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Abstract Rod fastening rotor (RFR) is characterized by discontinuity of contact interface and unbalance
of multiple disks. There are few researches that focus on unbalance effect including magnitude and phase
difference on the nonlinear dynamic characteristics of RFR considering contact feature. A typical RFR model
is proposed to investigate the nonlinear dynamic characteristics. The nonlinear motion governing equation
considering unbalance excitation, nonlinear oil-film force and nonlinear contact characteristics between disks is
derived by D’Alembert principle. The contact effects are simulated by bending spring with nonlinear stiffness.
The research focuses on the effects of unbalance on the onset of low-frequency instability and nonlinear
response of RFR. The obtained results evidently show the distinct phenomena brought about by the variations
of unbalance, which confirms that unbalance magnitude and phase difference are critical parameters for the
RFR system response. To restrain large amplitude of nonsynchronous vibration and retard the occurrence of
instability, the unbalancemagnitude of rotor is suggested to be kept at range fromU5 toU6.Meaningfully, RFR
can operate relatively well with small vibration and higher instability threshold when the residual unbalance
between disks is controlled at an enough-reasonable unbalance phase difference. Phase difference adjustment
can accomplish active balance. The total vibration and nonsynchronous components could be reduced, and
onset speed of instability could be delayed effectively by using the proposed method, which is helpful for the
dynamic design, assembly, balance and vibration control of such RFR.

Keywords Rod fastening rotor · Unbalance · Contact interface · Nonlinear dynamic response · Instability ·
Bifurcation

1 Introduction

Rod fastening rotor (RFR) consists of disks compressed together by tie rods, and its operating speed often
exceeds first critical speed or even higher critical speed to achieve higher efficiency and good dynamic char-
acteristics. They already have been widely used in gas turbines or small- and medium-sized turboshaft aero
engines [1]. It is well known that RFR is a core part of heavy-duty gas turbine or other applications and
has become more and more common used in industrial power generation set and naval ship due to its green,
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high-efficiency and fast-startup-speed characteristics. In the meantime, the hydrodynamic bearings are the
common type used for high-speed RFR under high-speed and heavy-load working condition. The vibration
response of RFR is complicated and highly nonlinear due to the high operation speed, nonlinear oil-film force
and discontinuous structure feature between disks.

The rotor dynamic characteristics directly affect the performance, efficiency and service life of rotating
machine. An RFR with small inappropriate unbalance may induce excessive vibration when it runs at high
speed, which may perturb its normal operation, even lead to loss of stability and generate some unexpected
vibration accidents. Obviously, the RFR design must ensure safe and stable operation throughout the speed
range. The demands for higher rotation speed, efficient performance, longer life and better NVH performance,
along with low manufacturing cost, continue to motivate the rotordynamics investigation of RFR. Many
efforts were made to investigate the rotordynamics of RFR-bearing system. Wang et al. [2] built a nonlinear
dynamic model of RFR system with a transverse open crack based on FE model to investigate the stability
and bifurcation. The stability of RFR system was decreased due to the presence of crack. Using the Floquet
theory, shooting method and path-following technique, Liu et al. [3] investigated the stability and bifurcation
phenomena of a flexible RFR-bearing system considering contact stiffness. Liu et al. [4] also studied the
nonlinear dynamic response of a flexible RFR-bearing system, which indicated that mass eccentricity and
unbalanced pretightening force of rod have great influence on stability and bifurcation of system. Based on
D’Alembert principle, Hu et al. [5,6] mainly investigated the nonlinear coupled dynamics of an RFR under
the condition of rub-impact and initial permanent. The contact effects between two disks were equivalent to a
flexural spring with a nonlinear stiffness. The corresponding result showed the larger radial stiffness of stator,
and big unbalance force can simplify the motion of rotor system to some extent. Zhou et al. [7] calculated
the contact stiffness by using two methods of FE method and Greenwood model with Hertz contact theory
and investigated their influences on dynamics of combined rotor. Hei et al. [8] modeled an RFR supported
in fixed-tilting pad bearings to investigate the nonlinear dynamic behavior and bifurcation. It was shown that
RFR is more stable than the integral rotor system. On the base of experimental transition processes, Lyantsev
et al. [9] put forward an identification method of nonlinear dynamic model of gas turbine on acceleration
mode. He et al. [10] established a tighten force test rig to investigate the effect of pretightening force on the
critical speed. Rotor imbalance is a typical structure parameter which can induce vibration in the high-speed
rotor-bearing system. Ma et al. [11] investigated the influence of eccentric phase difference between two
disks on instability in an integral rotor-bearing system. It was shown that the instability threshold increases
when the phase difference becomes larger and it increases almost linearly when the eccentric phase difference
is greater than 20◦. Liu et al. [12] investigated the effect of unbalanced pretightening force on nonlinear
dynamic characteristics of 3D RFR-bearing system considering linear contact stiffness and a constant mass
eccentricity. Due to the nonlinear flexural stiffness of contact interface between disks, especially when the
contact regions are partially separated, the dynamics of the RFR may be different from that of the integral
rotors. Yuan et al. [13] calculated the flexural stiffness by using the FE method and then adopted the harmonic
balance method to analyze the dynamics of rod-fastened Jeffcott rotor, which confirmed dynamics of the rotor
were nonlinear when it was subjected to a large unbalance force. Li et al. [14] studied the effect of contact
stiffness on natural frequencies and unbalance responses. Using an improved transfer matrix method, Meng
et al. [15] built a dynamic model of RFR including linear bearing dynamic coefficients and equivalent contact
stiffness to obtain the critical speed, mode shapes and unbalance response of four balance plane. According
to the improved 2D FEM, Yuan et al. [16] developed a program to calculate the critical speed and unbalance
response of gas turbine rotors, in which the contact stiffness has been taken as control parameter. Yang et
al. [17] investigated the linear unbalance response based on the transfer matrix models. It is well known
that the elimination of sub-synchronous vibration is a major task for rotating machinery engineers. Yi et al.
[18] proposed a simplified model for flexible RFR to investigate the global nonlinear dynamic characteristics
and indicated the mass eccentricity would be the most nonlinear source for the nonlinear instability. Some
published reports also indicated increasing unbalance is an effective way to suppress the sub-synchronous
vibration [19–22]. In a word, many researchers devoted to investigate the contact stiffness, pretightening
force effect, natural characteristics, nonlinear dynamic phenomena under certain fault conditions and vibration
response considering different levels of mass unbalance eccentricity. Moreover, the researches on the effect
of unbalance on nonlinear dynamic characteristics and instability mainly focus on integral rotor rather than
RFR with discontinuous characteristics. Besides, the contact characteristics must be considered in the model.
Suitable unbalance can suppress the sub-synchronous vibration of low frequency and improve the dynamic
behavior of rotor-bearing system as many researchers mentioned before, which is determined by the special
structure, operational speed and nonlinear force. Due to the unbalance force, nonlinear oil-film and contact
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characteristics between disks, the dynamic characteristics of RFR become more complicated. However, the
nonlinear analysis is also rare at high speed for the RFR considering nonlinear contact characteristics. The
available publications, involving a systematic research and discussion on the influence of unbalance magnitude
and phase difference on the dynamic behaviors of the RFR-bearing system considering nonlinear contact, have
not been found.

