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Abstract In practical conditions, turbochargers are supported by floating ring bearings and mounted on
engines. In this paper, the effect of rotating unbalance and engine excitations on turbocharger is studied.
The finite element model of turbocharger system is developed considering flexible rotor, using Timoshenko
beam elements. The nonlinear fluid film forces generated in floating ring bearings are derived analytically
in dimensional form using short bearing approximation. A new MATLAB� code has been constructed to
solve the governing differential equations of motion of system using implicit Newmark-β numerical inte-
gration scheme along with Newton–Raphson convergence method, and dynamic response of the system
is computed. The orbital plots, Poincare maps, and frequency spectrum are developed to show the non-
linear behaviour of the turbocharger system. At low rotor speeds, the system exhibits chaotic behaviour
and has a wide range of sub-synchronous vibrations. As the speed of turbocharger increases, the forces
due to unbalance dominate over engine excitations and nonlinear bearing forces and frequency spectrum
become narrow. The behaviour of compressor and turbine disc centre is governed by their respective bearing
nodes.

Keywords Turbocharger · Nonlinear dynamic analysis · Floating ring bearings · Newmark-β
Newton–Raphson method · Engine-induced excitation · Rotating unbalance

List of symbols

C1 Inner clearance
C2 Outer clearance
h Fluid film thickness
L i, Lo Inner and outer length of floating ring
mr Mass of ring
P Oil film pressure
Rj Radius of journal
Rro Outer radius of floating ring
xj, yj Relative displacement of journal and ring centre
Xr, Yr Absolute displacement of ring centre
ẋr, ẏr Relative velocity of journal and ring centre
Ẋr, Ẏr Absolute displacement of ring centre
αl, αo Attitude angle for inner and outer fluid film
μ Dynamic viscosity of oil
ωj Journal angular speed
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ωr Ring angular speed

Abbreviations

RBS Rotor-bearing system
FRB Floating ring bearing

1 Introduction

Nowadays, around 70% of diesel fuel is consumed by transportation vehicles based on IC engines. In case
of high-speed vehicles, there should be higher air–fuel ratio to increase the fuel efficiency of the engine. To
achieve this, a turbocharger is incorporated into the engine to supply extra compressed air. The automotive
turbocharger usually runs at very high speed compared to other turbo-machinery. Due to such high speed, even
small unbalance or smallmanufacturing defects can cause large vibrations. To resolve such problems, analytical
understanding of dynamic behaviour of the turbocharger rotor-bearing system (RBS) is required considering
various nonlinearities. Researchers have devised several fault diagnosis methods based on nonlinear dynamic
simulations for rotating machinery [1,2].

Hydrodynamic bearings have better damping behaviour as compared to roller or ball bearings. In case of
high-speed turbochargers running at around 180K rpm, instability and high friction losses in single fluid film
bearings are the major issues. Therefore, floating ring bearings (FRB), i.e. full floating/semi-floating, are used
which provide better damping effects and less friction losses than hydrodynamic bearings. As compared to
simple hydrodynamic bearings, floating ring bearings show typical fluid film instability and chaotic behaviour
[3]. Adiletta [4] used the Capone’s model and derived the nonlinear fluid film forces developed in journal
bearing using short bearing approximations. Nguyen-Schäfer [5] linearized the nonlinear fluid film forces
using Taylor’s series expansion.

Because of nonlinear elastic and damping forces arising from two fluid films in floating ring bearings
of a turbocharger, its dynamic behaviour becomes quite intricate. The main advantage of full floating ring
bearing is better performance in oil-contaminated environment and improved robustness as compared to semi-
floating ring bearing, but the disadvantage of FRB is its stability behaviour which sometimes reaches to total
instability. Tanaka and Hori [6] found the superior stability characteristics of the floating ring bearing as
compared to conventional cylindrical journal bearing, using short bearing approximation. Few researchers
[7–12] investigated the nonlinear stability analysis of floating ring bearings using Hopf bifurcation theory and
other linear and nonlinear analysis methods.

The turbocharger rotor shaft can be modelled using different theories. Nelson and McVaugh [13] used
Euler–Bernoulli (EB) beam element theory to describe the finite element modelling of the rotor shaft, whereas
some researchers [14,15] had been used Timoshenko beam element theory to develop the finite element model
of flexible rotor shaft and got better results as compared to Euler–Bernoulli beam theory.

