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Abstract In order to study the stability and bifurcation of the EMS maglev transportation system, an index
that can evaluate the matching degree between the EMS vehicle and track beam is proposed. The coupling
system is simplified reasonably and the ordinary differential equations model of EMS basic levitation unit and
track beam coupling system is established based on the interaction principle between vehicle and track beam.
The bifurcation characteristics of the model equilibrium point with two key parameters of the track beam are
calculated by theoretical analysis and numerical simulation. The Lyapunov coefficient of the bifurcation points
is calculated to determine which Hopf bifurcation occurred. The Hopf bifurcation diagram of the coupling
system with two key parameters of the track beam is drawn, respectively, and the stability of the model
equilibrium point under different parameters and the size of its convergence range are determined. An index
of matching degree between the parameters of EMS maglev vehicle and track beam is defined by the ratio
between the size of the stability region and the static deflection of the track beam.

Keywords Maglev · Nonlinear dynamics · Hopf bifurcation · Codimension-two bifurcation · Limit cycle

1 Introduction

With the development of the national economy, China’s urban traffic is increasingly congested, and the devel-
opment of urban rail transit is an effective way to improve this situation [1]. Electromagnetic levitation system
(EMS) maglev train, due to its low noise, non-contact operation, and strong climbing ability, has attracted
much attention in recent years [2]. Shanghai high-speed maglev operation line, Changsha medium–low-speed
maglev express line, Beijing medium–low-speed maglev line S1 and the Incheon Airport line in South Korea
all use the EMS maglev transportation system.

However, it should be pointed out that there are still some problems that hinder its engineering application.
For instance, the vehicle–track coupling dynamic effect significantly affects the running stability and con-
struction cost of a maglev transportation system. The vehicle–track coupling vibration is particularly serious
during stationary state or low-speed operation, which may lead to the instability of the levitation system [3].
The track beam of the EMS maglev usually adopts the elevated mode, and its flexibility is the main cause of
the self-excited vibration of the vehicle–track system [4,5], which has a significant influence on the levitation
stability [6,7].

Aiming at the dynamic coupling effect of a maglev vehicle and track beam, many experts have carried out
studies from the perspectives of electromagnetics, multi-body system dynamics, and control system. Liang
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[8] systematically expounded the characteristics of magnet-track relationship and the influence of control
system parameters on the vibration of the maglev vehicle. Zhao [9,10] simplified the vehicle into a mass
model of five rigid body and 10 degrees of freedom and equated the electromagnetic force with the linear
spring-damping force to establish a vehicle–track beam coupled vibration model of high-speed maglev. Zou
[11] used the double-loop PID algorithm to study the vibration phenomenon in the vehicle–track coupled
maglev system, coming to the conclusion that the homoclinic bifurcation, Hopf bifurcation, secondary Hopf
bifurcation, and chaos in the system are the root causes of the vibration of the maglev system. Wang [12,13]
studied the influence of the delay of the control system on the stability of the maglev system, analyzed the
1:3 subharmonic resonance response at the equilibrium point under the joint action of positional time delay
and track disturbance, and pointed out that the time delay parameters can not only suppress the subharmonic
response, but also control the generation of chaos. Zhang [14] calculated the periodic solution caused by
Hopf bifurcation using the center manifold and normal form theory as well as the perturbation method of
pseudo-oscillator analysis, respectively, and verified its validity by numerical simulation. Li [15] used Nyquist
stability criterion, Routh table, and root locus map to obtain the stability conditions of the vehicle–track beam
coupled system in static levitation state; Kim [16,17] conducted a coupled numerical calculation based on a
complete three-dimensional vehicle–track beam model and compared it with the experimental results to prove
the validity of the model. Liu [18] established a dynamics model of a single levitation frame in low-speed
maglev train with four independent closed-loop control, and simulated and analyzed the coupling effect of the
levitation frame. Wang [19] designed a state observer to introduce the vibration state of the electromagnet,
track beam, and car body into the control system and used the linear matrix inequality method to solve the state
feedback gain matrix, which shows a better performance. Li [20] compiled the simulation analysis software
VTBIM for the vehicle–track beam coupling vibration in medium–low-speed maglev and verified the validity
of the model through the comparison between the simulation and test results.

The above-mentioned researches have achieved a lot of meaningful results and have a good effect on
guiding the engineering practice of building an EMS maglev transportation system. However, the coupling
vibration mechanism between the EMS maglev train and the track beam has not been fully explained. In order
to avoid the coupling vibration, the measure taken in engineering application is to increase the stiffness of track
beam as much as possible. This not only increased the engineering cost greatly, but also failed to eliminate the
coupling vibration completely. Therefore, in order to provide intuitive and reliable guidance for engineering
applications, it is urgent to put forward a quantitative index to evaluate the matching relationship of EMS
maglev transportation system.

The instability caused by self-excited vibration also exists in the traditional railway system, and Hopf
bifurcation theory is widely used to explain this phenomenon [21–23]. Literature [24–26] analyzed the critical
speed of the wheelset or bogie when the hunting occurred by Hurwitz determinant or root locus method,
respectively, and the central manifold theorem is adopted to reduce the dimension of the system under the
critical speed, then the bifurcation form of the wheelset or bogie has been analyzed, and its periodic solution
also has been calculated, so as to clarify the factors which may affect the hunting phenomenon. The coupling
vibration of the EMS maglev train is similar to the hunting phenomenon of traditional railway vehicles. With
the variation of the parameters of control system or track beam, the stability of the equilibrium point of the
coupling system formed by the maglev train and the track beam will change, this is also the fundamental
reason for the coupling vibration between the maglev train and the track beam. So it is necessary to explain
this phenomenon with Hopf bifurcation theory.