Interestingly, for an initially relative-perfect balanced rotor in assumption, the disks may gradually exist
some uncertain carbon deposition and wear under the extreme operation condition with high temperature and
varying operation speed. Hence, the induced unbalance on disks may be formed after running a certain period
for the high-speed RFR. Furthermore, the unbalance magnitude can be grown with the operating time, which
directly influences the high-efficiency operation for the high-speed RFR and even causes seriously nonlinear
vibration accident. In addition, RFR, even after dynamic balancing through adding weights or subtracting
weights in the automatic balancer, would still exist residual unbalance at two discontinuous disks. For an
assembled RFR, the unbalance phase difference between two disks may not be identical under allowably
residual unbalance amplitude for each other, which may lead to the occurrence of different dynamic behaviors
for a same type rotor. Driven by the continuous desire for higher efficiency and safe operating performance, it is
necessary to investigate the effects of unbalancemagnitude and phase difference on the dynamic characteristics,
retard the instability threshold in low frequency and reduce the vibration to an acceptable level by controlling
the unbalance magnitude or phase difference for the high-speed RFR-bearing system. This study will provide
theoretical foundation and technical supports to RFR’s assemblage, dynamic design, vibration control, etc.

Using the bifurcation diagrams, Lyapunov index, waterfall plots, vibration root-mean-square value, fre-
quency spectrum, vibration time waveforms, rotor orbits, Poincaré maps, etc., this paper numerically inves-
tigates the influence of unbalance magnitude and phase difference on the nonlinear dynamic behaviors of a
RFR-bearing system, considering nonlinear oil-film force based on short bearing theory, and nonlinear con-
tact characteristics. Some interesting, distinct phenomena, which are rarely reported in previous reports, are
systematically shown and analyzed in this paper. The onset speed of instability caused by oil-film instability
will be mainly addressed. This paper includes four sections. After this introduction, in Sect. 2, the mathe-
matical models of an RFR-bearing system considering unbalance excitation, nonlinear oil-film force based
on short bearing theory and nonlinear contact characteristics between disks are developed to characterize the
dynamic characteristics of rotor. Section 3 systematically discusses the effects of the unbalance magnitude and
phase difference between disks on low-frequency instability and nonlinear dynamic response under different
rotational speeds. Finally, some conclusions and vibration suppression strategy are presented in Sect. 4.

2 RFR-bearing system model description

RFRs are widely applied to gas turbines or small- and medium-sized turboshaft engines. The rod rotor can
be divided into circumferential rod and central rod fastening rotor, of which the disks are connected by the
curving couplings or surface contact. It is difficult to build a dynamic model because of the multi-interface
contact and multi-tie rods. It is urgent to know the unbalance nonlinear response characteristics and how
to control the fractional frequency vibration of large amplitude with the consideration of nonlinear oil-film
forces and interface contact characteristics. Note that the circumferential rod fastening rotors with annular flat
contact are investigated in this paper. The details of the RFR-bearing system under investigation are shown
in Fig. 1. In order to efficiently study the nonlinear dynamic response and oil-film instability, a mathematical
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Fig. 1 Schematic diagram of an RFR-bearing system
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model considering nonlinear contact of a typical RFR-bearing system simulated by four lumped mass points
is simplified according to the following assumptions.

(a) The small rotor displacements in torsional and axial directions are negligible, the journal and disks are
simulated by four lumped mass points, and the corresponding points are connected by massless elastic
shaft sections of lateral stiffness [23].

(b) The left and right bearingsmounted outboard shown in Fig. 1 are identical hydrodynamic sliding bearings.
For the purpose of simplicity, the bearing feeding holes and feeding conditions will not be considered.
In addition, the isothermal fluid flow condition, constant oil-film viscosity and incompressible fluid are
assumed for the proposed model based on infinite short bearing theory.

(c) The contact characteristics for rods and interface are equivalent to the added flexible bending spring with
nonlinear stiffness.

2.1 Nonlinear bearing model

In some cases, such as large external disturbance, investigation of shaft orbit after instability and nonlinear
vibration response, the nonlinear relation between oil-film force, displacement and velocity should be consid-
ered. Hence, the nonlinear oil-film forces should be obtained under investigation. Figure 2 shows the oil-film
bearing model. θ is taken as the angular coordinate starting from the maximum oil-film thickness correspond-
ing to the fixed coordinate system. Fe and Fψ are the radial component and circumferential component of
oil-film force, respectively. Nonlinear oil-film force of Capone model [24,25] is used in this paper under the
assumptions mentioned above.

Based upon the short bearing theory, the dimensionless Reynolds equation [26] can be derived as:
(
R

L

)2
∂

∂Z

(
h3

∂p

∂Z

)
= X sin θ − Y cos θ − 2

(
Ẋcosθ + Ẏ sinθ

)
, (1)

where X and Y are the dimensionless displacement of journal center in horizontal and vertical direction,
X = x/c, and Y = y/c, respectively. Z is the bearing dimensionless displacement in axial direction, c is the
bearing clearances, p is the dimensionless oil-film pressure, h is the oil-film thickness, R is the bearing radius,
and L is the bearing width.

Dimensionless pressure distribution p in oil films, as illustrated in Eq. (2), can be solved by integrating
Eq. (1).

p = 1

8

(
L

R

)2 (
X − 2Ẏ

)
sin θ − (

Y + 2Ẋ
)
cos θ

(1 − X cos θ − Y sin θ)3
(4Z2 − 1). (2)

Then, the Fe and Fψ can be obtained as follows:

Fe = −
∫ L/2

−L/2
dz

∫ 2π

0
p(θ, z) cos θRdθ, (3)

Fψ =
∫ L/2

−L/2
dz

∫ 2π

0
p(θ, z) sin θRdθ. (4)
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Fig. 2 Bearing model
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Obviously, the horizontal component Fx , vertical component Fy of oil-film force, Fe and Fψ have the
following relationship:

Fx = −Fe sinψ + Fψ cosψ, (5)

Fy = Fe cosψ + Fψ sinψ. (6)

Integrating the oil-film pressure, the dimensionless nonlinear oil-film force in x and y directions can be solved
as follows:(

fx
fy

)
= 1

sP

(
Fx
Fy

)

= −
√

(X − 2Ẏ )2 + (Y + 2Ẋ)2

1 − X2 − Y 2 ×
(
3X × V (X, Y, ϕ) − sin ϕ × G(X, Y, ϕ) − 2 cosϕ × S(X, Y, ϕ)
3Y × V (X, Y, ϕ) + cosϕ × G(X, Y, ϕ) − 2 sin ϕ × S(X, Y, ϕ)

)
,

(7)

where the functions of V (X, Y,ϕ), S(X, Y,ϕ),G(X, Y,ϕ) and ϕ are, respectively, given in Eqs. (8)–(11):

V (X, Y, ϕ) = 2 + (Y cosϕ − X sin ϕ) × G(X, Y, ϕ)

1 − X2 − Y 2 , (8)

S(X, Y, ϕ) = X cosϕ + Y sin ϕ

1 − (X cosϕ + Y sin ϕ)2
, (9)

G(X, Y, ϕ) = 2√
1 − X2 − Y 2

×
(

π

2
+ arctan

Y cosϕ − X sin ϕ√
1 − X2 − Y 2

)
, (10)

ϕ = arctan
Y + 2Ẋ

X − 2Ẏ
− π

2
sign

Y + 2Ẋ

X − 2Ẏ
− π

2
sign (Y + 2Ẋ), (11)

where s = ηωRL
P

( R
c

)2 ( L
2R

)2
denotes the Sommerfeld correction factor, η represents the constant oil-film

viscosity, ω is the rotating velocity, and P denotes the disk’s half mass. The nonlinear fluid film forces are
dependent on the motions of the journal, and the interaction of journal and nonlinear oil-film forces will exhibit
highly nonlinear dynamic behavior.

2.2 Nonlinear restoring force for interface contact

Because of the existence of multiple contact surfaces, the RFR has the discontinuous characteristics of physical
structure. Figure 3 depicts a cross section of contact surface at rod fastening rotor, d represents the diameter
of rod, and D represents the diameter of matching holes. There are gaps between rod holes and rods for easy
assembly of gas turbine rotor, that is, d < D. The nonlinear elastic force [6] between disks is analyzed below.

