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Abstract An efficient procedure based on the semi-analytical finite strip method with invariant matrices
is developed and applied to analyze the initial post-buckling of thin-walled members. Nonlinear strain–
displacement equations are introduced in the manner of the von Karman assumption for the classical thin
plate theory, and the formulations of the finite strip methods are deduced from the principle of the minimum
potential energy. In order to improve the computational efficiency, an analytical integral of the stiffness matrix
is transformed into matrix multiple calculation with introducing invariant matrices which can be integrated
in advance only once. Three commonly employed benchmark problems are tested with proposed method and
other state-of-the-art methods. The corresponding comparison results show that: (1) this finite strip method is
proved to be a feasible and accurate tool; (2) compared with the calculation process of the conventional finite
strip methods, the proposed procedure is much more efficient since it requires the integration of the stiffness
matrix only once no matter how many iterations are needed; and (3) the advantage of time-saving is greatly
remarkable as the number of iterations increases.

Keywords Invariant matrix · Thin-walled members · Initial post-buckling · Geometrical nonlinear ·
Semi-analytical finite strip method

1 Introduction

In recent decades, plates and thin-walled structures have beenwidely used for the design of the civil engineering,
due to light weight and high stiffness-to-weight ratio. Meanwhile, these light weight structures are also the
eternal theme to improve the economy and operation state of aerospace equipment. Among the structural failure
behaviors, the primary failure mode can be attributed to the buckling instability [1]. Thus, it is important to
accurately predict the buckling and post-buckling behavior of such structures [2], which has been analyzed
by experimental, analytical and numerical methodologies [3]. What is more, the analysis and computation of
the initial post-buckling behavior also is useful and important, to exploit the carrying capacity of plates or
thin-walled structures [4–6].

For the study of the initial post-buckling phenomenon of thin-walled structures, lots of finite strip methods
have been developed and applied successfully [7]. The semi-analytical finite strip method (SA-FSM) based
on the harmonic functions satisfied the supported boundary condition and the interpolation functions from
the finite element method (FEM) was firstly developed and proved to be an efficient tool for the post-locally
buckled analysis of prismatic thin-walled structures under end compression [8,9]. For geometric nonlinear
analysis of thin-walled structures, the SA-FSM has been proposed by using the moderately large displacement
assumption and nonlinear strain–displacement relations, but linear curvature–displacement relations [10].
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Then the SA-FSM is further developed with considering the effects of transverse shear deformation to analyze
the large deflection [11], the post-local buckling problems [12] of laminated composite plates with initial
geometric imperfections [13] based on linear crosswise interpolation or cubic crosswise interpolation, and the
results obtained by the SA-FSM and the spline FSM have been compared and discussed [14]. For the post-
buckling analysis of laminated composite plates with initial geometric imperfection subjected to progressive
end-shortening, the higher-order SA-FSMs based on the higher-order shear deformation plate theory [15–17]
and the SA-FSM for composite plates under combined compression and shear loading [18] are developed.
The semi-energy SA-FSM for the post-local buckling analysis of geometrically perfect thin-walled prismatic
structures [19] and composite laminates under end-shortening or normal pressure [20,21], the semi-energy
SA-FSM for post-buckling analysis of relatively thick anti-symmetric laminates [22,23], the exact FSM for
the buckling and initial post-buckling analysis of I-section struts based on the so-called full analytical method
[24] and the semi-energy SA-FSM based on the concept of the first-order shear deformation theory for the
post-buckling solution for thin and relatively thick functionally graded plates [25] were developed and applied
efficiently.

Furthermore, in order to decrease the computational complexity, the SA-FSM using parallel cloud comput-
ing for large displacement stability analysis of orthotropic prismatic shell structures has been discussed [26].
For the buckling problems of composite laminated cylinders subjected to deformation-dependent loads, which
remains normal to the shell middle surface throughout the deformation process, the SA-FSM with polynomial
functions in the meridional direction and truncated Fourier series in the circumferential direction has been
presented recently [27]. To take a fully nonlinear compound strip with a transverse stiffener and non-uniform
characteristics in the longitudinal direction into account, a new SA-FSM has been developed for geometric
nonlinear static analysis of prismatic shells recently [28]. For the elastic–plastic large-deflection thin-walled
structural stability problems of the folded-plate members, the SA-FSM [29] and the semi-energy SA-FSM
[30] also have been developed and applied. Up to now, the SA-FSMs have become the powerful technology
for the post-buckling phenomenon of thin-walled structures.

Compare with the classical SA-FSM, the spline finite strip method (S-FSM) takes the place of the often
used Fourier series by the spline function, in order to facilitate the description of local non-periodic buckles and
oblique buckling modes [31–34]. Because the S-FSM requires more unknown parameters than the SA-FSM,
thismethod can be regarded as a compromisemethodbetween theSA-FSMand theFEM[35]. For the geometric
nonlinear analysis of stiffened plates with arbitrary shape, the sub-parametric mapping technology and the S-
FSMhave been assembled [36]. In order to dealwith the geometric nonlinear problems of the perforated flat and
stiffened plates [37], the material inelastic subjects [38,39], and the inelastic buckling of the thin functionally
graded material plates with cutout resting on an elastic foundation [40], the isoparametric S-FSM has been
developed. Two kinds of the relationships between the elastic force (or elastic deformation energy) and the
nodal line displacements can be summarized from all of above FSMs, which are global forms [17,18,24] and
incremental formulations respectively [26,28,31,34,38,39]. The incremental constitutive equation usually is
used in the inelastic analysis [40]. For the global ones, the S-FSM often uses the numerical integration to
obtain the global geometrical stiffness matrices. However, the analytical integration operator in the SA-FSM
is applied even more frequently [41–44]. Generally, the reliability of the S-FSM depends on its numerical
integral accuracy [34], and the analytical integration in the SA-FSM usually yields high accuracy but needs
huge amount of the symbolic or manual calculation [8,10,18] or the hybrid method of analytical integration of
the trigonometric terms and Gauss quadrature integration in other terms considering the effects of numerical
integral accuracy into account can be implemented [12,15]. In order to achieve efficient post-buckling analysis
of the thin-walled structures by the FSMs above, it is important to accurately and fast evaluate the elastic force
(or elastic potential energy).