Different numerical integration schemes had been used to solve the nonlinear equations of motion of
turbocharger rotor-bearing system. Bonello [16] analysed the nonlinear dynamic behaviour of floating ring
bearings by transient modal analysis of TC FRB system with nonlinear fluid film forces. Tian [17] used
MATLAB� routine ode15s for turbocharger rotor system supported on floating ring bearings and investigated
the dynamic response and synchronous and sub-synchronous vibrations. Schweizer [18,19] analysed the
occurrence of total instability phenomena for a flexible turbocharger FRB system using standard multibody
dynamics software. Due to the presence of various nonlinearities in equations of motion of rotor-bearing
systems, highly accurate and unconditionally stable implicit Newmark-β numerical integration techniques
along with Newton–Raphson convergence method have been preferred to get dynamic response of the system
[20].

Many studies had been explained the effects of rotating unbalance on the dynamic behaviour of the rotor-
bearing system. Nakagawa andAoki [21] theoretically discussed the influence of unbalance on the symmetrical
overhung rotor FRB system and also derived the approximate analytical solution of steady- and dynamic-
state properties. Tian [22] used run-up and run-down simulations for turbocharger FRB system with rotating
unbalance presented on both compressor and turbine discs and showed the nonlinear effects of unbalance on
the dynamic response of the system.

The engine-induced vibrations caused rich sub-synchronous vibrations and tremendously influenced the
rotor orbit shapes at lower rotor speeds. These engine-induced vibrations are generally treated as foundation
excitations or base excitations. A lot of experimental work for turbochargers situated on engine has been studied
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Fig. 1 Finite element model of turbocharger

by many researchers to investigate the vibration behaviour, jump phenomena and path trajectories of bearings
and also compressor and turbine ends [23–26]. Maruyama [27] used engine excitations as base excitations
and investigated nonlinear forced response oscillations by simulation using standard software. The simulation
results obtained were compared to the test data. Ying [28] developed a dynamic model of turbocharger rotor
supported on hydrodynamic bearings with foundation excitations considering these to be harmonic. Orbital
plots and Poincare maps for the motion of disc (representing compressor and turbine) centre were plotted to
investigate the effect of foundation excitations on rotor dynamic behaviour of a turbocharger.

In the present paper, the turbocharger rotor shaft is considered flexible, and both compressor and turbine
disc are taken as rigid. The FE model is formulated by using Timoshenko beam element theory. Dimensional
fluid film forces for floating ring bearing are calculated using short bearing approximation and half Sommerfeld
condition. In operating conditions, the turbocharger system is attached on the engine. So, the engine vibrations
are taken as base excitations in sinusoidal form. Along with base excitations, the rotating in-phase unbalance
on both compressor and turbine disc is also considered. A new MATLAB� has been constructed to solve
the equations of motion of turbocharger FRB system along with the combined effect of unbalance and base
excitations using unconditionally stable implicit Newmark-β numerical integration scheme with Newton–
Raphson convergence method. The orbital plots, Poincare maps and FFT plots are drawn to describe the
nonlinear dynamic behaviour of the turbocharger system.

2 Model description

2.1 Turbocharger rotor modelling

The turbocharger rotor shaft is considered to be flexible and discretized into three elements, and the compressor
and turbine discs are taken as rigid bodies. The schematic diagram of FEmodelling is shown in Fig. 1. The discs
and bearing locations are taken as nodes for FE modelling. The motion in the axial direction is not considered.
Thus, four degrees of freedom for each node have been taken, and elements are idealized by Timoshenko beam
element [15,29]. The dimensions and specification of the FE model of turbocharger are given in Table 1.

The shape functions are derived for the Timoshenko beam element, from the exact solution of homogeneous
form of differential equations of motion. Using Lagrange’s equation, the governing differential equation of
motion of the turbocharger system is written as follows:

[Ms]{q̈s} + [Ω j .Gs] {q̇s} + [Ks]{qs} = {Fbi} + {Fub} + {Fg} (1)

where {qs}T = {xi yi θxi θyi} is displacement vector and i = 1, 2, 3, 4.
In Eq. (1), [MS] is mass matrix, [GS] is gyroscopic matrix and [KS] is stiffness matrix of the turbocharger

rotor shaft and discs. The material damping of the system is not considered. {Fbi}, {Fub} and {Fg} are inner
fluid film forces, unbalance forces and gravity force vector, respectively.