Define the relative displacement of x direction between disks as a, and b for y direction; then, a =
xi − x j , b = yi − y j , where i = 2, j = 3, as described in Fig. 1, respectively. Taking ε = (D − d)/2, when
a ≤ −ε or a ≥ ε, the rod and matching hole is in contact in x direction. Interestingly, the rotor system will

rod

y
D

d

x

Contact interface

Fig. 3 A cross section at RFR contact surface
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Fig. 4 Nonlinear restoring force for additional tangential stiffness

generate an additional tangential contact stiffness with a segmental linear function described in Eq. (12), the
same rules for y direction.

Fcx =
⎧⎨
⎩
k2(a − ε), a ≥ ε
0, −ε < a < ε
k2(a + ε). a < ε

, (12)

While the gap of ε between the rod and matching hole is small, the restoring force in x direction can be
expressed by a nonlinear function of three-order power about the relative displacement [27]. So, as shown in
Fig. 4, the nonlinear restoring force of contact layer between disks can be derived as follows:

(
Fcx1
Fcy1

)
=

(−Fcx2
−Fcy2

)
=

(
k1(xi − x j ) + k′

1(xi − x j )3

k1(yi − y j ) + k′
1(yi − y j )3

)
. (13)

2.3 Unbalance force model

As shown in Eqs. (14) and (15), Fub is the unbalance force vector, which only exists at two disks. m2,m3
denote the mass of the 1# disk and 2# disk, respectively. ei (i = 1, 2) is the mass unbalance eccentricity. α
is the rotational angle of rotor around the Z direction. φ1 and φ2 represent the initial phase of the imposed
unbalance at Node 2 and Node 3 with a red arrow line for two disks (see Fig. 1), respectively. The positive
initial phase angle is measured in the direction of rotation from positive x-axis [28].

Fub1 =
(
Fubx1
Fuby1

)
=

(
m2e1α̇2 cos(α + φ1) + m2e1α̈ sin(α + φ1)

m2e1α̇2 sin(α + φ1) − m2e1α̈ cos(α + φ1)

)
, (14)

Fub2 =
(
Fubx2
Fuby2

)
=

(
m3e2α̇2 cos(α + φ2) + m3e2α̈ sin(α + φ2)

m3e2α̇2 sin(α + φ2) − m3e2α̈ cos(α + φ2)

)
. (15)

The eccentric (unbalance) phase difference of 1# disk and 2# disk is

φ = |φ1 − φ2 | . (16)

The steady-state conditions are investigated in this paper, so, angular acceleration α̈ = 0 and angular velocity
α̇ = ω, Eqs. (14)–(15) can be rewritten as follows:

Fub1 =
(
Fubx1
Fuby1

)
=

(
m2e1ω2 cos(ωt + φ1)

m2e1ω2 sin(ωt + φ1)

)
, (17)

Fub2 =
(
Fubx2
Fuby2

)
=

(
m3e2ω2 cos(ωt + φ2)

m3e2ω2 sin(ωt + φ2)

)
. (18)
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2.4 RFR-bearing system motion equations

Themotion equation of the RFR-bearing system can be deduced fromD’Alembert principle. Consider a system
composed of n mass points, assuming that the mass of i th mass point, with active force of Fi and constraining
force of FNi , ismi , radius vector is ri , and acceleration is r̈ i . The inertia force of i th mass point can be written
in the form:

F I i = −mi r̈i . (19)

If the system is only subject to ideal constraints, the general equation of dynamics can be written in the form:
n∑

i=1

(Fi − mi r̈ i ) × δri = 0, (20)

Substituting the constraining force into Eq. (20), it can be expressed as follows:
n∑

i=1

(Fi + FNi + FIi ) × δri=0. (21)

Write it as an analytic expression:
n∑

i=1

((Fxi + FNxi − mi ẍci )δxci+(Fyi + FNyi − mi ÿci )δyci+(Fzi + FNzi − mi z̈ci )δzci=0. (22)

From D’Alembert principle, the system of active force, constraining force and inertial force acting on each
mass point should constitute the equilibrium force system. Consider every constraining force in each mass
point, then ⎧⎨

⎩
Fxi + FNxi − mi ẍci = 0
Fyi + FNyi − mi ÿci = 0
Fzi + FNzi − mi z̈ci = 0

, i = 1, ldots, n. (23)

Due to the neglect of axial vibration, zi is set to zero in the above equations. According to the structural
parameters and lubricating conditions, the active force, constraining force and inertia force of the RFR system
investigated can be expressed as:{

Fxi = −c1 ẋi + Fx (xi , yi , ẋi , ẏi )
Fyi = −c1 ẏi − mig + Fy (xi , yi , ẋi , ẏi )

(i = 1, 4), (24)
{
Fxi = −c2 ẋi
Fyi = −c2 ẏi − mig

(i = 2, 3), (25)
{
FNx1 = −ks (x1 − x2)
FNy1 = −ks (y1 − y2)

and

{
FNx2 = −c3 (ẋ2 − ẋ3) − ks (x2 − x1) − Fcx1
FNy2 = −c3 (ẏ2 − ẏ3) − ks (y2 − y1) − Fcy1

, (26)

{
FNx3 = −c3

(
ẋ3 − ẋ2

) − ks
(
x3 − x4

) − Fcx2
FNy3 = −c3 (ẏ2 − ẏ3) − ks (y3 − y4) − Fcy2

, and

{
FNx4 = −ks

(
x4 − x3

)
FNy4 = −ks

(
y4 − y3

) , (27)

{
FIxi = −mi ẍi
FIyi = −mi ÿi

(i = 1, 4), and

{
FIxi = −mi ẍi + Fubxi−1

FIyi = −mi ÿi + Fubyi−1
(i = 2, 3). (28)

Substituting Eqs. (24–28) into Eq. (23), the motion governing equations for the investigated RFR-bearing
system shown in Fig. 1 are as follows, in which considering the nonlinear oil-film forces, nonlinear contact
restoring forces and the unbalance force.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 ẍ1 + c1 ẋ1 + ks(x1 − x2) − Fx (x1, y1, ẋ1, ẏ1) = 0
m1 ÿ1 + c1 ẏ1 + ks(y1 − y2) − Fy(x1, y1, ẋ1, ẏ1) + P1 = 0
m2 ẍ2 + c2 ẋ2 + c3(ẋ2 − ẋ3) + ks(x2 − x1) + Fcx1 − Fubx1 = 0
m2 ÿ2 + c2 ẏ2 + c3(ẏ2 − ẏ3) + ks(y2 − y1) + Fcy1 − Fuby1 + P2 = 0
m3 ẍ3 + c2 ẋ3 + c3(ẋ3 − ẋ2) + ks(x3 − x4) + Fcx2 − Fubx2 = 0
m3 ÿ3 + c2 ẏ3 + c3(ẏ3 − ẏ2) + ks(y3 − y4) + Fcy2 − Fuby2 + P3 = 0
m4 ẍ4 + c1 ẋ4 + ks(x4 − x3) − Fx (x4, y4, ẋ4, ẏ4) = 0
m4 ÿ4 + c1 ẏ4 + ks(y4 − y3) − Fy(x4, y4, ẋ4, ẏ4) + P4 = 0

, (29)
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Table 1 Details of rotor-bearing system

No. Parameter Value No. Parameter Value

1 Mass in 1# bearing m1 (kg) 4.0 8 Shaft stiffness ks (N/m) 2.5e+10
2 Mass in 2# bearing m4 (kg) 4.0 9 Linear stiffness k1 (N/m) 2.5e+10
3 Mass in 1# disk m2 (kg) 32.1 1 Nonlinear stiffness k′

1 (N/m
3) 2.5e+10

4 Mass in 2# disk m3 (kg) 32.1 11 Bearing radius R (mm) 25
5 Damping coefficient c1 (N s/m) 1050 12 Bearing Length L (mm) 12
6 Damping coefficient c2 (N s/m) 2100 13 Bearing clearance c (mm) 0.11
7 Damping coefficient c3 (N s/m) 2100 14 Lubrication viscosity η (Pa · s) 0.018

where m1,m2,m3 and m4 are the lumped mass at 1# bearing, 1# disk, 2# disk and 2# bearing, respectively; ks
represents the shaft stiffness; and c1, c2 and c3 denote the bearing damping coefficient, damping coefficient of
disks and the damping coefficient at contact interface, respectively. Fx and Fy are the nonlinear oil-film forces
in x direction and y direction. Fub is mass unbalance force expressed in Eqs. (17–18); Pi (i = 1, 2, 3, 4) is the
gravity for four different lumped masses.