In recent years, Hopf bifurcation and codimension-two bifurcation theory have been widely applied in
the study of traditional railways, while there are not many applications on the maglev transportation system.
Considering that the analysis of high-dimensional system is complex and difficult in the traditional Hopf bifur-
cation analysis, Kuznetsov [27] proposed a projection technology to simplify the process of Hopf bifurcation
analysis of high-dimensional system. And the projection technology has also been applied in this paper.

Based on the researches above, this paper established the ordinary differential equations (ODEs) model
of the basic levitation unit and the track beam of the EMS maglev transportation system, and the stability has
been analyzed by bifurcation theory. A matching index that can fully reflect the comprehensive performance
of vehicle and track beam system has been proposed.

2 Model of the system and differential equation of the motion

The EMS maglev transportation system is suitable for both high-speed as well as medium–low-speed design,
and the track beam adopts a simply supported beam structure. Taking the medium–low-speed maglev as an
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Fig. 3 Dynamics model of coupling of a basic levitation unit and track beam

example, the body of a maglev vehicle is generally supported by 3–5 levitation frames through air springs.
Each levitation frame consists of two levitation modules distributed on both sides of the track, connected by
anti-roll beams and suspenders. Each levitation module contains four electromagnet coils, with two of them
connected in series as a group and forming a basic levitation unit together with a levitation controller and a
sensor. Figure 1 shows a schematic diagram showing the relative positional relationship between the vehicle
and the track beam. The 3D model of the medium–low-speed maglev bogie is shown in Fig. 2.

As each basic levitation unit can be approximated as an independent control upon decoupling of the
levitation frame, the system can be simplified into a coupled dynamics model of a basic levitation unit and a
flexible track beam, as shown in Fig. 3.

In the figure, m is the mass of the levitation frame carried by a levitation unit, M is the mass of the vehicle
body carried by a levitation unit, w(t) is the deflection of the track beam, z1(t) and z2(t) are the vertical
displacement of the levitation frame and car body, respectively, ks and cs are the secondary levitation stiffness
and damping of a levitation unit, F is the electromagnetic force of a coil, A is the area of the electromagnet plate
corresponding to one coil, N is the number of the coil turns, and R is the coil resistance, with one levitation
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unit containing two coils. The electromagnet plate is opposite to the F-shaped track plate. The levitation
control system controls the voltage u(t) across the coil to change the coil current i (t), thereby changing the
electromagnetic attractive force F(i, c) to achieve the stability of levitation gap c(t). The electromagnetic force
F(i, c) is a function of coil current and the levitation gap and is given by:

F(i, c) = μ0N 2A

4

(
i

c

)2

(1)

where μ0 is the permeability in vacuum.
The coil current is driven by a control voltage that simultaneously drives two magnetic coils. According

to Kirchhoff’s law, the relationship between coil current and control voltage can be written as:

u

2
= i R + L0 i̇ − kL ċ, (2)

where the coefficient L0 = μ0N2A
2c , kL = μ0N2Ai

2c2
.

The equation of mechanical system dynamics is given by
{
mz̈1 + cs(ż1 − ż2) + ks(z1 − z2) = −2F + (m + M)g

Mz̈2 − cs(ż1 − ż2) − ks(z1 − z2) = 0
(3)

where g is the acceleration of gravity, and the zero points z1 and z2 are in the static equilibrium position.
Since the levitation system is unstable when there is no feedback, it is necessary to have feedback control

on the current, so as to have feedback on the deviation of the levitation gap and the vibration speed. The
levitation gap can be directly measured by the sensor, and the vibration speed needs to be obtained through
state reconstruction of the signals received from the gap sensor and the acceleration sensor mounted on the
electromagnet. The state observer can be obtained by the Luenberger observer theory [28]. To design the
observer, the following system is established:

{
Ẏ = A0Y + B0 z̈1
Z = C0Y

(4)

Where, Y =
[
c − c0
ċ

]
, A0 =

[
0 1
0 0

]
, B0 =

[
0
1

]
, C0 = [

1 0
]
.

It is easy to know that
[
C0 A0

]
can be observed, so the observer can be designed as follows:

Ẏ0 = A0Y0 + B0 z̈1 + L(Z − C0Y0) (5)

where Y0 = [
y1 y2

]T ; L is the observer coefficient vector. The system poles can be distributed in the left
half-plane of the complex plane by selecting a reasonable value of L , so that Y0 can converge to Y . The observer
is shown in Eq. (6) after taking L = [

2ξ0ω0 ω2
0

]T
into Eq. (5).

{
ẏ1 = y2 + 2ξ0ω0 (c − c0 − y1)

ẏ2 = z̈1 + ω2
0 (c − c0 − y1)

(6)

where c0 is the rated levitation gap, ξ0 and ω0 are the observer coefficients, y2 is the vibration velocity signal
obtained by the observer, and y1 is the filtered gap deviation signal obtained by the observer.