The governing differential equation for both rings is as follows:

[mr ]{q̈r } = {Fring} (2)

where [mr ] = diag([mr1mr1 Ir1mr2 mr2 Ir2]) is mass matrix for both rings.
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Table 1 Parametric details of turbocharger system

Shaft parameters
Young’s modulus (GPa) E = 210
Density (kg/m3) 7860
Shaft elements length (mm) L1 = 33, L2 = 39, L3 = 33
Diameter of shaft element (mm) d1 = 11, d2 = 11, d3 = 11
Disc parameters
Compressor mc = 0.118 kg, IP = 4.40 × 10−5 kg m2, Id = 3.27 × 10−5 kg m2

Turbine mt = 0.326 kg, IP = 8.10 × 10−5 kg m2, Id = 7.70 × 10−5 kg m2

FRB parameters
mr = 7.2 × 10−3 kg, IPr = 11.5 × 10−6 kg m2,C1 = 34 × 10−6 m,C2 = 74 × 10−6 m,

Rri = 5.534 × 10−3 m, Rro = 8.00 × 10−3 m, L i = 6.5 × 10−3 m, Lo = 9.0 × 10−3 m,
μci = μco = 6.4 × 10−3 Pa s, μti = μto = 4.9 × 10−3 Pa s

Fig. 2 FRB model

{q̈}r = {Ẍr1 Ÿr1 ω̇r1 Ẍr2 Ÿr2 ω̇r2}T is acceleration vector and {Fring} represents force vector consisting of
fluid film forces acting on both rings.

{Fring} = {F1x_o − F1x_i F1y_o − F1y_i T1_i − T1_o F2x_o − F2x_i F2y_o − F2y_i τ2_i − τ2_o}.
The expression for fluid film forces in the dimensional form is derived and explained in detail in Sect. 2.2.

2.2 Floating ring bearing modelling

There are two fluid films (i.e. inner and outer) which are developed in a floating ring bearing, as shown in Fig. 2.
The inner fluid film is formed between the journal and the floating ring, whereas the outer film is between
floating ring and bearing housing. The nonlinear fluid film forces generated in floating ring bearing are derived
in dimensional form using the Capone’s model [4]. While deriving the expression for fluid film forces, few
assumptions have been made, which are as follows:

(a) The fluid flow inside bearing is considered laminar and is iso-viscous Newtonian.
(b) The bearing oil feeding mechanism is not considered.

Two separate Reynolds equations [6] have been used for different fluid films. After applying infinite
short bearing approximation theory and integrating the Reynolds equations twice, the expression for pressure
distribution is obtained as follows [17]:

Pi = 3μi

h3i

(
Z2
i − L2

i

4

){[(
ω j + ωr

)
x j − 2 ẏ j

]− [
(ω j + ωr )y j + 2ẋ j

]}
(3)

Po = 3μo

h3o

(
Z2
o − L2

o

4

) [(
ωr Xr − 2Ẏr

)− (
ωrYr + 2Ẋr

)]
(4)
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where hi = C1 − x j cosϑi − y j sin ϑi and ho = C2 − Xr cosϑo − Yr sin ϑo represent the oil film thickness
of the inner and outer film, respectively. Equations (3) and (4) can also be written as:

Pi = 3μi

h3i

(
Z2
i − L2

i

4

)
[A · cosα1 · sin ϑi − A · sin α1 · cosϑi ] , (5)

Po = 3μo

h3o

(
Z2
o − L2

o

4

)
[B · cosα2 · sin ϑo − B · sin α2 · cosϑo] . (6)

Here,

A =
√[(

ω j + ωr
)
x j − 2 ẏ j

]2 + [(
ω j + ωr

)
y j + 2ẋ j

]2
,

B =
√(

ωr Xr − 2Ẏr
)2 + (

ωrYr + 2Ẋr
)2

,

α1 = tan−1

((
ω j + ωr

)
y j + 2ẋ j

(ω j + ωr )x j − 2 ẏ j

)
and α2 = tan−1

(
ωrYr + 2Ẋr

ωr Xr + 2Ẏr

)
.