Fortunately, we can find an efficacious procedure for evaluating the elastic forces and the elastic energy
based on some invariant sparse matrices. The invariant sparse matrices are integrated in advance and have
the property of transforming the evaluation of the elastic forces in a matrix multiplication process. With the
assistance from the invariant sparse matrix, the full analytical evaluated method of the stiffness matrices and
the elastic energy of the SA-FSM will be developed for the post-buckling analysis of thin-walled structures.
The paper is organized as follows. In Sect. 2, the general theorem of the SA-FSM for buckling analysis of the
thin-walled member is briefly described, and the control equations of the structure are discussed. The method
based on the invariant matrices is then developed and discussed in Sect. 3. Numerical results calculated by the
method proposed in this study and other state-of-the-art methods are presented in Sect. 4. Finally conclusions
are given in Sect. 5.
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Fig. 1 Coordinate systems and displacements vector

2 Finite strip analysis

The plates and the thin-walled structures analyzed in this work are assumed to be simply supported along
loaded edges and the classical plate theory (CPT) is applied throughout this work [45].

2.1 Degree of freedom and shape function

In the finite strip method two right-handed coordinate systems, i.e., the global one and the local one, are
used to separate a thin plate into many strips along longitudinal direction as shown in Fig. 1. We introduce a
numbering system of finite strip model in the global coordinate system. The total number of the strips is given
as s. Then the total number of the nodal line is s + 1 for the singular branched cross section member. The
global coordinate system as shown in Fig. 1a is denoted as X − −Y − −Z , with the Y axis parallel to the
longitudinal direction of the member. The local system is defined as x −−y−−z, which is always associated
with a strip with z-axis perpendicular to the strip as shown in Fig. 1b. Each nodal line i has two membrane
Degrees Of Freedoms (DOFs), i.e., ui and vi , and two bending DOFs, i.e., wi and θi

The analytical trigonometric functions of the longitudinal coordinate that satisfy the simply supported
boundary condition of the loaded edges can be used to represent the strip’s deformation mode

Sp = sin
pπy

a
, p = 1, 2, 3, . . . , m, (1)

where p is the axial half-wave number, m is a finite positive integer which indicates the maximum half-wave
number, y is the longitudinal coordinate in the local coordinate system, a is the length of the member.

The shape function for the membrane DOFs uses a linear function matrix along transverse direction

hi =
[(

1 − x

b

) x

b

]
, i = 1, 2, . . . , m, (2)

and four cubic polynomials selected as the shape functions to depict the bending displacement of the strip
along transverse direction

hi =
[(

1 − 3x2

b2
+ 2x3

b3

) (
x − 2x2

b + x3

b2

) (
3x2

b2
− 2x3

b3

) (
x3

b2
− x2

b

)]
,

i = 1, 2, . . . , m, (3)
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where b is the width of the strip member as shown in Fig. 1b, and x is the horizontal coordinate in local
coordinate.

Then by combiningwith the interpolation function and the shape function, the explicit expressions in global
system of two in-plane displacement vectors u, v, and one out-of-plane displacement vector w can be given
as follows

[u, v, w] = diag(hLSu,hLCv,hwSw)d, (4)

where hL and hw are the shape function matrices along x direction, and Su , Cv , and Sw are the shape function
matrices along y direction. hL and hw correspond to the in-plane displacement vectors du , dv , and the out-of-
plane displacement vector dw in the nodal lines, respectively, which can be given by applying Eqs. (2) and (3)
as

hL = [h1, h2, . . . hm] ,

hw =
[
h1, h2, . . . , hm

]
. (5)

Meanwhile,Su ,Cv , andSw correspond to the displacement vectorsdu ,dv anddw in the nodal lines, respectively,
which can be given by applying Eq. (1) as

Su = diag(S1I2, S2I2, . . . , SmI2),
Sw = diag(S1I4, S2I4, . . . , SmI4),
Cv = diag(C1I2, C2I2, . . . , CmI2),

Cp = cos
pπy

a
, p = 1, 2, 3, . . . , m, (6)

where I j is the j × j identity matrix. Finally, the displacement vector d = [
dTu , dTv , dTw

]T
in the nodal lines

for the strip can be given as

du =
[
u1i , u

1
j , u

2
i , u

2
j , . . . , u

m
i , umj

]T
,

dv =
[
v1i , v1j , v2i , v2j , . . . , vmi , vmj

]T
,

dw =
[
w1
i , θ1i , w1

j , θ1j , w2
i , θ2i , . . . , wm

j , θmj

]T
, (7)

where the subscripts i and j denote two nodal lines of one strip.