The coil current feedback is needed in the levitation control to speed up the system response due to the
inductance of electromagnet coils. The feedback system is divided into two feedback loops, the inner loop and
the outer loop. The outer loop obtains the target current through gap feedback information and transmits it to
the inner loop. The inner loop adjusts the voltage according to the difference between the target current and
the actual current of the coil, so as to accelerate the response of the system. The target levitation current of
outer loop can be expressed as:

ie = kP y1 + kD y2 + i0 (7)
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where kP and kD are state feedback coefficients, i0 is the stable levitation current, and i0 = c0
N

√
2(m+M)g

μ0A
.

The voltage calculated by the inner loop can be expressed as: u = ke(ie − i) + 2Ri (8)

where ke is the current feedback coefficient.
The current equation of controller and electromagnet can be obtained by taking Eqs. (7) and (8) into Eq.

(2).

i̇ = i

c
ċ + kec

μ0N 2A
(kP y1 + kD y2 − i + i0) (9)

According to the Euler–Bernoulli beam model, the track beam dynamics equation is given by

E I
∂4W (x, t)

∂x4
+ m̄

∂2W (x, t)

∂t2
+ c̄

∂W (x, t)

∂t
= P (x, t) , (10)

whereW (x, t) is the deflection of the beam at position x and time t , P (x, t) is the load of the beam at position
x and time t , EI is the bending stiffness of the beam, and m̄ is the linear density of the beam and c̄ is the
damping coefficient of the beam.

The track beam of the medium–low-speed maglev transportation system mostly adopts a simply supported
structure. According to the modal superposition theory, the deflection of the beam can be expressed as the
product of the modal function and the modal coordinates:

W (x, t) =
∑∞

n=1
qn (t) φn (x) (11)

Mnq̈n + Cnq̇n + Knqn = L∫
0
φn (x) P (x, t) dx (12)

where qn (t) is the modal coordinate of order n (n = 1, 2, 3. . .) of the track beam, and φn (x) is the modal
function of order n (n = 1, 2, 3. . .) of the track beam. The modal mass Mn , modal damping Cn , and modal
stiffness Kn are expressed as: Mn = L

2 m̄, Cn = L
2 × 2ξnm̄ωn , Kn = L

2
n4π4

L4 E I . L is the length of the track
beam, ξn is the damping ratio of order n (n = 1, 2, 3. . .),ωn is the circular frequency of order n (n = 1, 2, 3. . .),

and ωn = n2π2

L2

√
E I
m̄ .

Since the electromagnets supporting the vehicle are approximately continuous, as shown in Fig. 1, the
self-excited vibration is most likely to occur when the vehicle is levitated in the middle part of the track beam.
Neglecting the correlation between the electromagnetic force and the longitudinal position of the electromagnet,
it can be obtained that

L∫
0
φn (x) P (x, t) dx =

L+l
2∫

L−l
2

φn (x) dx · 1
l
p (t) (13)

wn (t) =
L+l
2∫

L−l
2

φn (x) dx · 1
l
qn (t) , (14)

where l is the length of the vehicle, p (t) is the total levitation force of the vehicle, wn (t) is the average
deflection corresponding to the nth order, and the modal function is φn (x) = sin

( nπx
L

)
.

Since the high-order modal of the track beam has a large damping ratio but has little contribution to the
deflection, it is suitable to consider only the first-order modal of the track beam. It is proved by engineering
practices that almost all self-excited vibration problems are caused by the instability of the first-order modal of
the bridge [15], so the effect of higher-ordermodals is ignored in the paper when there is no special explanation.

Substitute Eqs. (13) and (14) into Eq.(12), and make the equivalent deflection of the track beam w = w1,
the dynamics equation of the track beam corresponding to a basic levitation unit is:

ẅ + ξ1ω1ẇ + ω2
1w = σ [2F − (m + M) g] , (15)
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where ω1 and ξ1 are the first-order modal frequency and damping ratio of the track beam, σ is the gain
coefficient of the force of the vehicle acting on the track beam, and σ = 8kL

π2l2m̄
sin2 πl

2L . k is the number of basic
levitation units included in the medium–low-speed maglev vehicles.

In conclusion, Eq. (3) represents the motion of the vehicle system, Eq. (15) represents the flexibility of
the track beam, Eq. (10) represents the levitation control system and the change of the coil current, and Eq.
(6) represents the state observer. Combined with all the equations mentioned above, the ordinary differential
equations describing the motion of a medium–low-speed maglev system can be obtained. The state vector is
set as x = [x1, x2, x3, x4, x5, x6, x7, x8, x9]T = [z1, ż1, z2, ż2, w, ẇ, i − i0, y1, y2 − ż1]T , and the levitation
gap c = x1 − x5 + c0. The ODEs model of the levitation unit and track beam is presented as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −μ0N2A
2m

(
x7+i0

x1−x5+c0

)2 + M+m
m g − cs

m (x2 − x4) − ks
m (x1 − x3)

ẋ3 = x4

ẋ4 = cs
M (x2 − x4) + ks

M (x1 − x3)

ẋ5 = x6

ẋ6 = −ω2
1x5 − 2ξ1ω1x6 + σ

[
μ0N2A

2

(
x7+i0

x1−x5+c0

)2 − (m + M) g

]

