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Abstract In this work, we further develop a newly proposed interval algebraic approach for analysis or
design of structures involving uncertain interval-valued parameters. The methodology is based on an algebraic
extension of classical interval arithmetic, namely Kaucher arithmetic, and within it the interval equilibrium
equations can be completely satisfied by the primary unknown variables (displacements). Here this method is
expanded to derived (secondary) variables—forces, strains and stresseswhich are of particular practical interest
in design and strength of materials. Numerical examples are presented to illustrate the proposed methodology
and to compare the algebraic interval approach to that based on classical interval arithmetic.
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1 Introduction

Considering uncertainty is inevitable in a realistic analysis or design of engineering structures. Uncertainty
analysis is conducted by one of three alternative approaches: probability theory, fuzzy sets theory, and analysis
based on convex sets (e.g., interval analysis or ellipsoidal analysis), depending on the nature of the uncertainty
considered. While the first two approaches introduce some measure of belonging to the set of variation, the
third approach does not. A somewhat more general treatment of uncertainty, for generic convex sets, is given in
[2], and [4] considers a connection between the two non-probabilistic treatments. Interval analysis influences
fuzzy sets theory since the computation of fuzzy quantities by α-cuts requires interval computations.

The uncertain model parameters are represented by interval-valued parameters, and interval analysis is
applied when the available data do not allow applying either the probabilistic or fuzzy approach. Interval
analysis is exposed in variousmonographs [1,12,13,26], for example. Intervalmethods are applied for studying
variations of structural responses due to fluctuations in structural parameters and loads for more than twenty
years now. Most of the interval models considered so far are based on classical interval analysis [1,12,13].
Within this setting, a lot of effort is put and a variety of special methods are proposed aiming at eliminating the
interval dependency problem and obtaining sharp bounds for the unknowns. For an overview of some interval
techniques applied to interval finite element models in applied mechanics, see, e.g., [11] and the references
in [25]. For interval applications to mechanical dynamic problems, see, e.g., [31]. However, even the exact
ranges of the unknowns within the models based on classical interval arithmetic may violate some physical
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laws of the deterministic model. Therefore, some recent works [5,24,28,30], for example, emphasize the need
for interval analysis in engineering context.

In [5,19], the focus is on a mathematical model which is more precise than any model based on classical
interval arithmetic. It relates the dependency of interval quantities to the physics of the problem being consid-
ered, e.g., linear equilibrium equations. The new model (called algebraic) represents any vector (in geometric
sense) model parameter (possessing magnitude and direction) by a directed interval (range + direction) and
requires that all kinds of linear equilibrium equations be completely satisfied. Thus, the new interval model is
embedded in an isomorphic algebraic extension of classical interval arithmetic which is known under a vari-
ety of names: Kaucher arithmetic [9], modal arithmetic [26], directed arithmetic [10], generalized (proper and
improper) intervals, reflecting some of its aspects. The generalized interval arithmetic structure possesses group
properties with respect to the operation addition and the operationmultiplication of intervals not involving zero.
This allows the newly proposed interval algebraic model [19,20] to resemble the corresponding deterministic
model, to be applied straightforward to the latter, as well as to yield exact bounds for the unknowns without
any overestimation.

While sharp interval enclosure of the primary variables (as displacements in finite element models of struc-
tures) is achievable within the classical interval setting with more or less computational effort, the enclosures
of secondary (derived) quantities as stresses and strains, considered as functions of the displacements, presents
a big challenge for the classical interval model. Due to the dependency, the derived variables are obtained
with considerable overestimation, whose reduction requires special approaches. In [25], a mixed formulation
of element-by-element (EBE) interval finite element method is proposed, where both primary and derived
quantities of interest are involved as primary variables in an expanded interval parametric linear system. This
approach is further improved in [29]. A methodology which avoids the special EBE assembly of the stiffness
matrix and accounts for the interval dependencies is proposed in [15] under the name improved interval anal-
ysis via extra unitary interval. In [27], the latter approach is combined with interval rational series expansion
for estimates of the bounds of both displacements and stresses in 2D and 3D linear-elastic structures involving
interval Young’s modulus. Another approach for guaranteed interval enclosure of secondary variables in truss
structures with interval parameters, which is based entirely on interval methods, is proposed in [21]. On the
other hand, internal forces, strains and stresses are basic characteristics in strength of materials with numerous
applications in engineering practice. Their sharp estimation is of particular interest and importance for the
design procedures. All these motivated us for the current work.