2.2 Fundamental stiffness matrix

In this section, the fundamental equations of the large-deflection plates are briefly outlined. The plates are
assumed to be simply supported along all edges and the CPT is applied throughout this work [4]. With the
CPT assumption, the Kirchhoff normalcy condition is incorporated into the displacement components of u0,
v0, and w0 of at a general point (x , y, z)

u0(x, y, z) = u(x, y) − z
∂w(x, y)

∂x
,

v0(x, y, z) = v(x, y) − z
∂w(x, y)

∂y
,

w0(x, y, z) = w(x, y), (8)

where u, v and w are similar components at the middle surfaces (z = 0). Substituting Eq. (8) into the Green’s
in-plane nonlinear strain gives rise to the following expression at a general point [6]

ε0 = [
εx , εy, γxy

]T = ε + zϕ, (9)

where ε0 is the strain of the strip at a random point. In addition, ε and ϕ are the nonlinear strain–displacement
relationship and the curvature variation of the middle surfaces (z = 0) at the strip, respectively, which can be
expressed as
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ε =

⎡
⎢⎢⎢⎣

∂u
∂x + 1

2

(
∂w
∂x

)2

∂v
∂y + 1

2

(
∂w
∂y

)2

∂u
∂y + ∂v

∂x + ∂w
∂x

∂w
∂y

⎤
⎥⎥⎥⎦ , ϕ =

⎡
⎢⎢⎢⎣

− ∂2w
∂x2

− ∂2w
∂y2

−2 ∂2w
∂x∂y

⎤
⎥⎥⎥⎦ . (10)

The strain of the strip at a general point ε can be divided into two parts, which are the linear strain εl and the
nonlinear strain εnl . Thus the total strain ε can be expressed as the sum of these two strains εl + εnl through
applying Eq. (4). The linear strain εl and the nonlinear strain εnl can be denoted as

εl = D1d, εnl = D2(d)d. (11)

where D1 defines the relationship of the linear strain–displacement expressed as

D1 =
[
D1m
3×4m

D1b
3×4m

]
,

D1m
3×4m

=

⎡
⎢⎢⎢⎢⎣

∂hL
∂x Su O

1×2m

O
1×2m

hL
∂Cv

∂y

hL
∂Su
∂y

∂hL
∂x Cv

⎤
⎥⎥⎥⎥⎦

, D1b
3×4m

= −z

⎡
⎢⎢⎢⎣

∂2hw

∂x2
Sw

hw
∂2Sw

∂y2

2 ∂hw

∂x
∂Sw

∂y

⎤
⎥⎥⎥⎦ , (12)

and D2(d) defines the relationship of the nonlinear strain–displacement expressed as

D2(d) =
[

O
3×4m

Dw
2

3×4m

]
, (13)

and

Dw
2

3×4m
= diag(dTw, dTw, dTw)

⎡
⎢⎢⎢⎣

1
2S

T
w

∂hTw
∂x

∂hw

∂x Sw

1
2

∂STw
∂y hTwhw

∂Sw

∂y

STw
∂hTw
∂x hw

∂Sw

∂y

⎤
⎥⎥⎥⎦ . (14)

Here O denotes the zero matrix. As for the general elastic materials, the elastic deformation energy U =
1
2

∫
εT0 σ dV can be defines through applying Eq. (11) as follow

U = 1

2

∫
εT0 Qε0dV = 1

2
dT ke (d) d, (15)

where Q is elastic constant matrix, with relationship of QT = Q, and the elastic stiffness matrix ke (d) of the
strip is expressed as

ke (d) =
∫

(D1 + D2(d))T Q (D1 + D2(d))dV . (16)

The first item
∫
DT
1 QD1dV within the integral operator denotes the constant elastic stiffness coefficient, the

second item
∫
DT
1 QD2(d)dV and the third item

∫
DT
2 (d)QD1dV can take the first-order nonlinear stiffness

with respect to the displacement vector d into account, and the last item
∫
DT
2 (d)QD2 (d)dV expresses the

effect of the second-order nonlinear stiffness with respect to the displacement vector d.
As shown in Fig. 1b, if the strip is assumed to be loaded with linearly varying edge tractions, then the

membrane compressive loads can be expressed as

Tx = Ti − (
Ti − Tj

) x

b
, (17)
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Fig. 2 Global rotational angular of cross section of the strip

where Ti and Tj are the forces in two nodes of the strip, b is the width of the strip, x is the transverse coordinate
in the local coordinate system. Similar to the deduction of the elastic stiffness matrix, the potential energy
induced by the membrane compressive loads can be expressed as

W =
∫

1

2
Tx

[(
∂u

∂y

)2

+
(

∂v

∂y

)2

+
(

∂w

∂y

)2
]
dV = 1

2
dT

(∫
TxGTG dV

)
d, (18)

where G defines the relationship between the second-order strain components and the displacement vector

G = diag

(
hL

∂Su
∂y

,hL
∂Cv

∂y
,hw

∂Sw

∂y

)
. (19)

Then the geometric stiffness matrix of the strip element can be expressed as

kg =
∫

TxGTG dV . (20)

According to the condition of the displacement continuum and the coordinate transformation, the relationship
between the displacement vectors in the nodal line from the local coordinate to the global coordinate and a
rotation angle α as shown in Fig. 2, can be determined by the following equation

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui
u j

vi

v j

wi

θi

w j

θ j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

global

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosα 0 0 0 − sin α 0 0 0
0 cosα 0 0 0 0 − sin α 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

sin α 0 0 0 cosα 0 0 0
0 0 0 0 0 1 0 0
0 0 sin α 0 0 0 cosα 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui
u j

vi

v j

wi

θi

w j

θ j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

local

. (21)

2.3 The control equation of thin-walled member

According to the virtual work principle, the global control equation of the thin-walled member can be obtained
by using the elastic deformation energy in Eq. (15) and the compression potential energy in Eq. (18) and the
coordinate transformation relationship Eq. (21), that is