ẋ7 = x7+i0
x1−x5+c0

(x2 − x6) + ke(x1−x5+c0)
μ0N2A

[kpx8 + kD(x9 + x2) − x7]
ẋ8 = x9 + x2 + 2ξ0ω0 (x1 − x5 − x8)
ẋ9 = ω2

0 (x1 − x5 − x8)

(16)

3 Bifurcation analysis of ODEs model

In this paper, the influence of the parameters of track beam on levitation stability is discussed. There are three
parameters in the ODEsmodel of the levitation unit and track beamwhich described in Eq. (16.), the first-order
modal frequencyω1, the first-order modal damping ratio ξ1 and the gain coefficient of the force σ . Considering
that the variation range of the first-order modal damping ratio ξ1 is very small in practical application, the
first-order modal frequency ω1 and the gain coefficient of the force σ of the track beam are selected as the
bifurcation parameters, with α = [ω1, σ ]T . The ODE model (16) can be written in a more compact form:
ẋ = J (α)x + Fnon(x, α), where J is the Jacobian matrix of the model, Fnon (x, α) is the nonlinear part of
the model. Obviously, x = 0 is a steady-state solution of the system. To calculate the degradation normal
form, the center manifold reduction method is usually used to simplify the complex high-dimensional system
into the corresponding planar system, and then transform it into an equivalent planar normal form through
homeomorphic mapping. As these methods are very complex and difficult to program for the theoretical and
numerical analysis of high-dimensional systems, the projection technique is used here, and the center manifold
reduction and normalization are adopted simultaneously [27].

Assuming that when α = αc = [ω1c, σc], the Jacobianmatrix of the ODEsmodel (16) has one and only one
pair of pure imaginary eigenvalue λ1,2 = ±iωc and ωc > 0, and the remaining eigenvalues all have negative
real parts. Expand the ODEs model (16) near x = 0 and get ẋ = Jcx + Fnon(x, αc), where Jc = J (αc) is
the Jacobian matrix of the Hopf bifurcation point and Fnon (x, αc) = O(||x ||2) is sufficiently smooth near the
equilibrium point. Expanding the nonlinear part with symmetric multi-linear vector functions, we obtain

Fnon (x) = 1

2
B (x, x) + 1

6
C (x, x, x) + O(||x ||4) (17)

where B (ξ, η) andC (ξ, η, ζ ) are symmetricmulti-linear vector functions of ξ, η, ζ ∈ C
9 and can be expressed

as

Bi (ξ, η) =
9∑

j,k=1

∂2Fnoni (x, αc)

∂x j∂xk
|x=0ξ jηk, i = 1, . . . , 9, (18)

Ci (ξ, η, ζ ) =
9∑

j,k,l=1

∂3Fnoni (x, αc)

∂x j∂xk∂xl
|x=0ξ jηkζl , i = 1, . . . , 9. (19)
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Introducing two complex eigenvectors pc and qc corresponding to pure imaginary eigenvalues, we obtain

Jcqc = iωcqc, J
T
c pc = −iωc pc, (20)

It is required to satisfy the normalization condition 〈pc, qc〉 = 1, where 〈p, q〉 is the inner product function
of p, q ∈ C

9, which is defined as 〈p, q〉 = ∑9
i=1 p̄i qi ∈ C

1.
Jc corresponds to the eigenvalue subspace of qc and q̄c as T c = span {Re (qc) , Im (qc)}. If T s is the

eigenvalue subspace corresponding to other eigenvalues of Jc, then there is T s = {y|y ∈ R
9, 〈pc, y〉 = 0},

and the state space x ∈ R
9 can be decomposed into

x = zqc + z̄q̄c + y, zqc + z̄q̄c ∈ T c, y ∈ T s (21)

and then {
z = 〈pc, x〉
y = x − 〈pc, x〉qc − 〈 p̄c, x〉q̄c (22)

In the coordinates (z, y), the ODEs model is written as⎧⎨
⎩
ż = iωcz + 〈pc, Fnon(zqc + z̄q̄c + y)〉
ẏ = Jc y + Fnon(zqc + z̄q̄c + y) − 〈pc, Fnon(zqc + z̄q̄c + y)〉qc
−〈 p̄c, Fnon(zqc + z̄q̄c + y)〉q̄c

(23)

Substituting the equation (17) into (23), and using the center manifold reduction and Poincaré canonical
theory, the first Lyapunov coefficient of the ODEs model at the Hopf bifurcation point can be obtained, and
then the type of Hopf bifurcation of the system is determined accordingly. The first Lyapunov coefficient is
[22]

l1(αc) = 1

2ωc
Re[〈pc,C(qc, qc, q̄c)〉 − 2〈pc, B(qc, J

−1
c B(qc, q̄c))〉

+ 〈pc, B(q̄c, (2iωc I − Jc)
−1B(qc, qc))〉] (24)

If l1(αc) < 0, the system generates supercritical Hopf bifurcation at the bifurcation point, and the stable equi-
librium point loses stability, with a stable limit cycle split. If l1(αc) > 0, then the system generates subcritical
Hopf bifurcation at the bifurcation point, and an unstable limit cycle merges with the stable equilibrium point
to become an unstable equilibrium point. If l1(αc) = 0, the system has a codimension-two bifurcation, and the
second Lyapunov coefficient l2(αc) of the system needs to be calculated to determine the type of bifurcation. If
l2(αc) �= 0 and the crossing condition is satisfied, Bautin bifurcationwill occur. However, in actual engineering,
the condition of l1(αc) = 0 is too harsh to meet, and there is little engineering significance in considering the
characteristics of codimension-two bifurcation, so the corresponding calculation process is no longer given.