In this work, we extend the interval algebraic approach by expanding it to strength of material problems,
in particular for bounding the uncertainties in axial forces, strains and stresses of truss elements considered
as functions of the primary obtained variations of the displacements. Our present work continues [22] and
provides a generalmethodology for obtaining exact bounds of axial forces, strains and stresseswithout extensive
computational effort. As in the previous works, here the results obtained by the interval algebraic approach
are compared theoretically and by numerical results to various interval models of truss structures based on
classical interval arithmetic.

The paper has the following structure. Section 2 contains some basic properties of Kaucher interval arith-
metic which are indispensable for the theoretical considerations in this section. Section 2.2 contains a brief
overview of the two interval models of mechanical structures—classical and algebraic, and presents the main
theoretical contribution of the paper—methodology for obtaining element axial forces, strains and stresses
within the algebraic interval model. In Sect. 3, we consider a simple example of a typical strength of materials
problem and compare the two interval models on it. On a small and a larger benchmark examples of truss
structures in Sect. 4, we illustrate the application of the newly proposed methodology. The work ends by some
concluding remarks.

2 Theoretical background

2.1 Algebraic completion of classical interval arithmetic

We assume that the reader is familiar with classical interval arithmetic, [1,12,13], and its properties. Here we
shortly present the arithmetic background of the proposed novel interval model.

The set of classical compact intervals IR = {[a−, a+] | a−, a+ ∈ R, a− ≤ a+}, called also proper
intervals, is extended in [9] by the set IR := {[a−, a+] | a−, a+ ∈ R, a− ≥ a+} of improper intervals
obtaining thus the set KR = IR

⋃
IR = {[a−, a+] | a−, a+ ∈ R} of all ordered couples of real numbers
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called generalized (extended or Kaucher) intervals. For a better understanding we denote the classical intervals
by bold face letters (e.g., a) and the intervals fromKR by brackets (e.g., [a]). For a ∈ IR ⊂ KR, the assignment
[b] = a ∈ KR is a correct one. The inclusion order relation (⊆) between classical intervals is generalized for
[a], [b] ∈ KR. For [a] = [a−, a+] ∈ KR, define a binary variable direction (τ ) by

τ([a]) :=
{+ if a− ≤ a+,

− if a− > a+.

All elements ofKRwith positive direction are called proper intervals, and the elements with negative direction
are called improper intervals. An element-to-element symmetry between proper and improper intervals is
expressed by the “dual” operator. For [a] = [a−, a+] ∈ KR, dual ([a]) := [a+, a−]. For [a], [b] ∈ KR,

dual (dual ([a])) = [a], (1)

dual ([a] ◦ [b]) = dual ([a]) ◦ dual ([b]) , ◦ ∈ {+, −,×, /}. (2)

Define proper projection of a generalized interval [a] onto IR by

pro([a]) :=
{ [a] if τ([a]) = +,

dual ([a]) if τ([a]) = −.

Denote T := {[a] ∈ KR | a−a+ < 0} and Z := {a ∈ IR | a−a+ < 0}. Define the sign functional,
λ := sign : KR \ Z → {+,−} by

λ([a]) :=
{+ if pro([a])− ≥ 0,

− otherwise.

