intervals [0, L0] and [L0, L] gradually increase and decrease, respectively, until they
reach the corresponding maximum and minimum value as seen in Fig. 6e. Specifically, one has

T (Z , t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ+Z , for Z ∈ [0,C51(t)],
Kα1(−(t − 2p)2 + 2p(t − 2p)) − μ−Z , for Z ∈ [C51(t), XL2 ],
Kα1(−(t − 2p)2 + 2p(t − 2p)) + μ+(Z − L0), for Z ∈ [XL2 ,C52(t)],
−μ−(Z − L0), for Z ∈ [C52(t),C53(τ )],
−Kα2(−(t − 2p)2 + 2p(t − 2p)) + μ+(Z − L0), for Z ∈ [C53(t), L0 + XR2 ],
−Kα2(−(t − 2p)2 + 2p(t − 2p)) − μ−(Z − L), for Z ∈ [L0 + XR2 ,C54(t)],
μ+(Z − L), for Z ∈ [C54(t), L],

(42)

where

C51 (t) = − K
(
8p2−6pt+t2

)
α1

μ−+μ+ , C52 (t) = L0 + K
(
8p2−6pt+t2

)
α1

μ−+μ+ ,

C53 (t) = L0 − K
(
8p2−6pt+t2

)
α2

μ−+μ+ , C54 (t) = L + K
(
8p2−6pt+t2

)
α2

μ−+μ+ .

(43)

When t = 2p + τ3, the tension along the worm body reaches the corresponding extreme value given by

T (Z , 2p + τ3) =
{
Tmax(Z), 0 ≤ Z ≤ L0,
Tmin(Z), L0 ≤ Z ≤ L .

(44)

Moreover, it can be obtained that the following equations hold during this time in Fig. 6e

u(XL2 , 2P + τ3) = u(XL2 , 2P), u(XR1, 2P + τ3) = u(XR1, 2P),
u(XL1, 2P + τ3) =, u(XL1, 2P), u(XR2 , 2P + τ3) = u(XR2 , 2P).

(45)

Then, the expressions of displacement of worm along its body can be obtained by using Eq. (10), namely

u(Z , t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
K

(
8p2−6pt+t2

)2
α2
1

μ−+μ+ + μ−X2
L2

+μ+
(
Z2+X2

L2
−X2

R1

)
K

)

+
((

8p2 − 6pt + t2
)
Z + p2

(
XR1 − XL2

))
α1, for Z ∈ [0,C51 (t)],

u(Z , 2p), for Z ∈ [C51 (t) ,C52(t)](
8p2 − 6pt + t2

)
α1

(
Z − L0 − K

(
8p2−6pt+t2

)
α1

2(μ−+μ+)

)
−

μ−(Z−L0)
2+μ+

(
L2
0−2L0XL2+X2

R1

)
+2Kp2

(
XL2−XR1

)
α1

K , for Z ∈ [C52(t), L0],
(
8p2 − 6pt + t2

)
(L0 − Z) α2 − p2

(
XL1 − XR2

)
α2 − K

(
8p2−6pt+t2

)2
α2
2

2(μ−+μ+)

−
(
μ−(Z−L0)

2+μ+
(
L2
0−2LXL1+X2

L1
+2(L−L0)XR2

))
2K , for Z ∈ [L0,C53(t)],

u(Z , 2p), for Z ∈ [C53(t),C54(t)],
μ−

(
L−XR2

)2+μ+
(
(L−Z)2+2LXL1−X2

L1
−2LXR2+X2

R2

)
2K + α2 p

2

(
XR2 − XL1

)
+ α2

(
8p2 − 6pt + t2

) (
(L − Z) + K

(
8p2−6pt+t2

)
α2

2(μ−+μ+)

)
, for Z ∈ [C54(t)L].