Since the ODE model (16) is a nine-dimensional system, it is necessary to combine numerical analysis
with the theoretical analysis. According to the parameters described in “Appendix”, the Hopf bifurcation point
of the model can be obtained through the root locus method by monitoring the maximum value of the real part
of the eigenvalue of the Jacobian matrix Jc. At the same time, the crossing condition can also be monitored.
Combining the root locus method with equation (24), the variation law of the first Lyapunov coefficient with
ω1 and σ can be obtained, and the type of bifurcation can be determined at the same time.

Figure 4 shows the variation of the bifurcation point in the parameter space span {ω1, σ } and gives the
type of bifurcation.

The parameter space shown in Fig. 4 is divided into two parts, the region S and the region U, by the
bifurcation curve. The eigenvalues of the Jacobian matrix J (αS) of the ODEs model at the equilibrium point
x = 0 have a negative real part in the region S, while the ODEs model in the region U has at least one pair of
conjugate complex eigenvalues with positive real parts at the Jacobian matrix J (αU ) at the equilibrium point
x = 0. The boundary between the region S and the region U is the curve composed of Hopf bifurcation points.
The ODEs model has a pair of pure imaginary eigenvalues at the Jacobian matrix J (αC ) at the equilibrium
point x = 0, and the remaining eigenvalues all have negative real parts. The boundary is divided into four
parts. On the boundaries I and III, the first Lyapunov coefficient, l1(αc) > 0, is the subcritical Hopf bifurcation
point, and on the boundary II and IV, the first Lyapunov coefficient, l1(αc) < 0, is the supercritical Hopf
bifurcation point. The three junctions a, b, and c between the boundaries I, II, III, and IV are the codimension-
two bifurcation points. (Each refers to the non-tangential change of the parameters, that is, when the direction
of the parameter changes satisfies the crossing condition.)



780 X. Chen et al.

0 2 4 6 8 10 12 14

100

200

300

400

10 4

1
dar
s

S

S

U

I

II

III IV

a

b

c

Fig. 4 Codimension-two bifurcation diagram of the ODEs model

4 The vehicle–track beam matching index

Figure 4 can be used to determine the topological variation of the solution near the equilibrium point of the
system. However, in order to propose an index reflecting the matching between the vehicle and the track
beam of the EMS maglev transportation system, so as to guide the engineering practice, it is not enough to
just examine the local characteristics of the solution near the equilibrium point, The convergence range of
the equilibrium point also needs to be analyzed. A matching index can be defined as the ratio of the index
of the convergence range of the equilibrium point to the index of a typical disturbance. In this section, the
characteristic indexes of the convergence ranges of a system equilibrium point and a typical disturbance will
be defined, so that to define the matching index of a vehicle and a track beam of EMS maglev transportation
system through their ratio.

In order to define the characteristic index of the convergence range of the equilibrium point of the coupling
system, the periodic solutions near the equilibrium point need to be analyzed. The orthogonal collocation
method and Newton–Raphson iterative method are adopted to track the evolution of the periodic solution
and the steady-state solution, and the eigenvalues of the Jacobian matrix at the equilibrium point and the
Floquet multipliers of the Poincaré map near the periodic solution are detected, as they represent the stability
information of the equilibrium point and the limit cycle, respectively.

The range of the values of the EMS maglev traffic in real projects determines that the gain coefficient σ of
the force of the vehicle acting on the track beam is about 2 ∼ 6 × 10−4, and the first-order modal frequency
of the track beam is about 6 ∼ 30Hz, that is, the range of ω1 is 40 ∼ 190 rad/s. Figure 5 shows the Hopf
bifurcation diagram of the medium–low-speed maglev traffic system with the change of ω1 and σ , where the
dashed line indicates unstable equilibrium point or limit cycle, the solid line indicates the stable equilibrium
point or limit cycle, and the dot–dash line indicates the physical limit of the levitation gap. When the limit is
reached, the collision will occur. The symbols * and o represent the Hopf bifurcation point and the amplitude at
which the unstable limit is tangent to the physical limit, respectively. It is worth noting that due to the physical
limits of the maglev transportation system, the completely smooth ODEs model (15) does not describe the
global behavior of the system. Thus, the model (15) needs to be corrected as follows:

(1) Since the coil current is not reversible, its minimum value is 0 A, that is, when x7 < −i0, x7 in the model
(15) takes the value −i0;

(2) Since the levitation gap range is 0 ∼ 18 mm, the calculation is stopped when x1 − x5 < −c0 or x1 − x5 >
18 mm − c0.