Note that usually the sign functional is denoted by σ . Here we change the notation so that there is no con-
fusion with the notation for the stress. The conventional interval arithmetic and lattice operations, as well as
other interval functions, are isomorphically extended onto the whole set KR, cf. [9]. The generalized interval
arithmetic structure possesses group properties with respect to the operations of addition and multiplication.
For [a] ∈ KR, [b] ∈ KR \ T ,

[a] − dual ([a]) = 0, [b]/dual ([b]) = 1. (3)

The complete set of conditionally distributive relations for multiplication and addition of generalized intervals
can be found in [17]. Here we present only one that is usually used. For [a], [b], [s] = ([a] + [b]) ∈ KR \ T ,
[c] ∈ KR

([a] + [b])[c]λ([s]) = [a] × [c]λ([a]) + [b] × [c]λ([b]), (4)

wherein [a]+ = [a], [a]− = dual ([a]). In what follows, we will often use the subscript notation of the
dual operator. Multiplication of two binary variables μ, ν ∈ {+, −} is defined by μν = ++ = −− = +,
μν = +− = −+ = −. Matrices of binary variables of same dimension are “multiplied” componentwise
using the rules for multiplication of binary variables. The rules for multiplication by binary-valued matrices
are further extended for dualization, cf. [10], [22, Section 2.3]. Some other properties interpretations and
applications of generalized interval arithmetic can be found in [9,10,26], or the references given on the web
site [16].

2.2 Two interval models of truss structures

2.2.1 Classical interval model

We consider statically indeterminate truss structures, where the applied loads (P), some of the structural
parameters (modulus of elasticity Ei , cross-sectional area Ai , or/and length Li ) of the bars (i) are uncertain
and vary within given intervals. The traditional finite element method (FEM) for truss structures relates the
force equilibrium equations to the displacements of the nodes and the stiffness of the bars Ei Ai/Li , leading
to a parametric linear system

K (Ei , Ai , Li )u = f (P), (5)
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where K (Ei , Ai , Li ) is the stiffness matrix depending on the structural parameters for each element, f (P) is
the load vector, and u is the displacement vector.

The classical interval model of an uncertain truss structure with interval-valued parameters considers the
corresponding parametric interval linear system. The smallest interval vector enclosing the so-called united
solution set defined by

� := {u ∈ R
n | (∃Ei ∈ Ei , ∃Ai ∈ Ai , ∃Li ∈ Li , ∃P ∈ P) : K (Ei , Ai , Li )u = f (P)}

is identified as the best solution. The smallest interval vector enclosing � is called interval hull of the solution
set and is defined for bounded sets by

�� := {
⋂

u ∈ IR
n | � ⊆ u}.

The engineering and interval literature is abundant with numerical methods dedicated to finding a sharp (and
possibly guaranteed) interval enclosure of the interval hull of a parametric united solution set to parametric
interval linear system; the latter may be resulted from FEM applied to structures with interval parameters, cf.,
for example, [3,6,8,11,18] and the references given therein. In contrast to the primary variables (displacements
in FEmodels of structures), a sharp enclosure of secondary quantities as stresses and strains within the classical
interval model requires special approaches like those proposed in [21,25,27,29]. We show below that all the
drawbacks of the models based on classical interval arithmetic vanish when considering an interval model
embedded in the generalized interval space {KR, +, ×, ⊆}.

2.2.2 Algebraic interval model

The interval FEM models based on classical interval arithmetic do not conform to the physics of equilibrium
equations because replacing the obtained intervals in the equilibrium equations does not result in true equality,
cf. [5]. A new approach is proposed in [5] and further elaborated in [19,20,22] to interval model of linear
equilibriumequations. Since the newmodel is based on the algebraic completion of classical interval arithmetic,
it is called algebraic interval model.

Assume that there is a deterministicmodel described by some equilibrium equation(s) that involve uncertain
vector (in geometric sense) parameters varying within given proper intervals. Clearly, the unknowns in this
model will be also uncertain and we search for proper intervals that are the sharpest interval enclosures of
these unknowns and that conform to the physics of the problem (statics or dynamic equilibrium). Conformance
to the equilibrium means that the intervals found for the unknowns when replaced in the equation(s) and all
operations are performed results in true equality(ies). Such a solution is called formal (algebraic) solution.

Interval algebraic solutions do not exist in general in classical interval arithmetic, cf. [10]. Generalized
interval arithmetic (KR, +,×, ⊆) is the natural one for finding algebraic solutions to interval equations since it
is obtained from the arithmetic for classical intervals via an algebraic completion.Therefore, the newlyproposed
algebraic interval model embeds the initial problem formulation in the interval space (KR, +, ×, ⊆), finds an
algebraic solution and interprets the obtained generalized intervals back in the initial interval space IR. This
is a three-step procedure summarized below.