The inner and outer fluid film forces are obtained by integrating the fluid film pressure Eqs. (5) and (6) as:

{
Fxi
Fyi

}
=

π+α1∫
α1

L1
2∫

− L1
2

Pi · R j ·
{
cosϑi
sin ϑi

}
dz · dϑi , (7)

{
Fxo
Fyo

}
=

π+α2∫
α2

L2
2∫

− L2
2

Po · Rro ·
{
cosϑ0
sin ϑ0

}
dz · dϑ0. (8)

After integrating over the axial length and re-arranging the terms, Eqs. (7)–(8) become:

{
Fxi
Fyi

}
= −μi · A · L3

1 · R j

4

⎡
⎣cosα1 ·

⎧⎨
⎩

∂2G1
∂x j ·∂y j
∂2G1
∂y2j

⎫⎬
⎭− sin α1 ·

⎧⎨
⎩

∂2G1
∂x2j
∂2G1

∂x j ·∂y j

⎫⎬
⎭
⎤
⎦ , (9)

{
Fxo
Fyo

}
= −μo · B · L3

2 · Rro

4

[
cosα2 ·

{
∂2G2

∂Xr ·∂Yr
∂2G2
∂Y 2

r

}
− sin α2 ·

{
∂2G2
∂X2

r
∂2G2

∂Xr ·∂Yr

}]
. (10)

Here,

G1 =
π+α1∫
α1

dϑi

hi
=

2 tanh−1

[
y j−(C1+x j). tan

(
ϑi
2

)
√

−C2
1+x2j+y2j

]
√

−C2
1 + x2j + y2j

∣∣∣∣∣∣∣∣∣∣

π+α1

α1

, (11)

G2 =
π+α2∫
α2

dϑo

ho
=

2 tanh−1

[
Yr−(C2+Xr )·tan

(
ϑo
2

)
√

−C2
2+X2

r +Y 2
r

]
√

−C2
2 + X2

r + Y 2
r

∣∣∣∣∣∣∣∣∣∣

π+α2

α2

. (12)

Then,

G1 = 2√
C2
1 − x2j − y2j

·
⎡
⎣π

2
+ tan−1

⎛
⎝ y j · cosα1 − x j · sin α1√

C2
1 − x2j − y2j

⎞
⎠
⎤
⎦ , (13)
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G2 = 2√
C2
2 − X2

r − Y 2
r

·
⎡
⎣π

2
+ tan−1

⎛
⎝Yr · cosα2 − Xr · sin α2√

C2
2 − X2

r − Y 2
r

⎞
⎠
⎤
⎦ . (14)

The expression for second derivative terms of G1 and G2 is shown in “Appendix A.”
The torque applied on the floating rings due to inner and outer fluid films is denoted by τi and τo, respectively,
and can be written as follows [3]:

τi = 2π
μi R3

ri Li
(
ω j − ωr

)
√
C2
1 − x2j − y2j

+
(
x j Fyi − y j Fxi

)
2

, (15)

τo = 2π
μoR3

roLoωr√
C2
2 − X2

r − Y 2
r

+
(
Xr Fyo − Yr Fxo

)
2

. (16)

2.3 Newmark-β Newton–Raphson techniques

The governing differential equation of turbocharger rotor shaft (i.e. Eq. (1)) and floating ring bearings (i.e. Eq.
(2)) is combined to form the equation of system for the turbocharger system. The formed nonlinear governing
differential equations ofmotion of systemare solved to compute the dynamic response using implicitNewmark-
β time integration scheme with Newton–Raphson method. The combined equation is shown as:[ [Ms] 016∗6

06∗16 [mr ]

]
{q̈} +

[ [
Ω j .Gs

]
016∗6

06∗16 06∗6

]
{q̇} +

[
[Ks] 016∗6
06∗16 06∗6

]
{q} = {R} (17)

where {q}T = {
xi yi θxi θyi . . . Xrk Yrk θrk . . .

}
and i = 1, . . . , 4; k = 1, 2. And {R} is combined force

vector.
Equation (17) can be written in the generalized form at time t + �t ,

[M]t+�t {q̈}t+�t + [C]t+�t {q̇}t+�t + [K ]t+�t {q}t+�t = {R}t+�t . (18)

To solve the above equation, the implicit average acceleration Newmark-β numerical integration technique
is used. This technique is highly accurate and unconditionally stable [20]. The basic equations that have been
used for this scheme are:

{q̇}t+�t = {q̇}t + [(1 − γ ){q̈}t + γ {q̈}t+�t ]�t, (19a)

{q}t+�t = {q}t + {q̇}t�t + [(1/2 − β){q̈}t + β{q̈}t+�t ]�t2. (19b)

The parameters β and γ are taken equal to 1/4 and 1/2, respectively. Substituting Eqs. (19a) and (19b) into
Eq. (18) yields the following equation:

([K ] + a0[M] + a1[C]){q}t+�t = {R}t+�t + {F}t . (20)

Here, {F}t = {[M](a0{q}t + a2{q̇}t + a3{q̈}t )} + {[C](a1{q}t + a4{q̇}t + a5{q̈}t )}.
And, [K ] + a0[M] + a1[C] = K̂ is effective stiffness matrix.