τ = ωt, (30)

Xi = xi/c, Yi = yi/c, where i = (1, 2, 3, 4) . (31)

Equation (29) can be rewritten in termsof the dimensionless time anddimensionless displacement expressed
in Eqs. (30–31) so that the following nondimensional motion equation systems are obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẍ1 + c1
m1ω

Ẋ1 + ks
m1ω2 (X1 − X2) − sP

m1cω2 fx (X1, Y1, Ẋ1, Ẏ1) = 0

Ÿ1 + c1
m1ω

Ẏ1 + ks
m1ω2 (Y1 − Y2) − sP

m1cω2 fy(X1, Y1, Ẋ1, Ẏ1) + g
cω2 = 0

Ẍ2 + c2
m2ω

Ẋ2 + c3
m2ω

(Ẋ2 − Ẋ3) + ks
m2ω2 (X2 − X1) + Fcx1

m2cω2 − e1
c cos(τ + φ1) = 0

Ÿ2 + c2
m2ω

Ẏ2 + c3
m2ω

(Ẏ2 − Ẏ3) + ks
m2ω2 (Y2 − Y1) + Fcy1

m2cω2 − e1
c sin(τ + φ1) + g

cω2 = 0

Ẍ3 + c2
m3ω

Ẋ3 + c3
m3ω

(Ẋ3 − Ẋ2) + ks
m3ω2 (X3 − X4) + Fcx2

m3cω2 − e2
c cos(τ + φ2) = 0

Ÿ3 + c2
m3ω

Ẏ3 + c3
m3ω

(Ẏ3 − Ẏ2) + ks
m3ω2 (Y3 − Y4) + Fcy2

m3cω2 − e2
c sin(τ + φ2) + g

cω2 = 0

Ẍ4 + c1
m4ω

Ẋ4 + ks
m4ω2 (X4 − X3) − sP

m4cω2 fx (X4, Y4, Ẋ4, Ẏ4) = 0

Ÿ4 + c1
m4ω

Ẏ4 + ks
m4ω2 (Y4 − Y3) − sP

m4cω2 fy(X4, Y4, Ẋ4, Ẏ4) + g
cω2 = 0

. (32)

The details of theRFR-bearing systemunder investigation are listed inTable 1. 1# and 2# bearings are consistent
with the same hydrodynamic lubrication bearing parameters and lubricating conditions. It is assumed that 1#
and 2# bearings are simulated by rigid supports, and the approximate natural frequency of a given rotor-bearing
system calculated by formula ω0 = √

k/m is about 441 rad/s. In practice, the first critical speed should be less
than 441 rad/s because of the effects of hydrodynamic bearing dynamic coefficients and rotating speed, etc.,
as demonstrated in Sect. 3.

3 Numerical simulations and discussions

In this section, four-order Runge–Kutta method is adopted to get the solution because it is a high precision
algorithm to solve the nonlinear motion equation system and successfully fulfills the simulation purpose in
the time domain. The rotating speed, mass unbalance and the unbalance phase difference are taken as control
parameters in the performed simulations, respectively. The magnitude of the imposed unbalance changes
through varying the unbalance eccentric displacement e1 [see Eqs. (17) and (18)]. The bifurcation diagram is
used to depict continuous changes of motion patterns of the RFR-bearing system. The 3D waterfall spectrums
are used to show the change of the frequency components and its instability onset speed with the change of
control parameters. The Poincaré map is adopted to exhibit the motion nature. The rotor orbit is used to indicate
the motion behavior. The vibration time waveform and the frequency spectrum are adopted to show the moving
orbits and frequency-domain features at some certain parameters. Note that 1X frequency corresponds to the
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Fig. 5 Bifurcation diagram and Lyapunov index of X1 at ω ∈[100, 5000] rad/s for a relative-perfect balanced RFR

precession speed equal to rotor spinning speed, 0.5X frequency corresponds to the whirl speed approximately
equal to half of rotor spinning speed, and the rest will be the same.

As can be seen from the following, the obtained results systematically reveal the effects of imposed
unbalance on the investigated dynamic behaviors of a given RFR system considering nonlinear contact. In the
performed simulations, with varying unbalance magnitude, phase difference and rotational speed, interesting
and distinct phenomena, which have not been reported previously, will be displayed.

3.1 Bifurcation and nonlinear response analysis

Under the almost perfect-balanced condition, in which the mass unbalance parameter is set to e1 = 0.002
mm, e2 = 0 mm and φ = 0◦, a comparison of bifurcation diagram and Lyapunov stability map of 1# bearing
horizontal dimensionless displacement(X1) at speed up and speed down simulation, ω ∈ [100, 5000] rad/s, is
depicted in Fig. 5. For the bifurcation diagram from speed down simulation, it can be seen from Fig. 5b that
the motion is synchronous vibration with period-one at speed below 1018 rad/s and only one isolated point
is correspondingly shown in the bifurcation diagram for each rotational speed (see Fig. 5b). Meanwhile, the
corresponding Lyapunov index λ is less than zero, which confirms that the motion is Lyapunov stable. Figure 6
shows the vibration waveform, rotor orbit, frequency spectrum and Poincaré map at a typical speed of 518
rad/s. Only one point exists in Poincaré map, one peak value of 1X frequency, which equals to rotational speed,
exists in the frequency spectrum of Fig. 6, and rotor orbit is elliptic. All those also show the rotor performs
period-one motion at ω < 1018 rad/s. When the spinning speed is greater than 1018 rad/s, the rotor system
motion turns into quasi-periodic pattern until to top speed and the Lyapunov index λ closes to 0. For the results
from speed up simulation, the corresponding bifurcation diagram and Lyapunov stability map are shown in
Fig. 5a, c, and in comparison with speed down case, it is apparent that there are great differences for two cases.
In the case at speed up, the rotor motion is period-one pattern at speed interval of 1018 rad/s < ω < 4508
rad/s, while the rotor motion keeps quasi-periodic motion pattern in the case at speed down. In other words,
a bi-stable state region exists in the bifurcation diagram from 1018 to 4508 rad/s. In the meantime, when the
rotation speed gets into or out of this region when speed up or speed down, the jump phenomenon will occur.
The reason for this is that different initial values may lead to different steady solutions in numerical simulation.