(46)
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Fig. 7 Time history of the displacements of the worm extremities u1(t) (red solid curve), u2(t) (black solid curve) and the mass
center of its body u0(t) (blue solid curve) in the time interval [0, 3p] computed for the maximum distortion εmax

0 = 1, a ratio of
μ+/μ− = 5/9 and μ+L/k = 1/2. The body length l(t) is shown from the vertical distance between the black line and the red
line. (Color figure online)

Stage 6 When t ∈ [2p + τ3, 3p] Similarly, it is seen from Fig. 6f that the tension reaches the corresponding
extreme value again during this time. As can be seen from Fig 5, the relations ε̇1(t) < 0 and ε̇2(t) > 0 are still
satisfied at this time. In addition, the worm still stands at the points Z = XR1 and Z = XL1 namely,

u(XR1, t) = u(XR1, 2P), u(XL1 , t) = u(XL1, 2P), t ∈ [2p + τ3, 3p]. (47)

Then it follows from (10) and (47) that the displacement of worm can be easily calculated as

u(Z , t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Z

(
8p2 − 6pt + t2

) − p2XL2 − (
7p2 − 6pt + t2

)
XR1

)
α1

+μ+
(
Z2+2L0

(
XL2−XR1

)−X2
R1

)
2K , for Z ∈ [0, XR1],((

8p2 − 6pt + t2
)
Z − p2XL2 − (

7p2 − 6pt + t2
)
XR1

)
α1

−μ−
(
Z−XR1

)(
Z−2L0+XR1

)+2μ+L0
(
XR1−XL2

)
2K , for Z ∈ [XR1, L0],(−Z

(
8p2 − 6pt + t2

) + (
7p2 − 6pt + t2

)
XL1 + p2XR2

)
α2

−μ−
(
Z−XL1

)(
Z−2L0+XL1

)−2μ+(L−L0)
(
XL1−XR2

)
2K , for Z ∈ [L0, XL1],((

7p2 − 6pt + t2
)
XL1 + p2XR2 − (

8p2 − 6pt + t2
)
Z
)
α2+

μ+
(
Z(−2L+Z)+(

4L−2L0−XL1

)
XL1+2(−L+L0)XR2

)
2K , for Z ∈ [XL1, L].

(48)

So far, it is seen from the obtained results above that the expressions for the displacement of worm everywhere
have been deduced during the whole time interval. According to these expressions, the time histories at two
ends and the position of mass center are depicted as in Fig. 7. Meanwhile, it is found from this figure that the
state of the worm at t = 3p is the same as the one at t = p, namely, the worm in the time interval [p, 3p] will
move forward with 2p-period. After that, according to (33) and (48), the net displacement over one period can
be expressed by using Eqs. (31) and (34), namely, for ∀Z ∈ [0, L], one has

�u = u(Z , 3p) − u(Z , p) =
(

εmax
0 − μ+L

2K

)
μ− − μ+

2(μ− + μ+)
L , (49)

where εmax
0 = maxt∈[0,3p]{ε0(t)} = α1 p2. Moreover, according to the relations (33) and (48), the body length

of worm can be easily derived as

l(t) = u(L , t) − u(0, t) = Lfor t ∈ [0, 3p] (50)

Therefore, it is found from (49) that the worm can achieve the forwardmotion only if the condition εmax
0 >

μ+L
2K

is satisfied. This condition has advantage over the previous one obtained by Desimone et al. [18]. In addition,
the worm can achieve the fixed motion by changing the position of mass center of its body on the basis of the
relation (50).
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5 Conclusions

In this paper, the motion actuated by traveling the position of mass center of worm body is studied by construct-
ing a new locomotion gait in the directional substrate. According to the continuity of the tension distributed
along worm body, the expressions of the tension along worm body are also deduced. Meantime, the displace-
ments everywhere at each time point are derived by utilizing the method of piecewise analysis. Furthermore,
the net displacement over one period is calculated. As a result, the condition that worm can move forward is
further presented. In addition, the body length of worm is also derived. This result shows that its body length is
constant in the moving process, implying that worm-like system can achieve the motion of the fixed length by
using the prescribed locomotion gait. The results above enrich the moving mode of worm-like bionic system
and provide a useful theoretical framework to understand the locomotion mechanism of some limbless animals
and help to the design of worm-like soft robots.
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