Figure 5 shows that the subcritical Hopf bifurcation occurs in the medium–low-speedmaglev traffic system
atHopf bifurcation pointsA1 andA2.As the parameters change, an unstable limit cycle and a stable equilibrium
point merge into an unstable equilibrium point, which is consistent with the results of the theoretical analysis.
b1 and b2 are the gap amplitudes when the unstable limit cycle is tangent to the physical limit of the gap. Due
to the asymmetrical nature of the electromagnetic force, the amplitudes corresponding to the b1 and b2 points
are not equal. When ω1 = 100 rad/s, the tangent value σ of the unstable limit cycle and the physical limit of
the gap is about 0.7 × 10−4, which is much smaller than the value σ allowed by the system parameters that
may appear in the real engineering projects, thus the value is not shown in Fig. 5b.

In order to better understand the global topological characteristics of the medium–low-speed maglev
transportation system near the bifurcation point, three sets of parameter values: α1 = [

100 rad/s, 4 × 10−4
]T
,

α2 = [
105 rad/s, 5 × 10−4

]T
and α3 = [

85 rad/s, 3.7 × 10−4
]T

are selected for numerical integration. A
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Fig. 5 Hopf bifurcation diagram of the system with the change of ω1 and σ : a σ = 4 × 10−4 and b ω1 = 100 rad/s
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Fig. 6 System response when the parameter takes the value α1: a time history curve and b phase diagram

non-stiff differential equation solver (the standard NDSolve function in MATHEMATICA) is used for the
numerical integration. The system response is shown in Figs. 6, 7 and 8.

Figure 6 shows the system response when the parameter takes the value α1 = [100 rad/s, 4 × 10−4]T. Two
different initial values are selected for numerical integration, where the initial value of the blue solid line is x0 =
[0, 0, 0, 0, x50, 0, 0, 0, 0]T = [0, 0, 0, 0,−0.0015 m, 0, 0, 0, 0]T and the systemvibration converges,while the
initial value of the red dashed line is x0 = [0, 0, 0, 0, x50, 0, 0, 0, 0]T = [0, 0, 0, 0,−0.0022 m, 0, 0, 0, 0]T
and the system vibration diverges and collides at approximately 1.62s. The black dotted line is the physical
limit of the gap. It is worth noting that, since it is a nine-dimensional system, the phase diagram shown in
Fig. 6b is only the projection of the system phase space on the two-dimensional plane formed by the two-state
variables of the gap and the gap differential, resulting in the visual intersection of the curves. In a complete
nine-dimensional phase space, there is no intersection of the curves.

Figure 7 shows the system response when the parameter takes the value α2 = [
105 rad/s, 5 × 10−4

]T
.

When the initial value x0 = [0, 0, 0, 0, x50, 0, 0, 0, 0]T = [0, 0, 0, 0, −0.0001 m, 0, 0, 0, 0]T is selected for
numerical integration, the system vibration diverges and collides at about 1.16 s.

Figure 8 shows the system responsewhen the parameter takes the valueα3 = [
85 rad/s, 3.7 × 10−4

]T
. Two

different initial values are selected for numerical integration, where the initial value of the blue solid line is x0 =
[0, 0, 0, 0, x50, 0, 0, 0, 0]T = [0, 0, 0, 0,−0.004 m, 0, 0, 0, 0]T and the system vibration converges, while the
initial value of the red dashed line is x0 = [0, 0, 0, 0, x50, 0, 0, 0, 0]T = [0, 0, 0, 0, −0.0046 m, 0, 0, 0, 0]T,
and the system vibrations converges if the physical limits of the gap is not taken into consideration, but due to
the existence of physical limits, collisions occur before convergence.

The three sets of parameter values represent three typical cases of the structure of the solution of the ODEs
model of the levitation unit and track beam. When the parameter takes the value α1, due to the existence of
the unstable limit cycle, the system vibration converges without disturbance when the initial value is within
the convergence domain of the equilibrium point, whereas the system diverges without disturbance when the
parameter is beyond the convergence domain. When the parameter takes the value α2, due to the instability
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Fig. 7 System response when the parameter takes the value α2: a time history curve and b phase diagram
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Fig. 8 System response when the parameter takes the value α3: a time history curve and b phase diagram

of the equilibrium point, the system diverges without disturbance, as long as the initial value is not exactly at
the equilibrium point. When the parameter takes the value α3, the system converges as long as the initial value
does not make collision occur. Thus, the structure of the solution of the ODEs model of the levitation unit and
track beam can be used to define the index h of the convergence range of an equilibrium point. If the system
equilibrium point is unstable, then h = 0; if the equilibrium point is stable and there is an unstable limit cycle,
then h is the difference between the maximum value of the levitation gap corresponding to the limit cycle and
the rated levitation gap c0; if the equilibrium point is stable, and there is no unstable limit cycle or the limit
cycle is beyond the physical limit of the system, then h is the difference between the maximum gap allowed
by the physical limit of the system and the rated levitation gap c0.