1. The representation convention for vector physical quantities (in geometric sense, having magnitude and
direction, e.g., forces, momenta, etc.):
– if a scalar force component Fx (Fy , Fz) has the same direction as the positive x (y, z) coordinate axis,
it is represented by proper interval Fx (Fy , Fz);

– if a scalar force component Fx (Fy , Fz) has opposite direction to the positive x (y, z) coordinate axis,
it is represented by improper interval dual (Fx ) (dual

(
Fy

)
, dual (Fz)).

2. Computing. Find the formal (algebraic) solution for the unknown(s) in (KR, +, ×, ⊆). For small systems,
equivalent algebraic transformations can be applied as in [19,20]. Efficient numericalmethod for large-scale
problems is proposed in [22].

3. Interpretation of the obtained generalized intervals is in the initial space IR according to the physics of
the unknowns, projecting the generalized intervals on IR.

Following the above general methodology, below we further develop it for the problems of strength of
materials.More precisely,wepresent in detail themethodology for obtaining secondary (derived) variables such
as forces, stresses and strains of the conventional displacement FEMfrom the primary variables (displacements)
in the algebraic interval model. For simplicity, the presentation here will be based on the truss model. When a
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structure is modeled by the methodology presented in [7], the equations are identical in the form of those of a
truss. This implies that many techniques, including the present general methodology, and properties applicable
to trusses can migrate to frame analysis.

The standard displacement method of truss analysis leads to a set of linear equations (5). The construction
of this system starts from two sets of equations.

I. The force equilibrium equation at every node i

Pi +
∑

j

Fi j = 0, (6)

where Pi is the external load at node i and Fi j is the reaction force exerted by the bar (i j) at node i . In
order to simplify the notations, overlines of the vector quantities (in geometrical sense) will be omitted.

II. The equations relating magnitudes of the element axial forces to the displacements in the nodes

Fe = Fi j = ke
(
(uxj − uxi )ci j + (uy

j − uy
i )si j

)
= ket



e .ue, (7)

where ke = AeEe/Le is the stiffness of the e-th element, ue = (uxi , u
y
i , u

x
j , u

y
j )


 is the vector of the

displacements in the nodes i, j and te = (−1, 1).Te is a numerical vector, Te =
(
ce se 0 0
0 0 ce se

)

, ce = ci j =
cos(�e), se = si j = sin(�e).

Following the representation convention, the deterministic force equilibrium equations in x, y coordinates
(below, left) are transformed to interval algebraic equations (below, right) in KR

Px
i + ∑

e ceFe = 0
Py
i + ∑

e seFe = 0
�⇒ (Px

i )λ(Px
i ) + ∑

j ce[Fe]λ(ce) = 0
(Py

i )λ(Py
i ) + ∑

j se[Fe]λ(se) = 0 (8)

Since (7) involves summation of differently directed vector parameters (displacements), according to the
representation convention the algebraic interval model of the element axial forces is

[Fe] = (ke)λ([δe])(t
e .(ue)λ(ue)λ(te)), [δe] := t
e .(ue)λ(ue)λ(te). (9)

It was proven in [22] that if the interval equilibrium equations for the displacements are completely satisfied
by u = [u]λ(u), then the interval expression for [Fe] in (9) is distributive. The latter means

(ke)λ([δe])(t
e .(ue)λ(u)λ(te)) = t
e .(keue)λ(u)λ(te).

Replacing the expression at the right-hand side above into interval equilibrium equations (8), we obtain the
interval algebraic equations for the displacements considered in [22].

Since ke > 0, we have λ([Fe]) = λ([δe]) and
Fe = pro([Fe]) = (

(ke)λ([δe][δe]
)
λ([δe]) = ke[δe]λ([δe]).

Thus, due to the equivalence in the above derivation, we proved the following theorem.