To apply the Newton–Raphson technique, Eq. (20) is written in the form of implicit function.

g(q∗) = 0 = {R}t+�t + {F}t − K̂ {q}t+�t . (21)

Expanding Eq. (21) by Taylor’s series and the solution for i th iteration at any time step t + �t is given by

�qi = N−1 · Q (22)

where N =
(

∂g
∂q

)t+�t

i−1
and Q = −{R}i−1

t+�t − {F}t + K̂ {q}i−1
t+�t

The constants used in the above integration method are defined as follows:

a0 = 1

β�t2
, a1 = γ

β · �t
, a2 = 1

β · �t
, a3 =

(
1

2β

)
− 1, a4 =

(
γ

β

)
− 1, a5 =

(
�t

2

)
.

A brief flowchart of the algorithm to compute the dynamic response of turbocharger rotor-bearing system,
which combines implicit Newmark-β integration scheme with Newton–Raphson convergence technique, is
shown in Fig. 3.
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Assume: initial displacement and velocity of all the nodal points on the 
shaft axis w.r.t. x and y-axis.

Assemble global mass, stiffness and gyroscopic 
matrices 

Given: Turbocharger flexible shaft, compressor and turbine 
disc, and floating ring bearing specifications and speed

Start

Calculate: initial bearing forces, unbalance forces and engine 
excitations

Calculate: initial acceleration

Newmark-β method: take a time step

Calculate: Nonlinear bearing forces, unbalance forces, engine 
excitations and dynamic bearing stiffness and damping matrices

Newton-Raphson Method: Calculate displacement, velocity and 
accelerations of all shaft nodal points and ring centres

Converged No

Yes

Continue until steady state

Store displacement, velocity components

Fig. 3 A flowchart for dynamic response of turbocharger FRB system

3 Results and discussion

In this section, a new MATLAB� code has been developed for the nonlinear dynamic analysis of the tur-
bocharger FRB system. The equations of motion of the system have been solved using the implicit Newmark-
β numerical integration scheme along with Newton–Raphson convergence method, and nonlinear dynamic
response is computed. The specifications and dimensions of the system are taken from the literature [16] and
are listed in Table 1. Relative error tolerance of 1E-12 has been taken to perform the simulations. Simulation
has been performed at different rotor speeds using an appropriate set of initial conditions and considering zero
cavitation pressure. The dynamic response is computed for the first 1000 rotations, and the steady state is found
to be present for last 200 rotations. So the nonlinear response data of both journal centres and ring centres are
collected for the last 200 rotations, and orbital and Poincare maps are plotted to show the nonlinear dynamic
behaviour of the system.
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Fig. 4 Comparison of results

3.1 Validation

To validate the FE modelling, simulation technique and MATLAB� code presented in the current paper,
the orbital plots of journal centres for a perfectly balanced turbocharger rotor system have been plotted at
different speeds. The results are then compared with the results available in the literature, as shown in Fig. 4. A
satisfactory similarity is found between the results that validate the mathematical formulation andMATLAB�
code presented in this study.

3.2 Effect of in-phase rotating unbalance at both ends and engine excitations

In the present paper, the simulations are performed for a turbocharger system having rotating in-phase unbal-
ance on both discs and also encountered with engine excitations. This unbalance may be occurred due to
manufacturing errors, due to adhesion of oil/dust on turbine or due to erosion of the impeller part. The rotating
unbalance in automotive turbochargers is observed in the range of 0.1 to 1 gm-mm. In the present paper, an
in-phase unbalance of 0.236 and 0.652 gm-mm is taken on compressor disc and turbine disc, respectively. Due
to high running speed of the turbocharger rotor shaft, the inertia force produced due to unbalance becomes
very high.
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Fig. 5 Orbits and Poincare maps for journal and ring centre at low rotor speeds