In order to define the stability index of an EMS coupling system, it is necessary to define a typical
characteristic index of the initial disturbance. Here, the equivalent static deflection w0 of the track beam in the
corresponding simplified OEDs model of the coupling system between the basic levitation unit and the track
beam is adopted when the vehicle is levitated in the middle section of the track beam, it can be obtained from
Eq. (15):

w0 = σ (m + M) g

ω2
1

(25)

The matching index of EMS maglev vehicle and track beam can be defined as the ratio of the convergence
range of the equilibrium point h to the characteristic index of a typical initial disturbance w0, just as shown in
Eq. (26).:

χ = h

w0
(26)

In general, if χ = 0, the medium–low-speed maglev system cannot achieve stabilized static levitation, indi-
cating the poor matching between the vehicle and the track beam; if the value of χ is very small, the maglev
system can achieve stabilized static levitation under minor disturbances, but loses stability with slightly larger
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Fig. 9 The form of the vehicle system model

disturbance, indicating poor matching between the vehicle and the track beam; if the value of χ is relatively
large, the maglev system can achieve stabilized static levitation under small disturbances, and only loses sta-
bility under major disturbance, indicating good matching between the vehicle and the track beam; if the value
of χ is very large, the maglev system can still have stabilized static levitation under large disturbance, and
may collide when it is greatly disturbed, but it is able to return to stabilized state quickly, indicating the best
matching between the vehicle and the track beam.

5 A numerical example of the matching index

In order to explain the calculation method of the matching index of EMS maglev vehicle and track beam, a
coupled dynamics model of a complete maglev vehicle and track beam is established as a numerical example, a
medium–low-speed maglev vehicle with three levitation frames statically levitated in the middle of the simply
supported track beam, as shown in Fig. 1.

The form of the vehicle system is shown in Fig. 9. It consists of three levitation frames and a car body with
four rigid bodies. Each rigid body has two degrees of freedom which are vertical motion and pitching motion,
and the model has a total of eight degrees of freedom. mb, jb, ms, js are the mass and moment of inertia of
the vehicle and the levitation frame, respectively. The levitation frame and the car body are connected by a
secondary levitation composed of a linear spring and damping. k2 and c2 are the secondary levitation stiffness
and damping of the system, respectively. The rigid body of the levitation frame is subjected to two levitation
forces. s is half of the distance between the force centers of the levitation forces, s0 is the center-to-center
distance between two levitation frames, and f1 ∼ f6 are the electromagnetic forces.

Vehicle system dynamics equations can be obtained by vibration mechanics and expressed as:

Mv ẍv + Cv ẋv + Kvxv = fv, (27)

where the state vector is xv = [z1 (t) , θ1 (t) , z2 (t) , θ2 (t) , z3 (t) , θ3 (t) , z0 (t) , θ0 (t)]T, zi (t) , θi (t) , i =
0, 1, 2, 3 are the floating and sinking, nodding coordinates of the car body and the levitation frame, respectively,
the mass matrix is Mv = diag (ms, js,ms, js,ms, js,mb, jb),

the damping matrix is Cv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2 0 0 0 0 0 −c2 c2s0
0 0 0 0 0 0 0 0
0 0 c2 0 0 0 −c2 0
0 0 0 0 0 0 0 0
0 0 0 0 c2 0 −c2 −c2s0
0 0 0 0 0 0 0 0
−c2 0 −c2 0 −c2 0 3c2 0
c2s0 0 0 0 −c2s0 0 0 2c2s20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

the stiffness matrix is Kv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k2 0 0 0 0 0 −k2 k2s0
0 0 0 0 0 0 0 0
0 0 k2 0 0 0 −k2 0
0 0 0 0 0 0 0 0
0 0 0 0 k2 0 −k2 −k2s0
0 0 0 0 0 0 0 0
−k2 0 −k2 0 −k2 0 3k2 0
k2s0 0 0 0 −k2s0 0 0 2k2s20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 10 Forces acting on the track beam

and the force vector is fv = [− f1 − f2, s( f1 − f2), − f3 − f4, s( f3 − f4), − f5 − f6, s( f5 − f6), 0, 0]T.
The model of the electromagnetic levitation system is the same as that described in Chapter 2. It is worth

noting that each electromagnetic levitation force in the model equals the electromagnetic force of the four
electromagnetic coils minus the vehicle gravity supported by the coils.

f j = 4F(i j , c j ) −
(
1

2
ms + 1

6
mb

)
(28)

where i j and c j are currents and gaps corresponding to the jth basic levitation unit.
The model of the track beam is shown in Fig. 10. f1 ∼ f6, s and s0 are the same as Fig. 9, and L is the

length of the track beam.
The dynamics equation of the track beam, with the first, second, and third-order modals taken, can be given

by

q̈n + ξnωnq̇n + ω2
nqn = 2

m̄L

6∑
j=1

[
f j +

(
1

2
ms + 1

6
mb

)]
sin

(nπx j
L

)
, n = 1, 2, 3,

Wj (t) =
3∑

n=1

qn (t) φn
(
x j

)
, (29)

where x j is the position of f j on the track beam, and Wj is the deflection of the track beam corresponding to
the electromagnetic force f j . Equation (29) shows that the equilibrium point of the track beam equation is not
at the original point.

The simulation platform is MATHEMATICA, which is an algebraic system software, and a non-stiff
differential equation solver (the standard NDSolve function) is used for the numerical integration.