Figure 7 shows the vibration responses of theRFR at 1528 rad/s through speed up or speed down simulation.
It can be seen that the nonlinear vibration characteristics at the same speed point through speed up and speed
down are clearly different. The rotor with elliptical orbit behaves as quasi-periodic motion pattern which can be



926 L. Wang et al.

Fig. 6 Vibration waveform, rotor orbit, frequency spectrum, Poincaré map at ω = 518 rad/s

Fig. 7 Vibration waveform, rotor orbit, frequency spectrum, Poincaré map at ω = 1528 rad/s through speed up/down simulation

verified by a closed loop in Poincaré map at 1528 rad/s when speed down, while performs period-one motion
pattern verified by the corresponding Poincaré map with one isolated point when speed up. Obviously, the
vibration amplitude at speed down is much greater than that at speed up. What’s more, the vibration frequency
spectrum is also different, the major difference is that the whip frequency fn1 of 0.42X with large amplitude is
clearly visible on the spectrum, and the 2fn1 of 0.84X frequency can also be observed when speed down, but
only rotational speed frequency exists in the spectrum when speed up.

At 4729 rad/s when speed down or speed up, the system motion with elliptical orbit is always quasi-
periodic pattern, and only one whip frequency fn1 of 0.14X with large peak appears in the frequency spectrum.
The system quasi-periodic motion can also be verified by a closed loop in Poincaré map. The time-domain
waveform will have little phase difference due to the different initial value in the numerical simulation, as
shown in Fig. 8. Therefore, based on the above analysis, by analyzing and comparing bifurcation diagram and
Lyapunov index λ between speed up and speed down in Fig. 5, and vibration response characteristics at 518
rad/s in Fig. 6, at 1528 rad/s in Fig 7, and at 4729 rad/s in Fig. 8, the investigated FRR response may show
fold bifurcation [29] at speed of 1018 rad/s and subcritical Hopf bifurcation [29–31] at speed of 4508 rad/s. To
further understand and confirm the fold bifurcation and subcritical Hopf bifurcation phenomena, the analyses
and numerical simulations under no imbalance are conducted; subsequently, the discussions are as follows.

At first, two types of Hopf bifurcation, i.e., supercritical Hopf bifurcation and subcritical Hopf bifurcation,
and fold bifurcation [29] are introduced by using the simple 2D system cases through the phase plane diagram,
as shown in Figs. 9, 10 and 11. For a 2D system, ṙ = μr − r3, θ̇ = ω + br2 there is one stable focus
in Fig. 9a when μ < 0, and there are one unstable fixed point and one stable limit cycle when μ > 0, so
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Fig. 8 Vibration waveform, rotor orbit, frequency spectrum, Poincaré map at ω = 4729 rad/s

the system occurs supercritical Hopf bifurcation. (According to the flow in the phase space, a supercritical
Hopf bifurcation occurs when a stable focus becomes an unstable focus surrounded by an approximate small
elliptical limit cycle.) For another 2D system, when μc < μ < 0, there are two attractors: One is the stable
limit cycle and the other is the stable fixed point; interestingly, there is an unstable cycle between them, when
μ = 0, subcritical Hopf bifurcation occurs, where the unstable cycle shrinks to zero amplitude and engulfs
the origin and makes the origin unstable. When μ > 0, the limit cycle with large amplitude becomes attractor.
The third bifurcation type is so-called fold bifurcation. As shown in Fig. 11, it can be found that the system
experiences a fold bifurcation when μ = μc = −1/4. (At the bifurcation point, two limit cycles are combined
and disappeared. Such bifurcation of fixed point is called folding bifurcation in Ref. [29].) It should be noted
that the origin does not change at the bifurcation, and it is stable from beginning to end. Figures 12 and 13
show the time-domain waveform and shaft center orbit at some speed points, respectively. When the rotor
rotation speed ω < 1018 rad/s, such as 508 rad/s, the solution is asymptotic stability and an equilibrium point
exists in the shaft orbit from Fig. 13a, i.e., all trajectories at different initial values spiral into an equilibrium
point. However, as shown in Fig. 12b, when 1018 rad/s≤ ω < 4508 rad/s, such as 1528 rad/s, there are two
stable states: One is stable limit cycle, and the other is stable equilibrium point, i.e., bi-stable state. As depicted
in Fig. 13c, different initial conditions at the start of simulation may lead to different steady solutions at that
speed region, when the initial value is such as A1, A2, A3, A4 or A5, the system orbit will finally enter into a
stable limit cycle; however, when the initial value is such as B1, B2 or B3, the system orbit will finally enter
into a stable equilibrium point. There might be a semi-stable ring around 1018 rad/s, but it is very difficult to be
found due to the high-dimension system, andwith the increasing rotation speed, it splits into a stable limit cycle
and an unstable cycle. Note that the equilibrium point state always exists. Based on the determining criteria
mentioned above, the rotor system occurs fold bifurcation at 1018 rad/s, as depicted in Figs. 5, 6, 7, 12a, b and
13a, c. With the increasing rotation speed, the other type of bifurcation will occur. When the rotational speed
ω ≥ 4508 rad/s, there is one stable limit cycle existed in the shaft center orbit for different initial conditions at
the start simulation, and the equilibrium point is unstable, so the subcritical Hopf bifurcation occurs at speed
of 4508 rad/s, as indicated in Figs. 5, 7, 8, 12b, c, d and 13b, c. Two typical bifurcations are confirmed
through the numerical method.

In order to further investigate the characteristics of nonlinear dynamic for a given RFR-bearing system,
under the almost perfect-balanced condition, a comparison of 3D waterfall spectrum plot when speed up and
speed down is presented in Fig. 14. Figure 15 depicts the root-mean-square (RMS) level of rotor amplitude,
single peak value(SPV) of rotor amplitude and maximum value (max) of dimensionless displacement X1
when speed up and speed down, respectively. Figure 16 depicts the rotor orbits for speed down simulation at
different speeds, and Fig. 17 represents the shaft orbits mode at a constant speed of 2000 rad/s for speed down
simulation. The numerical results exhibit the following dynamic phenomena.

(a) When the rotational speed is small for speed down or speed up simulation, only synchronous lateral
vibrations with tiny amplitude are observed, which is confirmed in Fig. 14. These forced vibrations are
caused by the smallest mass unbalance force of an almost perfectly balanced rotor. At rotational speed



928 L. Wang et al.

(a) μ < 0 (b) μ > 0

Focus

Unstable fixed point

Limit cycle

Fig. 9 Supercritical Hopf bifurcation (ṙ = μr + r3, θ̇ = ω + br2)

(a) μ < 0                       (b) μ > 0 

Focus

Limit cycle

Unstable fixed point

Limit cycle

Unstable cycle

Fig. 10 Subcritical Hopf bifurcation (ṙ = μr + r3-r5, θ̇ = ω + br2)

(a) μ < μc (b) μ = μc (c) 0 > μ > μc

Focus

Focus

Unstable fixed point

Limit cycle
Limit cycle

Unstable cycle

Fig. 11 Fold bifurcation of 2D system (ṙ = μr + r3-r5, θ̇ = ω + br2)

Fig. 12 Time-domain waveform under no imbalance condition
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(c) ω = 1018 rad/s 

(a) ω = 508 rad/s (b) ω = 4729 rad/s 
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Limit cycle
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Fig. 13 Shaft orbit under no imbalance condition at different initial values at the start of simulation

(a) speed up from 100 rad/s to 5000 rad/s (b) speed down from 5000 rad/s to 100 rad/s 

fn1

2fn1

fr

fn1

2fn1

fr

Fig. 14 Waterfall plot at X1 for a relative-perfect balanced RFR

ω < 1018 rad/s, these vibrations are stable, that is, shortly after an impulse disturbance of the rotor causes
a transient process; the same stable vibration mode is rebuilt.