Theorem 1 If the formal (algebraic) solution [u] to interval algebraic equilibrium equations (8) satisfies
[u]λ(u) ∈ IR, then Fe = [Fe]λ(Fe) ∈ IR and [Fe] = (Fe)λ(Fe) completely satisfies (8).

It should be noted that, in general, pro([δe]) 
= [δe]λ([δe]). With the interval element deformation [δe],
defined in (9), the corresponding interval element stress can be obtained in two equivalent ways:

[σe] =
(
Ee

Le

)

λ(δe)

[δe] (10)

[σe] = [Fe]
(Ae)−λ(δe)

=

(
EeAe
Le

)

λ(δe)

(Ae)−λ(δe)

[δe] (3)=
(
Ee

Le

)

λ(δe)

[δe]. (11)
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Fig. 1 Clamped bar with a gap (a), and its free body diagram (b)

Since intervals Ee,Ae,Le do not contain zero, relation (11) applies the inverse multiplication property (3).
Thus, instead of using the left-hand side of (11), we can use (10) for obtaining [σe]. As for the deformations
[δe], in general, we have pro([σe]) 
= [σe]λ([σe]). Therefore,

pro([σe]) = Ee

Le
pro ([δe]) .

Similarly, we find intervals for the element normal strain by

pro([εe]) = pro([δe])
Le

.

From implementation point of view, neither obtaining the interval displacements u = [u]λ(u) discussed in
[22], nor obtaining pro([δe]) requires an environment supporting Kaucher interval arithmetic. Computations
can be done separately for the endpoints of [δ−

e , δ+
e ] applying the following proposition.

Theorem 2 Let ue ∈ IR be obtained from the formal (algebraic) solution to interval algebraic equilibrium
equations for the truss. With [δ−

e , δ+
e ] := t
e .(ue)λ(ue)λ(te), we have

δ−
e = t
e .ǔe − t
e .(λ(ue)ûe), δ+

e = t
e .ǔe + t
e .(λ(ue)ûe),

where ǔe, ûe are the corresponding vectors of midpoints and radiuses of ue. Multiplication of a binary-valued
vector λ(ue) and a real-valued vector of the same dimension is a Hadamard product.

Proof The proof follows from [22, Eqn. (9)]. ��

3 Clamped bar with a gap

Consider a clamped bar subjected to a concentrated loading as presented in Fig. 1. The bar has a cross-sectional
area A, modulus of elasticity E and length L . The loading is P , and the bar has a gap equal to d at its tip.
The goal is to find the distribution of stresses at the cross-section x , which is at a distance L1 from the upper
clamping, assuming that all the parameters of the problem have some kind of uncertainty and their values vary
within given intervals, P ∈ P, A ∈ A, E ∈ E, L ∈ L, L1 ∈ L1, d ∈ d. In order to reduce the number of
interval parameters and thus simplifying the computations, we assume that L = 2L1. We assume also that the
interval value (the range) of the elongation of the tip, δA = P

kA
, kA = E A

L1
, satisfies the relation

d ≤ PL1

AE
, (12)

so that the interval problem is statically indeterminate, with d denoting the gap due to manufacturing error, for
example.
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In deterministic settings, we have one equilibrium equation with two unknowns, once the gap is closed

RA − P + RB = 0 (13)

and the geometric compatibility equation

PL1

AE
− RBL

AE
= d. (14)

From Eqs. (13), (14), we determine RA and RB . Then, the stress in the upper part of the bar is σ (I ) = RA/A
and the stress in the lower part of the bar is σ (I I ) = −RB/A.

The classical intervalmodel considers the system (13), (14),where L = 2L1 and interval-valued parameters
P ∈ P, A ∈ A, E ∈ E, L1 ∈ L1, d ∈ d. Without loss of generality, we may consider 1

kA
= L1

AE as one
interval parameter. The sharpest interval enclosure for the unknowns RA, RB is the interval hull �� of the
corresponding parametric solution set. As mentioned in Sect. 2.2.1, there are various approaches to find ��.
Most of them have high computational complexity and are not appropriate for solving large-scale problems.
Nevertheless, when comparing the results of classical interval model, the best interval solution enclosure vector
�� will be used.