(Ke(D) − Kg)D = 0, (22)

whereKe(D) andKg are the global elastic stiffness matrix and the global geometric stiffness matrix.Ke(D) and
Kg can be deduced from the stiffness matrix ke (d) and kg via coordinate transformation of the strip member,
respectively, and D is the global displacement vector of the thin-walled member which can be expressed as

D = [D1
u, D2

u, . . . , Dm
u , D1

v, D2
v, . . . , Dm

v , D1
w, D2

w, . . . , Dm
w]T . (23)

Here, if it is defined that p = 1, 2, 3, . . . ,m, then Dp
u and Dp

v are the in-plane displacement vectors of the pth
axial half-wave with respect to the global coordinate X and Y , correspondingly, and Dp

w is the out-of-plane
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displacement vector of the pth axial half-wave with respect to the global coordinate Z . Assuming T0(x) is the
initial axial force, the real axial force in the geometric stiffness matrix can be expressed as

T (x) = λT0(x), (24)

where λ is the load factor. Therefore, the geometric stiffness matrix Kg can be rewritten as the proportionate
function of the initial geometric stiffness matrix Kg

∣∣
T0

caused by initial axial force T0(x) and the load factor
λ, that is

Kg = λ Kg
∣∣
T0

. (25)

By substituting Eq. (25) into Eq. (22), the control equation of the buckling analysis of the thin-walled member
can be rewritten as

(
Ke(D) − λ Kg

∣∣
T0

)
D = 0. (26)

Equation (26) gives the nonlinear relationship between the global displacement vector D and the generalized
axial force described by the load factor λ and the initial geometric stiffness matrix Kg

∣∣
T0
. For the initial post-

buckling analysis of the thin-walled member, only the geometrical nonlinear strain–displacement relationship
shown in Eq. (11) has been taken into account here.

3 Invariant matrices for stiffness computation

As for the elastic stiffness matrix of the strip element ke (d) given in Eq. (16), the unknown displacement
vector d can be contained clearly. However, it will be changed due to the integral and must be re-evaluated
again in the buckling analysis of the thin-walled member for the difference configurations.

Here we deduce several invariant matrices to express the elastic stiffness matrix, and then directly avoid
the huge computational consumption caused by the repeating integrations of stiffness matrix. As far as the
authors known, there is no notice in currently available bibliography of the use of these invariant matrices that
considerably reduce computational time in the post-buckling analysis.

3.1 Invariant matrices

In order to facilitate the analysis procedure, the elastic stiffness matrix ke (d) is divided into four parts

ke (d) = ke1 + ke2(d) + ke3(d) + ke4(d), (27)

where

ke1 =
∫

DT
1 QD1dV , ke2(d) =

∫
DT
1 QD2 (d) dV ,

ke3(d) =
∫

DT
2 (d)QD1dV , ke4(d) =

∫
DT
2 (d)QD2 (d) dV . (28)

ke1 is defined as a constant matrix expressed as

ke1 =
⎡
⎣
ke1m O

4m×4m

O
4m×4m

ke1b

⎤
⎦ , (29)

while ke2(d), ke3(d) and ke4(d) are linear or quadratic functions of the displacements and need repeating
integral calculations once the displacement vector changes.

In order to avoid the repeating operations, the unknown displacement vector d is extracted outside the
integral calculation. Firstly, three 1 × 4m row matrices are defined as,
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A = [a1, a2, . . . , a4m] = 1

2
STw

∂hTw
∂x

∂hw

∂x
Sw,

B = [b1, b2, . . . , b4m] = 1

2

∂STw
∂y

hTwhw

∂Sw

∂y
,

C = [c1, c2, . . . , c4m] = STw
∂hTw
∂x

hw

∂Sw

∂y
, (30)

where ai , bi , ci (i = 1, 2, . . . , 4m) are the column matrices. Then Eq. (14) is rewritten as

Dw
2 =

[ (
dTwA

)T (
dTwB

)T (
dTwC

)T ]T
. (31)

Secondly, since the transpose of the scalar quantity equals to itself, the items on the right side of Eq. (31) can
be expressed as

dTwU = [dTwu1, dTwu2, . . . , dTwu4m] = [uT1 dw,uT2 dw, . . . ,uT4mdw],
(U = A,B,C;u = a, b, c). (32)

Defining a 16m2 × 4m nodal line coordinate matrix

Xw
16m2×4m

= diag(dw, dw, . . . , dw), (33)

the nodal line coordinate dw can be then shift from the front to the back of the rowmatricesA,B,C in Eq. (31),

Dw
2 = JXw, (34)

where the 3 × 16m2 spare matrix J can be defined as

J
3×16m2

=
[
Ā
T
B̄
T
C̄
T

]T
, (35)

and

Ū
1×16m2

= [uT1 ,uT2 , . . . ,uT4m], (U = A,B,C;u = a, b, c). (36)

Thirdly Eqs. (12), (13), and (34) are cooperatively used to determine the stiffness matrix

ke2(d) =
[

O
8m×4m

In1Xw

]
, (37)

where the first invariant matrix In1 of the stiffness matrix can be defined as

In1 =
[
In1m
In1b

]
=

⎡
⎢⎣

∫
DT
1m

4m×3
QJdV

∫
DT
1b

4m×3
QJdV

⎤
⎥⎦ . (38)

Since In1 independent on the displacement vector d, it requires analytical integration only once in advance for
the buckling analysis of the thin-walled members. Analyzing the stiffness matrix defined by Eqs. (33), (37),
and (38), we note that the integral calculation of the matrix ke2(d) given in Eq. (37) depends on the unknown
displacement vector d. However, it also can be evaluated by the multiple operator of the first invariant matrix
In1 and the nodal line coordinate matrix Xw. Compared with the integral calculation of the stiffness matrix of
ke2(d), the matrix multiple given in Eq. (37) can be more efficient which will be verified by the example in
next section.