(b) Interestingly, at the speed region from 1018 to 4508 rad/s, there are great differences between speed up and
speed down simulation. For speed up simulation, only 1X frequency exists in the 3D spectrum. However,
for the speed down simulation, there are three frequency components, such as at ω = 1018 rad/s, they are
rotational speed frequency 1X(fr), subharmonic frequency fn1 with 0.42X and subharmonic frequency 2fn1
with 0.84X. fn1 belongs to oil whirl, in which the frequency is close to, and usually smaller than, half of
the rotation speed. Note that nonsynchronous frequency fn1 mainly results from oil-film instability and the
whirl speed of 2fn1 approximately equals to double frequency of fn1. Most notably, the dominant frequency
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(a) speed up simulation from 100 rad/s to 5000 rad/s

(b) speed down simulation from 100 rad/s to 5000 rad/s

Jump Jump Jump

Jump Jump

Jump

Fig. 15 Dimensionless displacement (X1) in horizontal direction at ω ∈[100, 5000] rad/s

component jumps from 1X frequency to fn1 with largest amplitude and the 1X frequency bifurcates to 1X
and 2fn1, which causes sudden instability of rotor motion. The fn1 frequency dominates the vibration of
RFR-bearing system. In summary, speed from 1018 to 4508 rad/s is the bi-stable state region.

(c) For speed down simulation, at the higher speed which is greater than 1018 rad/s, the oil whirl mode is
quickly replaced by oil whipwith a constant frequency about 110Hz,which is a lateral forward processional
subharmonic vibration of the rotor with a locking frequency equaling to double of first critical speed.
Independent of the increasing rotation speed, the oil whip frequency remains close to double first natural
frequency of rotor. However, for speed up simulation, the system loses its stability when the speed is greater
than 4508 rad/s, which is much greater than that of 1018 rad/s, compared to speed down situation.

(d) The different nonlinear jumping phenomena with large vibration offset jumping directly from the lower
value to the higher value can also be obtained for speed up and speed down simulation in Fig. 15. The
jump speed is 1018 rad/s for speed down and 4508 rad/s for speed up. Figure 16 shows that the rotor
performs limit cycle oscillation [21] due to the large amplitude of predominated 0.42X frequency at ω ≥
1018 rad/s when speed down. At 2000 rad/s when speed down, Fig. 17 demonstrates that predominated
fn1 is a bending forward mode with in-phase of Nodes 1–4.

Both oil whirl and oil whip are phenomena of dynamic instability induced by the interaction between the rotor
and the bearing, and they both produce severe rotor vibrations. It may be dangerous that the investigated rotor
runs at ω ≥ 1018 rad/s due to the existence of bi-stable state at ω ∈[1018, 4508] rad/s, the occurrence of fold
bifurcation phenomena at 1018 rad/s and subcritical Hopf bifurcation phenomena at 4508 rad/s and oil whip.
The potential danger should be avoided in the dynamic design for a real rotor. High amplitude shaft vibrations
that can sustain themselves over a wide range of rotational speed may not only perturb the normal running,
but also cause serious unexpected damage to the whole machine.
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Limit cycle oscillation

Fig. 16 Orbits of 1# bearing for speed down simulation

N1
N2

N3
N4

Fig. 17 Vibration mode at 2000 rad/s for speed down simulation

3.2 Effects of induced unbalance magnitude

The magnitude of the imposed unbalance(me) changes through varying the unbalance eccentric displacement
e1 in 1# disk, while the unbalance eccentric displacement e2 in 2# disk was set to zero.

3.2.1 Effects of the unbalance magnitude at a constant speed

Figure 18 shows the bifurcation diagram and the vibration response of the RFR-bearing system with e1 as
a control parameter in the range of e1 ∈[0.01,0.7] mm at e2 = 0 mm, φ = 0◦ and ω = 2000 rad/s. It
shows that system keeps period-one motion state when mass unbalance eccentricity e1 is below 0.036 mm,
and the response value versus unbalance can be regarded as approximately linear increase at e1 ∈[0.01,0.036]
mm. The system response remains quasi-periodic motion in the range of e1 ∈[0.036,0.1036] mm. Figure 19
shows the vibration waveform, rotor orbit, frequency spectrum, Poincaré map at e1 = 0.1036 mm, it is
clearly shown that the system occurs quasi-periodic motion verified by a closed cycle in Poincaré map and
some disperse frequency components without a common divisor in frequency spectrum. With the increase
in unbalance, the system behaves as period-three motion at eccentricity range from 0.1051 mm to 0.114
mm. Figure 20 also shows the period-three motion pattern with three isolated points shown in Poincaré map.
Again, the rod fastening rotor performs quasi-periodic motion at e1 ∈[0.1155,0.1868] mm. It is interesting
that the bifurcation diagram once again exists period-three window at e1 ∈[0.1881,0.1933] mm. And then,
the rotor response becomes quasi-periodic motion at e1 ∈[0.195,0.2354] mm. After a short periodic-three
motion, the system enters synchronous periodic-one motion. Note that the dimensionless displacement X1
remains almost constant value over a wide range of unbalance eccentricity with e1, as shown in Fig. 18b.
The above-mentioned bifurcation sequences, which are period-one, quasi-period, period-three, quasi-period,
period-three, quasi-period and period-one motion, can also be demonstrated in Poincaré map for different
unbalance eccentricities, as shown in Fig. 21.

In order to further understand the rotor vibration state, the waterfall plots corresponding to the bifurcation
diagram of dimensionless amplitude X1 are depicted in Fig. 22. The RFR system occurs oil whip instability
with constant whip frequency about 110 Hz at unbalance level of eccentricity range from 0.036 to 0.2354
mm. The frequency components of oil whip region include frequency fn1, fr, and combined frequencies of
both, such as 2fn1andfr + fn1. The elaborate spectrum waterfall plot in the range of e1 ∈[0.01, 0.24] rad/s
is displayed in Fig. 22b, which shows the process from synchronous vibration, through oil whip, to the pure
unbalance forced vibration. In short, the motion pattern of the RFR-bearing system is diverse for different
levels of induced unbalance and may become instability with large amplitude for some specific unbalance
region at a certain speed. Therefore, the unbalance level should be strictly controlled and detected under the
working condition of a constant rotation speed.
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Fig. 18 Bifurcation diagram and rotor response with unbalance eccentricity e1 from 0.01 mm to 0.7 mm at 2000 rad/s

Fig. 19 Vibration waveform, rotor orbit, frequency spectrum, Poincaré map at e1 = 0.1036mm and ω = 2000 rad/s

Fig. 20 Vibration waveform, rotor orbit, frequency spectrum, Poincaré map at e1 = 0.1071 and ω = 2000 rad/s
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Fig. 21 Poincaré map at different unbalance eccentricities of 1# disk
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(a) Waterfall plot in the range of e1 [0.01, 0.7] mm 

(b) Elaborate waterfall plot in the range of e1 [0.01, 0.24] mm 

Fig. 22 Waterfall plots of the rotor-bearing system in x direction at 2000 rad/s
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Table 2 Six different magnitudes of induced unbalance

Level U1 U2 U3 U4 U5 U6

Unbalance me/(kgmm) 0.02m2 0.04m2 0.08m2 0.16m2 0.32m2 0.64m2
Corresponding e1/(mm) 0.02 0.04 0.08 0.16 0.32 0.64

(a) U2 (b) U3 

1st instability

2nd instability

1st instability

2nd instability

Fig. 23 Bifurcation diagrams of dimensionless displacement X1 at two unbalance magnitudes

3.2.2 Effects of the induced unbalance magnitude at different speeds

Based upon the above analyses, it is clearly shown that mass unbalance magnitude replaced by eccentricity e1
is an important parameter affecting the nonlinear behavior of the RFR-bearing system when the rotor remains
at a constant speed of 2000 rad/s. However, the majority of rod fastening rotor applications usually operate at
high-speed and wide speed range conditions, such as naval ship gas turbine rotor. In this section, the magnitude
of the imposed unbalance me (see Table 2) changes from 0.02m2 to 0.7m2 kgmm with an increasing ratio of
2 for 1# disk, and the value of unbalance magnitude was decided by the empirical formula of many statistical
data from the results of high-speed dynamic balancing. The nonlinear vibration responses of the rotor-bearing
system will be analyzed for six different unbalance amplitudes at different rotating speeds from 100 to 3000
rad/s. Note that U1 to U6 represent the induced unbalance magnitudes on the N2 of the rod fastening rotor
system shown in Fig. 1.