In practice, the turbocharger rotor system has rigid housing made up of heat-resistant cast steel which is
mounted on internal combustion engines. The vibrations transmitted from engine to turbocharger are modelled
as a case of base excitations. These base excitations affect the turbocharger rotor responses significantly. In
actual working condition, engine induces the vibrations in translational as well as rotational directions. But
for simplicity, only translational vibrations perpendicular to the axis of shaft, i.e. X- and Y-directions, are
considered in this research work. In case of engine-induced vibrations, the outer and inner fluid film thickness
both will be affected. Based on the experimental results available in the literature, the base excitation of
harmonic nature is a function of engine rotational speed ωe which is given as follows [27,28]:

Xe = (cos(ωet) + 2 cos(2ωet) + cos(3ωet) + 3cos(4ωet)) × 10−6 m

Ye = (3 sin(ωet) + 6 sin(2ωet) + 5 sin(3ωet) + 2sin(4ωet)) × 10−6 m

where (Xe, Ye) represent the displacement components of base excitation in x- and y-directions, respectively.
It should be noted that the displacement amplitude component of 2ωe and 4ωe dominates in x-direction,
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Fig. 6 Frequency spectrum of journal and ring at FRB1 and FRB2 at low turbocharger rotor speed

whereas in y-direction, the amplitude of 2ωe and 3ωe dominates. The crank rotating speed is taken to be 3600
rpm. In actual working conditions, turbocharger rotor speed will depend on the engine rotating speed, and
the amplitude of excitation parameters will vary according to the engine rotating speed. So, to completely
understand the behaviour of turbocharger rotor, floating ring bearings, and compressor end, as well as turbine
end, simulation has been performed at varying turbocharger rotor speeds. The response of turbocharger rotor
and floating ring relative to housing is studied by orbital plots. The Poincare maps have also been plotted to
understand nonlinear characteristics such as chaotic and quasi-periodic for the turbocharger system.

3.2.1 Dynamic analysis of turbocharger system at low rotor speeds

The orbit plots at 6000 rpm, as shown in Fig. 5i, for journal and floating ring centres at node two are close to the
centre of bearing housing, whereas at node three, motion of both journal and ring centre relative to housing is
in the fourth quadrant. The points distributed in Poincare maps at such speed appear to be in form of different
rings. As the speed of rotor increased, the shape of orbit plots continuously changed and points in Poincare
maps distributed irregularly, which shows the chaotic behaviour of turbocharger system as shown in Fig. 5ii.
The radius of orbits increases with increased speed.

The FFT plots for the x-directional displacement of both journal and ring centre for speed range of 6000
and 12,000 rpm are shown in Fig. 6. The frequency spectrum shows the sub-synchronous vibrations of high
amplitudeswhich occur due to the presence of oil whirl phenomenon.However, these high amplitude vibrations
are synchronous to the engine speed (i.e. 3600 rpm).The amplitude of these vibrations increaseswith an increase
in rotor speed and always has higher-amplitude vibrations for both journal and ring centre at node three as
compared to node 2.

Figure 7 shows the orbits and Poincare maps of compressor and turbine ends at rotor speeds 6000 and
12,000 rpm. At rotor speed of 6000 rpm, the compressor end centre revolves in second quadrant of inertia
frame, whereas the turbine end revolves in the fourth quadrant. The Poincare maps for both ends are formed
in the shape of different rings. Upon increasing the rotor speed at 12,000 rpm, the orbital shapes became more
complex, and the Poincare maps have irregular distribution of points that represents the chaotic behaviour of
the turbocharger system.
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Fig. 7 Orbits and Poincare maps for compressor and turbine ends at low rotor speeds

3.2.2 Dynamic analysis of turbocharger system at medium rotor speeds

At TC rotor speed of 24k, the orbit shapes altered dramatically, as shown in Fig. 8i, and turbocharger rotor run
in complex chaotic state. As the speed of rotor increases up to 6000 rpm, the diameter of journal and ring centre
orbit at FRB2 becomes large than the orbit of journal and ring centre at FRB1 that revolves in the form of
circular orbits, as shown in Fig. 8ii. The oil whirl/whip phenomena play a significant role in motion of journal
and ring centre for both bearing nodes, but the system remains in chaotic state as explained by Poincare maps.