Since the elastic constant matrix Q is symmetrical, the transpose of the elastic stiffness matrix ke2(d) is
ke3(d), that is

ke3(d) = kTe2(d). (39)
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Thus the elastic stiffness matrix ke3(d) also can be easily obtained by the matrix multiple In1 and Xw given in
Eq. (37).

Substituting Eq. (13) into the stiffness matrix ke4(d), we can get

ke4(d) =
∫ ⎡

⎣
O

4m×4m

O
4m×4m

O
4m×4m

DwT
2 QDw

2

⎤
⎦dV . (40)

The stiffness matrix ke4(d) can be further derived by applying Eq. (34) into the following form

ke4(d) =
∫ ⎡

⎣
O

4m×4m

O
4m×4m

O
4m×4m

XT
wJ

TQJXw

⎤
⎦dV . (41)

Because the zeros matrices and the nodal line coordinate matrixXw are independent on the integral calculation,
Eq. (41) is rewritten as

ke4(d) =
⎡
⎣

O
4m×4m

O
4m×4m

O
4m×4m

XT
wIn2Xw

⎤
⎦ , (42)

where the second invariant matrix In2 of the stiffness matrix can be defined as

In2 =
∫

JTQJdV . (43)

Since the invariant matrix In2 is a 16m2 × 16m2 constant matrix, it requires analytical calculation only once
beforehand. Then the integral of the matrix ke4(d) defined in Eq. (28) can be transformed into three matrices(
XT

w, In2, Xw

)
multiples in turn.

Furthermore, substituting Eqs. (37), (39), and (42) are substituted into Eq. (27), the elastic stiffness matrix
can be obtained, which is the function of the invariant matrices

ke(d) =
[
ke1m In1mXw

XT
wI

T
n1m ke1b + In1bXw + XT

wI
T
n1b + XT

wIn2Xw

]
, (44)

and the elastic deformation energy given in Eq. (15) can be rewritten in the following form

U = 1

2
dT

[
ke1m In1mXw

XT
wI

T
n1m ke1b + In1bXw + XT

wI
T
n1b + XT

wIn2Xw

]
d. (45)

This elastic deformation energy is important for the post-buckling analysis of the thin-walled members based
on the energy SA-FSMs [19,25].

3.2 Computational process analysis

In above section, two invariant matrices In1, In2 and the nodal line coordinate matrix Xw defined in Eqs. (38),
(43), and (33), respectively, are introduced to improve the computational efficiency of the stiffness matrix in
the finite strip method for the buckling analysis of the thin-walled members.

In order to clearly compare the solution processes with and without invariant matrices, two corresponding
flowcharts are summarized in Fig. 3a, b, both of which can be divided into the following three stages:

In stage 1, all computational parameters of the structural system can be set firstly which include the length
a and the width b of the strip, the number n of the strips, the thickness h of the strip element, initial axial
force of each strip T0, elastic modulus E , Poisson’s ratio μ, the maximum load factor λmax , and load factor
increment	λ. Then the linear term of elastic stiffness matrix and geometric stiffness matrix will be calculated.
The initial test solution D0 and the critical buckling load factor will be evaluated by the control equation of
linear derivation system which neglects the stiffness items Ke2(D), Ke3(D) and Ke4(D) in Eq. (26). The two
Stage 1 of both procedures described by Fig. 3a, b are the same.
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3Stage

2Stage

1Stage

2Stage

3Stage

1Stage(a) (b)

Fig. 3 Calculation flowcharts a with and b without invariant matrices

Stage 2 is different for two procedures. When the proposed algorithm as shown in stage 2 in Fig. 3b is used,
the invariant matrices In1 = ∫

DT
1 QJdV and In2 = ∫

JTQJdV can be evaluated firstly. These integration
operations are required to be calculated only once and have been shifted out from the following iterations. Then
set the initial load factor λ and substitute it into the nonlinear control Eq. (26), calculate the elastic stiffness
matrices ke2(d), ke3(d), and ke4(d) by the matrix multiplication operations, respectively, given in Eqs. (37),
(39), and (42) and assemble the elastic stiffness matrices Ke2(D), Ke3(D), and Ke4(D) in global coordinate
system. As for the traditional method, the elastic stiffness matrices ke2(d), ke3(d), and ke4(d) in Eq. (28) will
be integrated and these integral operation must be implemented in each step of the iterative calculation for the
nonlinear algebra Eq. (26). The method proposed in this study, however, transforms the integral operations into
the matrix multiplication operations of the invariant matrices and the displacement vector matrices as shown
in Eqs. (37), (39), and (42), which effectively avoids complex and time-consuming iterative integrations.
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Stage 3 given in Fig. 3a or b is the same for two procedures. Firstly, the global stiffness matrix can be
evaluated, the test solution of which can be substituted into the nonlinear control equation (Eq. 26). Then the
solution Dnew of the control equations is obtained by the iterative update based on Newton’s method, through
which the convergence of the iterative process is checked. If the convergence condition derived from Eq. (26)

lg
[∣∣∣

(
Ke(D0) − λ Kg

∣∣
T0

)
Dnew

∣∣∣
]

≤ −12 (46)

is satisfied, the solution Dnew can be regarded as the requested one and saved. Otherwise, the solution Dnew
will be set back as the initial test solution D0 into the nonlinear control equation (Eq. 26) for further iterative
calculations until it satisfies the convergence condition. The obtained solution here is the displacement vector
corresponding to the load factor given in stage 2. Hereafter, a new load factor λ + 	λ is substituted into stage
2 to start the next calculation loop with 	λ being as the load factor increment until the new load factor reaches
the maximum load factor λmax .