The algebraic intervalmodel requires that all equilibriumequations involved in the deterministic description
of the problembe completely satisfied. The same requirement is for those compatibility equationswhich involve
summation of vector quantities. For example, since the displacement of section B due to the force P and the
displacement of the entire bar due to force RB are vector quantities, we consider the compatibility equation
(14) as an equilibrium equation. According to the algebraic model, we consider two interval equations

RA − dual (P) + RB = 0, (15)
PL1

AE
− dual

(
RBL
AE

)

= d (16)

and look for their algebraic solution in Kaucher interval arithmetic. That is, we search for proper intervals
RA,RB which completely satisfy (15) and (16). For this small example, we derive the analytic algebraic
solution by algebraic transformations. An efficient numerical approach is proposed in [22] for large-scale
problems. From (16), applying (1), (2), (3), we obtain

[RB] = 1

2

(
PL1

AE
− dual (d)

)

dual

(
AE
L1

)

.

In order to avoid the multiple occurrence of kA, the interval distributive relation (4) should be applied. From
relation (12), we obtain PL1

AE − dual (d) > 0, and then applying (4) obtain

[RB] = 1

2

(

P
L1

AE
dual

(
AE
L1

)

− dual (d)
AE
L1

)

= 1

2

(

P − dual (d)
AE
L1

)

.

The unknown reactionRA is obtained from the interval equilibrium equation (15) by algebraic transformations
in Kaucher interval arithmetic

[RA] = P − dual (RB)

= P − dual

(
P
2

− dual (d)
AE
2L1

)

= P
2

+ d dual
(
AE
2L1

)

.

We take RA = pro([RA]), RB = pro([RB]) If [RA], [RB] are proper intervals, the interval equations (15),
(16) will be completely satisfied in exact arithmetic.

The stresses in both models are computed as RA/A, −RB/A.
Next we present numerical computations with both classical and algebraic interval models.

Example 1 Let P = 200 × 103 N, d = 3 × 10−4 m, L = 3 m, A = 25 × 10−4m2, E = 2 × 1011.
Assume that there is a 5% relative uncertainty in each of the parameters. That is, for each t ∈ {P, d, L , A, E},
t ∈ t = [t − t/20, t + t/20].
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Fig. 2 For the clamped bar with a gap, the solution set � (in gray/yellow) and its minimal enclosing interval vector (solid line
box) of the classical model and the interval algebraic solution according to the algebraic model, dashed line. Left: data of Example
1, right: data of Example 2. (Color figure online)

Exact bounds for the reactions in the classical interval model are

RA = 1

2
(P + dkA) ⊂ [135827.38, 165927.64],

RB = 1

2
(P − dkA) ⊂ [34072.36, 64172.62].

(17)

The solution set� and its minimal enclosing interval vector are presented in the left graphics of Fig. 2. Interval
reactions according to the algebraic model are

RA = [RA] = [150125, 150125], RB = [RB] = [39875, 59875]
and presented by the dashed line segment in the left graphics of Fig. 2. While the latter RA,RB completely
satisfy Eqs. (15), (16), interval reactions from (17) replaced in these equations give

RA + RB − dual (d) ⊂ [−20100.3, 20100.3],
PL1

AE
− dual

(
RBL
AE

)

− dual (d) ⊂ 10−5[3, −3].

The respective enclosures of the stresses according to the algebraic interval model are

RA

A
∈ 107[5.71904, 6.32106], −RB

A
∈ −107[1.51904, 2.52106].

Example 2 Consider the same problem with other levels of uncertainty. Assume that there is a 5% relative
uncertainty in P and 2% relative uncertainty in d and A. Find enclosures for the unknown reactions.