Figure 23 depicts the bifurcation diagrams at speeds range from 100 to 3000 rad/s when the variable value
of U2 and U3 is imposed, respectively. By comparing the bifurcation diagrams of U2 and U3, it shows that
the bifurcating trend is basically similar except the onset speed of two kinds of instability. For the unbalance
magnitude of U2, the systemmotion is periodic-one when rotor speed is below 543.4 rad/s.With the increase in
rotational speed, the rotor system occurs double period bifurcation phenomenon at 543.4 rad/s, which is caused
by the half-speed whirl instability of oil film. The speed region of period-two motion pattern corresponding to
the first instability is from 543.4 to 659.6 rad/s, only two isolated points are shown in Poincaré map, and the
half-frequency amplitude dominates the motion of rotor system at 552 rad/s as shown in Fig. 24. And then,
the system motion is from period-one at 659.6 rad/s < ω < 1517 rad/s to quasi-period at ω ≥ 1517 rad/s.
What’s more, the system response occurs the second instability at speed of 1517 rad/s, which is caused by the
oil whirl/whip instability with large magnitude.

Two instability speed regions of [543.4,659.6] rad/s and [1517,3000] rad/s can be determined by the above
analysis. Nonlinear factors in the rod fastening rotor mainly come from contact and bearing, especially for
the high-nonlinear oil-film bearing, which makes rich high-nonlinear dynamic characteristics. Due to the
interaction of nonlinear contact characteristics and nonlinear oil-film force and unbalance, the rotor may reach
the second instability of oil whip at higher speed. (The second instability phenomena are also reported in Refs.
[11–21].) The first instability speed range and vibration amplitude are significantly less than the second one,
so this paper focuses on the second onset speed of instability.

Figure 25 shows the waterfall plots of the dimensionless displacement(X1) for six kinds of unbalance
magnitude at speeds range from 100 to 3000 rad/s. Root-mean-square level and Max value of rotor response
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Fig. 24 Vibration waveform, rotor orbit, frequency spectrum, Poincaré map for induced unbalance of U2 at ω = 552 rad/s

corresponding to thewaterfall spectrum are presented in Fig. 26. Themain results of simulation are summarized
as follows.

(a) By analyzing the results from Figs. 25 and 26, the first two critical speeds are about 318 rad/s and 1256
rad/s, respectively.When rotor speed is below first critical speed, the vibration amplitude increases faster as
the increase in unbalance, and rod fastening rotor system performs pure unbalance forced vibration around
the equilibrium position, which is defined as a rigid rotor.

(b) The first instability with small speed range only exists in the induced unbalance of U2, U3 and U4, in which
the first unstable region is [543.4,659.6] rad/s, [521.6,528.8] rad/s, [572.4,1030] rad/s and [986.7,1147]
rad/s, respectively. Complicated frequency components of second whirl/whip region are nearly consistent
for six different unbalance magnitudes, which include whirl frequencies of fn1 and fn2, rotating frequency
of fr and combined frequencies of both, such as fr-2fn1 and 2fn1, 2fr. Moreover, the first mode oil whip
frequency (about 110 Hz) remains close to the double of first critical speed, as mentioned in Sect. 3.2.1.

(c) When rotor speed exceeds second instability threshold, the amplitude of fn1 frequency vibration increases
rapidly and dominates the system motion with the increasing rotation speed, which gives rise to the critical
limit cycle oscillation. It is very unstable and dangerous for RFR-bearing system under operating speed
of second instability region due to the complex motion with large amplitude of low-frequency fn1, which
may lead to rapid fatigue failure or shaft fracture accident. For the six different magnitudes of induced
unbalance, the major difference is that the onset speed of second instability is not identical, which is 1408
rad/s, 1517 rad/s, 1692 rad/s, 1881 rad/s, 2106 rad/s and 2382 rad/s, respectively. With the increase in
the unbalance magnitude, the instability threshold is delayed from 1408 rad/s at U1 to 2382 rad/s at U6.
This is because the increasing amplitude of synchronous vibration restrains oil-film instability. Hence, the
increase in the unbalance magnitude can improve the stability of the rotor-bearing system to some extent.

(d) When higher unbalance values are introduced, e.g., U5 and U6 (see Fig. 25e, f), it is surprising to see that
the dominant vibration component changes from nonsynchronous vibration component of frequency fn1
to synchronous vibration component of rotating frequency fr by comparing with U1, U2, U3 and U4, that
is, the nonsynchronous vibration amplitudes are inhibited by bigger unbalance force. As shown in Fig. 26,
the rod fastening rotor operates stable without big wave for the state of U5 and U6 at speed above the first
critical speed, while the vibration RMS of U5 is relatively lower than those of U6 throughout the entirely
considered rotor speed range. Therefore, in order to restrain the amplitude of nonsynchronous vibration
components of fn1 and retard the occurrence of second instability, the unbalance magnitude of rotor system
is suggested to be kept at unbalance range from U5 to U6.

3.3 Effects of induced unbalance phase difference

Variation of the unbalance phase difference, φ, is considered in the performed simulations, while both mass
unbalance eccentricities of 1# disk and 2# disk were set to 0.02 mm
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Fig. 25 Waterfall plots of dimensionless displacement X1 under different unbalance magnitudes

Figure 27 shows the bifurcation diagrams withω as control parameter from 100 to 3000 rad/s at φ = 0◦ and
φ = 180◦, respectively. The detailed waterfall spectrum plots of dimensionless displacement X1 at φ = 0◦ are
presented in Fig. 28. Under the condition of 0◦ phase difference, obviously, the motion is period-one pattern
at speeds range from 100 to 543.4 rad/s, period-two pattern caused by half-frequency whirl instability (first
instability) at speed above 543.6 rad/s but below 666.9 rad/s, period-one pattern at ω ∈[666.9,761.4] rad/s,
quasi-periodic pattern caused by the fs1 whirl frequency with 0.4X and fs2 whirl frequency with 0.6X at speed
above 761.4 but below 863.2 rad/s, period-one pattern at speeds range from 863.2 to 1030 rad/s, period-two
pattern caused by 0.5X sub-synchronous vibration component at 1030 rad/s< ω < 1067 rad/s, period-three
pattern mainly caused by the frequencies of fn1 at ω ∈[1067,1125] rad/s and quasi-period pattern caused by
the frequencies of fn1 and fr-2fn1 at speed above 1125 rad/s up to top speed. Most notably, as mentioned in
Sect. 3.2.2, the system motion occurs the second instability when rotor speed is above 1067 rad/s at 0◦ phase
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(a) MAX value of dimensionless displacement X1

(b)  RMS level of vibration amplitude 

Fig. 26 RMS level and MAX value of rotor response for different magnitudes of induced unbalance

(c) ϕ=0° (d) ϕ=180°

2nd instability

1st instability

2nd instability

Fig. 27 Bifurcation diagrams of dimensionless displacement X1 from 100 to 3000 rad/s

difference. For the unbalance phase difference of 180◦ , interestingly, there is no first instability in bifurcation
diagram and the onset speed of second instability is shifted to higher speed location of 1525 rad/s than those
in 0◦ phase difference.