The comparison between two calculation flowcharts shows that the main difference with and without
invariant matrices is in stage 2. The fundamental idea of the proposed procedure in this study is to transform
the integral operation of ke2(d), ke3(d), and ke4(d) into the matrix multiplication calculation and only half
nonzero elements in ke2(d) and a quarter of nonzero elements in ke4(d) are required to calculated.

4 Examples and analysis

In this section, several benchmark examples are studied and the corresponding results are compared with
those available in the literature or by the FEM, to demonstrate the feasibility, accuracy, and efficiency of
the proposed method with MATLAB program. Firstly a classical isotropic square thin plate is analyzed, and
the theoretical, the FSM’s and the experimental results are compared. Secondary, the thin-wall members of
L-section and Z -section member are built by ABAQUS software, and take it as a benchmark to verify the
proposed method in this study. Finally, the high efficiency of the proposed method can be approved by the
comparison of calculation times generated from the two FSMs with and without invariant matrices.

4.1 Illustrations of square thin plate

A square isotropic plate with side length subjected to uniaxial uniform pressure, of a is considered. The analysis
is based on the CPT condition in which all the plate edges are simply supported, recorded as “SSss”. The basic
parameters are given: Elastic Modulus: E = 2 × 105 N/mm; Poisson’s ratio: μ = 0.326; Shear Modulus:
G = E/2(1 + μ); Width: a = 500mm; Thickness: h = 10mm; Critical force: T0 = 4πEh3/12a2(1 − μ2);
Dimensionless deflection: W = w/h; Dimensionless load factor: λ = T/T0. This problem was previously
studied by the explicit formulation [46] and the experimental method [47]. Later a two-step perturbation
method was proposed to solve von Karman equations, which give rise to the higher-order asymptotic solutions
and post-buckling equilibrium paths for perfect and imperfect rectangular plates [48].

Here this benchmark example is studied by the proposed FSM and the square thin plate member is divided
into 5 strips evenly along the loaded edge. Figure 4 shows the relationships between the dimensionless deflection
W at the center point O1 of the plate and the dimensionless load factor λ calculated by the proposed FSMwith
five strip elements, the curves of the theoretical results [48] and the experimental results [47]. The comparison
results show that the proposed FSM has good precision for the initial post-buckling analysis of plate members
under the boundary condition of simply supported each edge.

Figure 5 depicts the variation of out-of-plane deflection for plates at section y = a/2 under different
load factor achieved from the FSM and the theoretical results [48]. From Fig. 5, it can be found that under the
same load factor, the out-of-plane deflections of the plates obtained by the twomethods have good consistency,
which clearly proves that the initial post-bucklingmodewith the proposed FSM agrees well with the theoretical
results.

4.2 Illustrations of L-section member

In this part, the L-section member with the rotation corner is taken into account to verify the reliability of the
proposed method for the thin-walled structures. Assume the member is subjected to uniaxial uniform pressure,
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Fig. 5 The out-of-plane deflection of the plate at section y = a/2 with several load factor

with the load edges are simply supported and the unload edge are free, namely recorded as “SSff”. The basic
parameters will be given: elastic modulus: E = 2 × 105 N/mm2; Poisson’s ratio: μ = 0.3; shear modulus:
G = E/2(1 + μ); length: a = 400mm; flange width: b f = 200mm; thickness: h = 10mm; initial axial
force: T0 = πEh3/12a2(1−μ2); dimensionless deflection:W = w/h; dimensionless load factor: λ = T/T0.
The finite element model is built up by software ABAQUS to verify the proposed FSM. The shell element in
ABAQUS has been used. Since the ratio of width to thickness is large enough, the influence of shear strain can
be neglected.Within the ABAQUS software, the linear buckling analysis is divided into two steps. The first step
is a linear static analysis that determines the stress for a given reference load group. And the second step is a
feature value analysis that provides results based on load factors (eigenvalues) andmode shapes (eigenvectors).
Having obtained the modes from linear buckling analysis in the manner described above, they are then used
as postulated imperfections in order to perform nonlinear analysis. In this analysis process, the corresponding
mode shape is scaled by a small factor and the geometry of the plate is updated by using this mode shape as
the new imperfection. The L-section member is evenly divided into 4 strip elements along the loaded edge,
with the width of the strip at 100mm. In order to obtain the sufficient computational precision in the FEM’s
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simulation the thin-wall member will be divided into 1600 square block elements with the 10mm×10mm
mesh gird size.

The relationships between the deflection of the middle point P1 of the flange’s lateral edge and the load
factor can be obtained by the FSM and the FEM, which are shown in Fig. 6. From this figure, it should be
noticed that for the given L-section member, the FSM results agree well with that achieved from the FEM.
In addition, Fig. 7 depicts the out-of-plane deflections for L-section member at the location y = a/2 under
different load factors λ = 0.1, 3, 4, 5 obtained by the FSM and the FEM. It shows that under the same
load factor, the buckling modal obtained by FSM and FEM significantly consistent with each other. Both
comparative results shown in Figs. 6 and 7 verify the feasibility and high accuracy of the proposed FSM for
the initial post-buckling analysis.
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4.3 Illustrations of Z -section member

A Z-section member, as shown in Fig. 8, with the “SSff” boundary condition subjected to uniaxial uniform
pressure is studied to further validate the feasibility of the proposed method. The basic parameters are given:
elastic modulus: E = 2 × 105 N/mm2; Poisson’s ratio: μ = 0.3; shear modulus: G = E/2(1 + μ); length:
a = 500mm; section width: bc = 300mm; flange width: b f = 100mm; thickness: h = 10mm; initial axial
force: T0 = πEh3/12a2(1−μ2); dimensionless deflection:W = w/h; dimensionless load factor: λ = T/T0.
The finite element model with 2500 number of 10mm×10mm square block elements to reach the adequate
precision will be built by ABAQUS software to demonstrate the feasibility, accuracy of the proposed method.
The model of the FSM is divided into 5 strip elements along the loaded edge evenly, with the width of each
strip at 100mm. According to coordinate transformation in Eq. (21), the rotation angles α of the strips are set
as 90◦, 0◦, 0◦, 0◦, 90◦ in turn.