The solution set � and its minimal enclosing interval vector according to the classical model, as well as the
interval algebraic solution according to the algebraic model, are presented in the right-hand side graphics of
Fig. 2. As in Example 1, the interval box for RA, RB in the algebraic model (dashed line in Fig. 2 right) is
smaller than the corresponding interval (solid line) box according to the classical interval model. Furthermore,
the former one completely satisfies the equilibrium and compatibility equations contrary to the latter one.
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Fig. 3 A 6-bar truss structure after [23]

0.00082 0.00084 0.00086 0.00088 0.00090 dx2

0.000315

0.000320

0.000325

0.000330

0.000335

0.000340

dy2

0.00086 0.00090 0.00092 0.00094
dx3

0.000320

0.000315

0.000310

0.000305

0.000300

dy3

Fig. 4 For the 6-bar example, the solution set� and its minimal enclosing interval vector (dashed blue box) of the classical model
and the interval algebraic solution according to the algebraic model, dashed line. (Color figure online)

4 Truss structures

4.1 A 6-bar truss structure

Consider a 6-bar truss structure presented in Fig. 3, where the force parameter P is unknown-but-bounded in
the interval P = [20, 21]kN and the cross-sectional areas A5, A6 are also uncertain varying in the intervals
[1.008, 1.092] × 10−3 m2, [1, 1.1] × 10−3 m2, respectively.

An efficient numerical method finding the algebraic (formal) solution to interval equilibrium equations
of truss structures is proposed in [22]. This example is considered also therein, and the exact bounds for the
displacements obtained by the interval algebraic model are compared in [22, Example 1] to the exact bounds
of the displacements obtained by the classical interval model. Here we illustrate this comparison in Fig. 4.
Since the derived variables are functions of the displacements, it is clear that the corresponding ranges obtained
by the algebraic model will be narrower than those obtained by the classical model. Therefor, here we find
interval bounds for the unknown element axial forces, element stains and stresses by the algebraic interval
model.
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For the considered example, the deterministic force equilibrium equations are

P + c1F1 + c5F5 = 0,

2P + s3F3 + s5F5 = 0,

2.5P − c1F1 − c6F6 = 0,

−1.5P + s4F4 − s6F6 = 0,

(18)

where

F1 = F23 = t
1 (k1u) = (−1, 0, 1, 0)(k1u), �1 = 0◦,
F3 = F21 = t
3 (k3u) = (0, 1, 0, 0)(k3u), �3 = 270◦,
F4 = −F34 = t
4 (k4u) = (0, 0, 0, 1)(k4u), �4 = 270◦,

F5 = F24 = t
5 (k5u) = (− 6

10
,
8

10
, 0, 0)(k5u), c5 = 6

10
, s5 = − 8

10

F6 = F13 = t
6 (k6u) = (0, 0,
6

10
,
8

10
)(k6u) c6 = 6

10
, s6 = 8

10
ke = AeEe/Leandu = (ux2, u

y
2, u

x
3, u

y
3)


.

With the intervals for the displacements from [22, Table 4], we obtain

[F1] = − dual
(
k1ux2

) + k1ux3 ∈ [12895.3, 13244.6],
[F3] = k3u

y
2 ∈ [83860.5, 87659.5],

[F4] = dual
(
k4u

y
3

) ∈ [−79472.9,−83840.5],
[F5] = − 6

10
dual

(
k5ux2

) + 8

10
k5u

y
2 ∈ [−54825.7,−57074.2],

[F6] = 6

10
k6ux3 + 8

10
dual

(
k6u

y
3

) ∈ [61841., 65425.8].

Verification of the obtained numerical values (and of the algebraic intervalmodel) can be done in two equivalent
ways: (a) replacing the obtained [Fe] in the interval equilibrium equations (8), or (b): replacing [Fe]λ(ce) by
(Fe)λ(ce)λ(Fe) in (8).

With the algebraic interval deformation [δe], defined in (9), we obtain

Diag

(
E

L

)

· [δ] ∈ Diag

⎛

⎜
⎜
⎜
⎝
1010

⎛

⎜
⎜
⎜
⎝

35
26.25
26.25
21
21

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

× 10−5

⎛

⎜
⎜
⎜
⎝

[3.68439, 3.78417]
[31.9468, 33.3941]

[−30.2754,−31.9392]
[−25.9003,−24.8884]

[29.4481, 28.3229]

⎞

⎟
⎟
⎟
⎠

,

σ ∈ 107 ([1.28953, 1.32446], [8.38605, 8.76595],
[−8.38406,−7.9472], [−5.43906,−5.22658], [5.94779, 6.18411])
 .