Figure 9 shows the widespread components of the frequency spectrum of journal and ring centre for both
bearing nodes at rotor speeds of 24,000 and 60,000 rpm. At 24,000 rpm rotor speed, the amplitude of 0.12×
sub-synchronous vibrations is high, compared to other sub-synchronous vibrations. The sub-synchronous
vibrations occur at FRB2 and always have high amplitude than vibrations occurring at FRB1 node. This can
happen due to the presence of large rotating unbalance force on turbine end. At increased speed of 60,000 rpm,
journal centre at FRB1 node experiences sub-synchronous vibrations at 0.02× and 0.12× of rotor frequency,
and for FRB2 node, the sub-synchronous vibrations occur at 0.12× rotor frequency, as shown in Fig. 9ii.

The orbital and Poincare maps of compressor and turbine end for rotor speeds 24,000 and 60,000 rpm, as
shown in Fig. 10. At 24,000 rpm of rotor speed, both compressor and turbine disc centres revolve intricately
and the Poincare maps show chaotic behaviour of system, as shown in Fig. 10i. As the speed of turbocharger
increases up to 60,000 rpm, the compressor end orbit becomes in shape of torus and turbine end orbits in the
form of ring shape, but the system remains in chaotic state, as shown in Fig. 10ii.

3.2.3 Dynamic analysis of turbocharger system at high rotor speeds

At rotor speed of 90,000 rpm, the orbit plot for journal and ring centre relative to housing at node 2 shows
complex shape, whereas at node 3, both journal and ring centre almost revolve in the form of circular orbits as
shown in Fig. 11i. The Poincare maps at speed 90,000 rpm represent the chaotic behaviour of the journal and
floating ring centres for both bearing nodes. Upon increasing the rotor speeds (i.e. 180,000 rpm), the orbital
trajectory for journal and ring centre for both bearing nodes tends to form almost circular shape as shown in
Fig. 11ii, but the Poincare maps of journal and ring at node 2 show chaotic behaviour and the Poincare maps
for node 3 represent the transformation of chaotic to quasi-periodic state.

Figure 12 shows the frequency spectrum of the journal and ring centre responses for both bearing nodes
at rotor speeds of 90000 and 180,000 rpm. At 90,000 rpm speed, there are several peaks of sub-synchronous
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Fig. 8 Orbits and Poincare maps for journal and ring centre at medium rotor speeds

vibrations for FRB1, as shown in Fig. 12i, whereas for FRB2, there is only one peak present which has
amplitude, four times to the maximum amplitude obtained for FRB1. Upon increasing the rotor speed up to
180,000 rpm, the magnitude of sub-synchronous vibrations decreases, and the range of the spectrum is also
becoming thin, as shown in Fig. 12ii. This happens because at higher speeds, the inertia forces generated
due to unbalance dominate over the engine excitations and bearing forces and diminish the sub-synchronous
vibrations produce due engine excitations.

The orbit and Poincare maps for compressor and turbine ends at high rotor speeds are shown in Fig. 13. At
90,000 rpm, both compressor and turbine disc centres revolve in circular shapes, but the Poincare maps show
the system will be in chaotic state, as shown in Fig. 13i. Upon increasing the speed up to 180,000 rpm, the
compressor disc node remains in chaotic state, whereas turbine end shifts to a quasi-periodic state of motion,
as shown in Fig. 13ii.
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Fig. 9 Frequency spectrum of journal and ring at FRB1 and FRB2 at medium turbocharger rotor speeds

Fig. 10 Orbits and Poincare maps for compressor and turbine ends at medium rotor speeds
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Fig. 11 Orbits and Poincare maps for journal and ring centre at high rotor speeds

The conclusion drawn from Fig. 14 is that the behaviour of turbocharger rotor ends is greatly affected
by engine-induced vibrations at low speeds, and upon increasing the speed of TC rotor, the sub-synchronous
vibrations suppress the engine-induced vibrations, whereas, at higher speeds (i.e. 148,000 and 180,000 rpm),
the forces generated due to unbalance dominate the bearing forces and engine excitations. Therefore, the effect
of engine excitations should not be neglected in the testing phase as well as the actual working state.