Figure 8 shows the relationships between the initial post-buckling deflections at the middle point Q1 of
the flange’s lateral edge, the groove center point Q2 of the member and the load factor λ calculated by the
proposed FSM and the FEM. It indicates that for the initial post-buckling analysis the deflections at the flange
and the center of the section are almost the same under the same load factor thought FSM. This phenomenon is
consistentwith the results of FEMmodeling. Secondly, it should be noticed that theFSMresults are significantly
close to the FEM results with 2500 elements when the number of the strips is equal to 5. Hence we may find
that the proposed FSM can achieve approximately accuracy of FEM with fewer elements for the initial post-
buckling analysis of Z -sectionmembers, under the “SSff” boundary condition. Figure 9 depicts the out-of-plane
deflections of the Z-section member at the location y = a/2 under different load factors λ = 0.1, 5, 10, 12
obtained by the FSM and the FEM. It reveals that even if the Z-section member itself has rotation corner,
the out-of-plane deflection by these two methods still have good consistency in the global coordinate. The
comparisons in Figs. 8 and 9 could confirm that the method proposed in this paper is an applicable, effective,
and precise method for solving the initial post-buckling of plates and thin-walled members.

4.4 Comparative analysis

According to the comparative results of above three cases, it should be noticed that the FSM with invariant
matrices possesses sufficient precision for the initial post-buckling analysis. In order to elaborated the efficiency
of the FSM with invariant matrices, a thin plate member with the same materials as mentioned in Sect. 4.1,
the “SSss” boundary condition and the uniaxial uniform pressure is taken into account.

In Table 1, the comparative results of CPU time by the FSM with and without invariant matrices are pre-
sented. The model of the length–width ratio of the plate β = 0.95 (, 2.1, 3.2) is considered by the FSM with
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the number of finite strips 3 (, 4, 5). The load factor λ changes from 0.1 to 1 (, 3 and 5) with an interval of 0.1
and the maximum half-wave number m is 1 (, 2, 3) in the case of β = 0.95 (, 2.1, 3.2), respectively. If the
CPU times of the FSM with and without invariant matrices is donated as Twi th and Twi thout , then the ratio of
the CPU time η between the FSMs without and with invariant matrices is defined as

η = Twithout
Twith

, (47)

Figure 10 depicts post-buckling modes of the three examples in Table 1. The program is implemented by
MATLAB platform, and the program code is implemented in the Lenovo computer with Intel(R) Core(TM)
i7- 4790CPU@ 3.60GHz and Windows 7 system. From the first (, second and third) row datum of Table 1, it
can be seen that the CPU time of the FSMwithout invariant matrices is 9.09×103 (, 1.74×105 and 1.05×107)
seconds, the CPU time of the FSM with invariant matrices is 9.1× 101 (,5.92× 103 and 2.14× 105) seconds,
and the corresponding ratio of the CPU time η without and with invariant matrices is 9.89 (, 29.39 and 49.07).
It can be seen clearly that the ratio η of consumed time with and without invariant matrices is closed to the
number 10 (, 30 and 50) of load factor calculations of the first (, second and third) row datum of Table 1 because
the FSMwith invariant matrices can economize the CPU time for each load factor. So we can conclude that the
FSM by using the invariant matrices can improve the computational efficiency obviously and as the number
of calculated load factor increase this advantage of the FSM is more apparent. The tremendously boosted
efficiency of FSM can be extensively used in engineering field.
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Table 1 Comparison of the CPU time of the plates under several parameter types with and without invariant matrix

Strip Ratio β Maximum half-wave Load factor λ Invariant CPU time (s) Multiple of consumed
number number m matrix time η

3 0.95 1 [0.1, 0.2, 0.3, …, 1] With 9.1 × 101 9.89
Without 9.09 × 102

4 2.1 2 [0.1, 0.2, 0.3, …, 3] With 5.92 × 103 29.39
Without 1.74 × 105

5 3.2 3 [0.1, 0.2, 0.3, …, 5] With 2.14 × 105 49.07
Without 1.05 × 107

5 Conclusion

In order to efficiently evaluate the stiffness matrix and the elastic force in the initial post-buckling analysis of
thin-walled members, two invariant matrices In1 = ∫

DT
1 QJ dV and In2 = ∫

JTQJ dV have been deduced
and applied to transform the analytical integral of the stiffness matrix into the matrix multiple calculation.
Three benchmark examples are studied and the results are compared with those available in the literature or
by the FEM, to demonstrate the feasibility, accuracy and efficiency of the proposed method. The results deter-
mined by different methods can verify the proposed FSM with invariant matrices is an effective and efficient
technology to analyze the initial post-buckling of thin-walled members.

In addition, the essential advantage of the proposed FSM with invariant matrices are summarized as: (1)
The invariant matrices just need to be analytically integrated in advance only once; (2) the analytical integral
of the stiffness matrix can be transformed into the matrix multiple calculation; (3) highly efficient analysis of
the initial post-buckling of thin-walled members can be implemented.