Similarly, we compute intervals for the element normal strain pro([δe])/Le.

4.2 One-bay 20-floor truss cantilever

As a large truss example, we consider a one-bay 20-floor truss cantilever, presented in Fig. 5, and considered
in [25] as a benchmark problem for the applicability, computational efficiency and scalability of the approach
proposed therein for structures with complex configuration and a large number of interval parameters.

The structure consists of 42 nodes and 101 elements. The bay is L = 1m, every floor is 0.75L , the element
cross-sectional area is A = 0.01m2, and the crisp value for the element Youngmodulus is E = 2×108 kN/m2.
Twenty horizontal loads with nominal value P = 10 kN are applied at the left nodes. The boundary conditions
are determined by the supports: at A the support is a pin, at B the support is roller. It is assumed 10%uncertainty
in themodulus of elasticity Ee of each element (∓5% from the correspondingmean value) and 10%uncertainty
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Fig. 5 One-bay 20-floor truss cantilever after [14]

Table 1 Axial force F40 (kN) in element 40 of the cantilever truss obtained by the algebraic interval model and by a numerical
approach [25] based on classical interval model

Uncertainty (%) F40 by [25] F40 (algebraic)

0 79.821 79.821
10 [60.652, 98.991] [75.8303, 83.8125]

in the twenty loads. The goal is to obtain bounds for the axial force (F40) in element 40 by the algebraic interval
model and to compare the obtained interval to the bounds yield by the approaches based on classical interval
arithmetic presented in [25, Example 2].

According to the algebraic interval model of the considered truss, we first apply the efficient numerical
method proposed in [22] and obtain interval values for the unknown node displacements. Then, with these
interval node displacements and the corresponding numerical transformation vector for the element 40, fol-
lowing the interval algebraic methodology presented in this paper, we obtain F40 presented in Table 1. This
table presents also the interval obtained by a specially designed methodology and the model based on classical
interval arithmetic.

5 Conclusion

Naive application of interval arithmetic (classical or generalized) is not recommended—each interval space
has specific properties that have to be accounted for by the mathematical models and the computations.
Therefore, a major contribution of the present work is providing a sound methodology for obtaining exact
bounds of secondary quantities (variables), like element axial forces, strains and stresses, in the algebraic
interval FEM model of truss structures with displacements as primary variables. These secondary quantities
present a background in strength ofmaterials theory, which determines the scope of application of the presented
methodology to a diversity of problems involving analysis or design in structural mechanics. The following
works:

– [5,19] formulating the basis of the new algebraic interval model, where any vector (in geometric sense)
parameter in mechanics (possessing magnitude and direction) is represented by a directed interval (range
+ direction), thus embedded in an algebraically rich space of proper and improper intervals;

– [22] presenting efficient methodology and numerical procedures computing the formal (algebraic) solution
to the equations for the displacements in large-scale problems; and

– the present work expanding the algebraic methodology to secondary variables,

formulate a background of the newalgebraic intervalmodel, present its application tomodels of truss structures,
and trace the road toward a variety of other applications. In summary, the algebraic interval model:

– fully conforms to the physics of linear equilibrium and compatibility equations,
– applies straightforward and transparently to the corresponding deterministic formulations,



880 E. D. Popova, I. Elishakoff

– the computational numerical procedures are fast and applicable to large-scale problems involving high-
dimensional interval parameters and large uncertainties,

– while the theory of generalized (proper and improper) intervals is indispensable in the development of
the corresponding methodologies and computational procedures, the implementation of the latter does not
require software environment supporting Kaucher interval arithmetic,

– the obtained intervals for the unknown quantities are exact (without any overestimation) in exact arithmetic,
– replacing the obtained exact intervals for the unknowns in the particular algebraic interval model results
in true equalities, which verifies the corresponding model and the computations.

Most of the properties of the proposed novel methodology are not attributable to the models based on classical
interval arithmetic although they are required by practical engineering in analysis and design.
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