As shown in Fig. 29, it is clearly demonstrated that the system is quasi-periodicmotionwith a complex shaft
orbit due to the appearance of a closed cycle in Poincaré map and some discrete frequency component without
a common divisor in frequency spectrum for 0◦ phase difference at speed of 785 rad/s. The above-mentioned
bifurcation sequences, which are period-one, period-two, period-one, quasi-period, period-one, period-two,
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 Detailed waterfall plot from 100 rad/s to 1000 rad/s (b) (a) Detailed waterfall plot from 1000 rad/s to 2000 rad/s 
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Fig. 28 Waterfall plots of dimensionless displacement X1 at φ = 0◦

Fig. 29 Vibration waveform, rotor orbit, frequency spectrum, Poincaré map at φ = 0◦ and ω = 785 rad/s

(a) ω=537 rad/s (b) ω=566 rad/s (c) ω=756 rad/s (d) ω=829 rad/s

(e) ω=1018 rad/s (f) ω=1041 rad/s (g) ω=1076 rad/s (h) ω=1135 rad/s

Fig. 30 Poincaré maps of different speeds (φ = 0◦ )
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Fig. 31 Waterfall plots at different unbalance phase differences from rotor speed of 100 rad/s to 3000 rad/s

period-three and quasi-period motions, can also be verified in Poincaré map of different speeds, as shown in
Fig. 30.

In order to deeply know the dynamic characteristics effects about other unbalance phase difference, the
waterfall spectrum and vibration RMS level are presented in Figs. 31 and 32, respectively. The instability
speeds are summarized and depicted in Fig. 33. The conclusions of the obtained results are generally drawn
as follows.

(a) Interestingly, the first instability with small speed range only exists at φ = 0◦, 30◦, 60◦, 90◦, which is
caused by the nonsynchronouswhirl frequencies, such as 0.4X, 0.5X and 0.6X.Half-frequency components
can lead to period-two motion, while 0.4X and 0.6X frequencies can lead to period-three motion, which
causes first instability of rotor. Complicated frequency components of second instability region are nearly
consistent for different unbalance phase differences, which include low frequency of fn1, rotating frequency
of fr and combined frequencies of both, such as fr-2fn1and2fn1, fr + fn1. The first mode oil whip frequency
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(a) MAX value of dimensionless displacement X1

(b) RMS level of vibraton amplitude

1st instability

2nd instability

1st instability

2nd instability

Fig. 32 Max value and RMS level of rotor response for different unbalance phase differences

Fig. 33 Instability speed at different differences of φ
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(about 110 Hz) remains close to the double of first critical speed, which dominates the motion of rotor
system, asmentioned before. At second instability region, namely oil whip, the dimensionless displacement
X1 in horizontal direction consistently ascending to an extremely high value (see Fig. 31 or 32) with the
rotor speed leads to an exceedingly dangerous state for the safe operation of the RFR applications.

(b) The second instability speed is low and does not change significantly with the increase in phase difference
at φ ≤ 40◦. However, the second instability speed rises dramatically when phase difference is from 40◦
to 50◦ , which increases by about 247 rad/s. Then, the instability speed can be regarded as approximately
linear increase at 50◦ ≤ φ < 120◦ and remains constant value at 120◦ ≤ φ ≤ 180◦. Most notably, the
speed difference between maximum instability of 1525 rad/s and minimum instability of 1067 rad/s is
about 458 rad/s, which increases by 43%. So, a certain-enough range of unbalance phase difference can
improve the instability of the RFR-bearing system to some extent, which is from 120◦ to 180◦ .

(c) By comparing theRMS level for different phase differences, it is concluded that reasonable unbalance phase
difference can also reduce the vibration amplitude, such as first-order amplitude reduced by 95%, restrain
the appearance of first instability and decay the occurrence of second instability. Under the condition of
allowably residual unbalance in two disks, the vibration RMS level for 180◦ phase difference is relatively
small compared to other phase differences in the considered speed range. The unbalance phase difference
of 180◦ is relative-optimum phase difference for the allowable magnitude of residual unbalance.

Under the condition of allowably residual unbalance, the results show that reasonable-enough unbalance
phase difference not only can increase the instability, but also reduce the amplitude; moreover, the RFR can
operate relatively well with small vibration amplitude and higher instability threshold when the unbalance
between two disks is controlled at 180◦ phase difference through reassembly or balancing process. What’s
more, the operating speed of the investigated RFR should be designed below the threshold of second instability,
even second critical speed.

4 Conclusions

The model or nonlinear motion governing equation considering unbalance excitation, nonlinear oil-film force
and nonlinear contact property between disks is built to systematically investigate the nonlinear effects pro-
duced by the unavoidably residual unbalance on the dynamic characteristics for an RFR-bearing system. The
rotating speed, mass unbalance magnitude and unbalance phase difference are taken as control parameters
in the performed simulations. All of them need to be carefully considered and controlled during the design,
manufacture, assembly, operation and maintenance process of RFR. Unbalance phase difference is the most
important controlled parameter for such RFR-bearing system through high-speed balancing. Special consid-
erations should be required for the RFR-bearing system due to the low-frequency vibration component caused
by nonlinear oil-film force and nonlinear contact at high speed. Large amplitude of low-frequency vibration
of fn1 may lead to excessive vibration in RFR, even rapid failure or shaft fracture.

(1) Under the almost perfect-balanced condition, a bi-stable state region exists at speed range from 1018 to
4508 rad/s. In the meantime, when the rotation speed gets into or out of this region when speed up or
speed down, the jump phenomenon will occur. The investigated FRR response may show fold bifurcation
at speed of 1018 rad/s and subcritical Hopf bifurcation at speed of 4508 rad/s. Two typical bifurcations are
confirmed through the numerical method. The different nonlinear jumping phenomena with large vibration
offset jumping directly from the lower value to the higher value can also be obtained for speed up and
speed down simulation. The jump speed is 1018 rad/s for speed down and 4508 rad/s for speed up. The
dominant frequency component transforms from 1X frequency to fn1 with largest amplitude, and the 1X
frequency bifurcates to 1X and 2fn1, which causes sudden instability of rotormotion. Accordingly, it may be
dangerous that the investigated RFR runs at ω ≥ 1018 rad/s due to the occurrence of nonlinear bifurcation
phenomena and oil whip.

(2) The unbalance magnitude is a key parameter for the investigated RFR-bearing system. The system will
exhibit distinct motion types for different regions of unbalance magnitude, such as synchronous period-one
motion, period-two motion, period-three motion and quasi-periodic motion. The increase in the unbalance
magnitude can improve the stability and increase the operating speed of rotor-bearing system to some
extent. In order to restrain the large amplitude of nonsynchronous vibration components of fn1 and retard
the occurrence of instability, the unbalance magnitude of rotor system is suggested to be kept at unbalance
range from U5 to U6.
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(3) Under the conditionof allowably residual unbalance, an enough-reasonable unbalancephase difference,φ ∈
[120◦, 180◦], may not only increase the instability, but also reduce the vibration amplitude. Interestingly,
by further comparing the dynamic characteristics in φ ∈ [120◦, 180◦], the RFR can operate relatively well
with small vibration amplitude and higher instability threshold when the unbalance between two disks is
controlled at 180◦ phase difference through reassembly of disks or balancing process. The onset speed of
instability is increased by 43%, and first-order amplitude of total vibration is reduced by 95%. The proposed
unbalance phase difference is an effective way to achieve more small vibration and stable operation for
the high-speed RFR, which is helpful for vibration control and rotor high-speed balancing without adding
weights or subtracting weights. The proposedmethodmay be further applied to other combined rotor types.
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