Acknowledgements The research is financed by Science Challenge Project in China (JCKY2016212A 506-0104), Natural
Science Foundation of China (11472135), Natural Science Foundation of Jiangsu Province, China (BK20130911).

References

1. Jones, R.M.: Buckling of Bars, Plates, and Shells. Bull Ridge Corporation, Blacksburg (2006)
2. Bloom, F., Coffin, D.: Handbook of Thin Plate Buckling and Postbuckling. Chapman and Hall/CRC, Boca Raton (2000)
3. Ferri, A.M.H.: Buckling and Postbuckling Structures: Experimental, Analytical and Numerical Studies. World Scientific,

Singapore (2008)
4. Eslami, M.R.: Eslami, Jacobs: Buckling and Postbuckling of Beams, Plates, and Shells. Springer, New York (2018)
5. Ni, X.Y., Prusty, B.G., Hellier, A.K.: Buckling and post-buckling of isotropic and composite stiffened panels: a review on

analysis and experiment (2000–2012). Trans. R. Inst. Naval. Archit. Part A1 Int. J. Marit. Eng. 157, 9–29 (2015)
6. Loughlan, J., Hussain, N.: The in-plane shear failure of transversely stiffened thin plates. Thin-Walled Struct 81, 225–235

(2014)
7. Cheung, Y.K., Tham, L.G.: The Finite Strip Method. CRC Press, Boca Raton (1997)
8. Smith, T.R.G., Sridharan, S.: A finite strip method for the post-locally-buckled analysis of plate structures. Int. J. Mech.

Sci. 20(12), 833–842 (1978)
9. Lengyel, P., Cusens, A.R.: A finite strip method for the geometrically nonlinear analysis of plate structures. Int. J. Numer.

Methods Eng. 19(3), 331–340 (1983)
10. Gierlinski, J.T., Smith, T.R.G.: The geometric non-linear analysis of thin-walled structures by finite strips. Thin-Walled

Struct. 2(1), 27–50 (1984)
11. Azizian, Z.G., Dawe, D.J.: Analysis of the Large Deflection Behaviour of Laminated Composite Plates Using the Finite

Strip Method. Composite Structures 3, pp. 677–691. Springer, Dordrecht (1985)
12. Dawe, D.J., Lam, S.S.E., Azizian, Z.G.: Finite strip post-local-buckling analysis of composite prismatic plate structures.

Comput. Struct. 48(6), 1011–1023 (1993)
13. Wang, S., Dawe, D.J.: Finite strip large deflection and post-overall-buckling analysis of diaphragm-supported plate

structures. Comput. Struct. 61(1), 155–170 (1996)
14. Dawe, D.J.: Finite Strip Buckling and Postbuckling Analysis. Buckling and Postbuckling of Composite Plates, pp. 108–153.

Springer, Dordrecht (1995)
15. Akhras, G., Cheung, M.S., Li, W.: Geometrically nonlinear finite strip analysis of laminated composite plates. Compos.

Part B Eng. 29(4), 489–495 (1998)
16. Zou, G., Qiao, P.: Higher-order finite strip method for postbuckling analysis of imperfect composite plates. J. Eng. Mech.

128(9), 1008–1015 (2002)
17. Zou, G.P., Lam, S.S.E.: Post-buckling analysis of imperfect laminates using finite strips based on a higherc—plate theory.

Int. J. Numer. Methods Eng. 56(15), 2265–2278 (2003)



An efficient finite strip procedure for initial post-buckling analysis 601

18. Chen, Q., Qiao, P.: Post-buckling analysis of composite plates under combined compression and shear loading using finite
strip method. Finite Elem. Anal. Des. 83, 33–42 (2014)

19. Ovesy, H.R., Loughlan, J., Assaee, H.: The compressive post-local bucking behaviour of thin plates using a semi-energy
finite strip approach. Thin-Walled Struct. 42(3), 449–474 (2004)

20. Assaee, H., Ovesy, H.R., Hajikazemi, M.: A semi-energy finite strip non-linear analysis of imperfect composite laminates
subjected to end-shortening. Thin-Walled Struct. 60, 46–53 (2012)

21. Ovesy, H.R., Assaee, H., Hajikazemi, M.: Post-buckling of thick symmetric laminated plates under end-shortening and
normal pressure using semi-energy finite strip method. Comput. Struct. 89(9–10), 724–732 (2011)

22. Hajikazemi, M., Ovesy, H.R., Sadr-Lahidjani, M.H.: A semi-energy finite strip method for post-buckling analysis of
relatively thick anti-symmetric cross-ply laminates. Key Eng. Mater. 471–472, 426–431 (2011)

23. Ovesy, H.R., Hajikazemi, M., Assaee, H.: A novel semi energy finite strip method for post-buckling analysis of relatively
thick anti-symmetric laminated plates. Adv. Eng. Softw. 48(1), 32–39 (2012)

24. Ghannadpour, S.A.M., Ovesy, H.R.: An exact finite strip for the calculation of relative post-buckling stiffness of I-section
struts. Int. J. Mech. Sci. 50(9), 1354–1364 (2008)

25. Hajikazemi, M., Ovesy, H.R., Assaee, H., et al.: Post-buckling finite strip analysis of thick functionally graded plates. Struct.
Eng. Mech. 49(5), 569–595 (2014)
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28. Borković, A., Kovačević, S., Milašinović, D.D., et al.: Geometric nonlinear analysis of prismatic shells using the
semi-analytical finite strip method. Thin-Walled Struct. 117, 63–88 (2017)

29. Yanlin, G., Shaofan, C.: Postbuckling interaction analysis of cold-formed thin-walled channel sections by finite strip method.
Thin-Walled Struct. 11(3), 277–289 (1991)
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