If the turnout beam of a certain medium–low-speed maglev is 18 m simply supported steel structural beam,
the linear density is m̄ = 1920 kg/m, and the bending stiffness E I = 2.26× 1010 N ·m2, the first three modal
frequency can be calculated at 16.63 Hz, 66.53 Hz, 149.7 Hz, that is, ω1 = 104.51 rad/s, ω2 = 418.04 rad/s,
ω3 = 940.591 rad/s. The total length of the vehicle is l2.1 m, and the whole vehicle contains 12 basic levitation
units, then the gain coefficient of the force of the vehicle acting on the track beam is σ = 8kL

π2l2m̄
sin2 πl

2L =
4.7×10−4. The equilibrium point of the basic levitation unit system is unstable, and thematching index χ = 0.
As long as the initial value of the system is not exactly equal to the equilibrium point, the system is diverged.
As shown in Fig. 11, the lines are the levitation gaps corresponding to the first, second and basic levitation
units, respectively. The initial state is that the vehicle is pressed downward from the free position of the track
beam, the track beam deflects under pressure, and the initial value of each state is 0.

If the bending stiffness of the track beam is reduced, and it is set that E I = 1.96 × 1010 N · m2, the first,
second and third-order modal frequencies of track beams can be calculated as 15.49 Hz, 61.96 Hz, 139.41
Hz, that is, ω1 = 97.33 rad/s, ω2 = 389.307 rad/s, ω3 = 875.941 rad/s. At this time, the static deflection of
the track beam of the basic levitation unit system is w0 = σ(m+M)g

ω2
1

= 0.826 mm. The unstable limit cycle

is shown in Fig. 12, where h = 3.43 mm, and the matching index χ = h
w0

= 4.15. When the initial value

is small, the system converges. When the initial value is large, the system diverges and the system has good
nonlinear stability. Figure 13 shows the response of the levitation gap corresponding to the first, second, and
third basic levitation units with different initial disturbances, respectively. Vehicle (a) is pressed downward
from the free position of the track beam, the track beam deflects under pressure, and the initial value of each
state is 0, while vehicle (b) is pressed downward from the free position of the track beam, the track beam
deflects under pressure, and the initial value of each state is 0 except for q1, which has the initial value of 3
mm.
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Fig. 11 Gap response of the vehicle when statically levitated on the turnover beam
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Fig. 12 Unstable limit cycle of the system after reducing the bending stiffness
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Fig. 13 Response of the levitation gap after reducing the bending stiffness: a q1 (0) = 0 and b q1 (0) = 3 mm

It can be seen that greater bending stiffness of the track beam does not necessarily make the system perform
better, because a greater bending stiffness leads to a higher main frequency of the track beam, which means
worse performance near the bifurcation point. Sometimes a slight decrease in the stiffness of the track beam
contributes to better system performance.

6 Conclusion

In this paper, the nonlinear dynamics characteristics of the EMS maglev system are studied in detail. The
nonlinear coupled dynamics model consisting of the basic levitation unit and flexible track beam of the vehicle
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under static levitation conditions is established, and the degree of freedom of the system is reduced without
losing the basic characteristics. Through analysis of the ODEs model of the levitation unit and track beam, the
following conclusions are drawn:

(1) Through the bifurcation analysis of the nonlinear coupled model, it is determined that under certain
bifurcation parameters, Hopf bifurcation and codimension-two bifurcation occur in the medium–low-
speed maglev system; by calculating the first Lyapunov coefficient of the bifurcation point, the type of
bifurcation is determined and the codimension-two bifurcation diagram obtained, and it is concluded that
the bifurcation of the system is subcritical Hopf bifurcation under the possible parameters of engineering
practice.

(2) In order to determine the stable range of equilibrium point and the existence and stability of periodic
solutions of the system of the levitation unit and track beam, the Hopf bifurcation diagram of the system
with the change of the track beam parameters is drawn under the possible parameters in engineering
practice, and the size of the unstable limit loops of the systemunder different parameters is determined. The
parameter domain is decomposed into three regions according to the difference of the global topological
structure of the solutions, and the different characteristics of the three regional solutions are obtained
through numerical integration.

(3) Amatching index of EMSmaglev transportation system is defined. And thematching index can be defined
as the ratio of the convergence range of the equilibrium point to the characteristic index of a typical initial
disturbance. Finally, an example is given to illustrate the calculation method of the index.
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Appendix: Description and value of parameters in EMS maglev system

Parameter Description Value

m Mass of the levitation frame carried by a levitation unit 550 kg
M Mass of the vehicle body carried by a levitation unit 1150 kg
g Acceleration of gravity 9.8 m/s2

ks Secondary levitation stiffness of a levitation unit 12,000 N/m
cs Secondary levitation damping of a levitation unit 900 N s/m
μ0 Permeability in vacuum 4π × 10−7 T m/A
N Number of the coil turns of the electromagnet 360
A Area of the electromagnet plate corresponding to one electromagnetic coil 0.0184 m2

c0 Rated levitation gap 8 mm
i0 Stable levitation current 26.68 A
ω0 State observer coefficient 1 130
ξ0 State observer coefficient 2 2
kP Gap feedback coefficient 5000
kD Velocity feedback coefficient 150
ke Current feedback coefficient 25
ω1 The first-order modal frequency of the track beam –
ξ1 The first-order modal damping ratio of the track beam 0.5%
σ Gain coefficient of the force of the vehicle acting on the track beam –
ms Mass of the levitation frame 2200 kg
js Moment of inertia of the levitation frame 1377 kg m2

mb Mass of the vehicle 13,800 kg
jb Moment of inertia of the vehicle 159,365 kg m2

k2 Secondary levitation stiffness 48,000 N/m
c2 Secondary levitation damping 3600 N s/m
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