4 Conclusions

The governing differential equation of motion for turbocharger flexible rotor system is developed by finite
element modelling using Timoshenko beam elements. The expression for nonlinear fluid film forces generated
in floating ring bearings is derived in the dimensional form directly, using short bearing approximation and
half Sommerfeld condition. Thus, there is no requirement to convert the pressure and other parameters from
dimensional to non-dimensional form and then from non-dimensional to dimensional form. The equation
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Fig. 12 The frequency spectrum of journal and ring at FRB1 and FRB2 at high turbocharger rotor speed

Fig. 13 Orbits and Poincare maps for compressor and turbine ends at high rotor speeds
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Fig. 14 Displacement versus time plot for rotor ends at different speeds for turbocharger rotor-bearing system

of motion for rotor and floating ring bearings is combined and formed a single set of governing differential
equations. For solving the differential equations ofmotion, a newMATLAB� code is constructed using implicit
Newmark-β integration scheme along with Newton–Raphson convergence method, and dynamic response is
computed. The effect of rotating unbalance and engine excitation on the behaviour of the turbocharger system
is analysed by orbital plots, Poincare maps and frequency spectrum plots. At low rotor speeds, the centres of
journal and rings for both bearing nodes follow a complex trajectory, and the system shows chaotic behaviour.
The frequency spectrum shows a wide range of sub-synchronous vibrations. Upon increasing the rotor speed,
the phenomenon of oil whirl comes into play, and the amplitude of sub-synchronous vibrations changes
continuously with respect to change in rotor speed. But at higher turbocharger rotor speeds, the inertia force
produced due to rotating unbalance dominates over the nonlinear bearing forces and engine excitations and thus
diminishes the sub-synchronous vibrations. The journal and ring centre at FRB1 exhibits chaotic behaviour,
whereas the journal and ring centre at FRB2 shows a transition of chaotic to quasi-periodic state of motion.
Thus, rotating unbalance and engine excitations play a very significant role in working turbochargers.
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Appendix A

For the inner fluid film,

∂2G1

∂x j · ∂y j
= 3 · x j · y j · G1

A2
1

+ 4 · x j · cosα1

A1 · A4
+ 6 · x j · y j · A2

A2
1 · A4

− 4 · sin2 α1 · A3

A2
4

+ 4 · x j · sin α1 · A2 · A3

A1 · A2
4

∂2G1

∂x2j
= G1

A1
+ 3 · x2j · G1

A2
1

+ A5

A1 · A4
+ 6 · x2j · A2

A2
1 · A4
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A2
4
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A1 · A2
4

∂2G1

∂y2j
= G1

A1
+ 3 · y2j · G1

A2
1

+ A6

A1 · A4
+ 6 · y2j · A2

A2
1 · A4

− 4 · sin α1 · cosα1 · A3

A2
4

+ 4 · y j · sin α1 · A2 · A3

A1 · A2
4

.

For the outer fluid film,

∂2G2

∂Xr · ∂Yr
= 3 · Xr · Yr · G2

B2
1

+ 4 · Xr · cosα2

B1 · B4
+ 6 · Xr · Yr · B2

B2
1 · B4

− 4 · sin2 α2 · B3

B2
4

+ 4 · Xr · sin α2 · B2 · B3

B1 · B2
4

∂2G2

∂X2
r

= G2

B1
+ 3 · X2

r · G2

B2
1

+ B5

B1 · B4
+ 6 · X2

r · B2

B2
1 · B4

− 4 · sin α2 · cosα2 · B3

B2
4

+ 4 · Xr · cosα2 · B2 · B3

B1 · B2
4
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∂Y 2
r

= G2

B1
+ 3 · Y 2
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1

+ B6

B1 · B4
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r · B2
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− 4 · sin α2 · cosα2 · B3
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4

+ 4 · Yr · sin α2 · B2 · B3
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4

.

Here, A1 = C2
1 − x2j − y2j

A2 = y j · cosα1 − x j · sin α1,

A3 = x j · cosα1 + y j · sin α1,

A4 = C2
1 − A2

3,

A5 = (
2 · y j · cosα1 − 6 · x j · sin α1

)
,

A6 = (
6 · y j · cosα1 − 2 · x j · sin α1

)
,

B1 = C2
2 − X2

r − Y 2
r ,

B2 = Yr · cosα2 − Xr · sin α2,

B3 = Xr · cosα2 + Yr · sin α2,

B4 = C2
2 − B2

3 ,

B5 = (2 · Yr · cosα2 − 6 · Xr · sin α2) ,

B6 = (6 · Yr · cosα2 − 2 · Xr · sin α2) .
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