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Abstract This paper presents a theoretical study of the frequency assignment problem of a coupled system via
structural modification of one of its subsystems. It deals with the issue in which the available modifications are
not simple; for example, they are not point masses, grounded springs, or spring-mass oscillators. The proposed
technique is derived based on receptance coupling technique and formulated as an optimization problem. Only
a few receptances at the connection ends of each subsystem are required in the structural modification process.
The applicability of the technique is demonstrated on a simulated rotor system. The results show that both
bending natural frequencies and torsional natural frequencies can be assigned using a modifiable joint, either
separately or simultaneously. In addition, an extension is made on a previously proposed torsional receptance
measurement technique to estimate the rotational receptance in bending. Numerical simulations suggest that
the extended technique is able to produce accurate estimations and thus is appropriate for this frequency
assignment problem of concern.

1 Introduction

In the field of receptance-based inverse structural modification, the forms of modifications are often limited to
rank-one modifications or single-DoF (degree of freedom) oscillators. These modifications are easy to imple-
ment and have been studied thoroughly in the past. They are able to produce satisfactory results for dynamic
property assignments when the number of modifications is adequate and the desired dynamic properties are not
far away from the original ones. Liu et al. [1] achieved an eigenstructure assignment for a 5-DoF system using
additional multiple single-DoF oscillators. However, there are situations in which modifications are flexible
bodies and have multiple DoFs in order to bring greater dynamical influences on the structure of interest; the
connection for modifications might also couple with multiple DoFs of the structure. The overhanging mass
modification on a helicopter tailcone presented by Mottershead et al. [2] was a good example. Apparently, this
type of structural modification problems can be studied in the fashion of forward structural modification and
using system matrices. Park and Park [3] studied the receptance-based structural modification of coupling of
substructures using eigenvalue sensitivity and eigenvalue reanalysis. Still, studying the problem in the inverse
structural modification fashion is beneficial and would be a more straightforward approach for engineers.
Hence, this paper aims to address the inverse structural modification problem of using modifications with
additional DoFs based on receptances.
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There have not beenmany studies focusing on the aforementioned structural modification problem. Related
publications are reviewed as follows. Ozguven [4] proposed a general method to determine the receptances
of a modified structure using receptances of the original structure and the dynamic stiffness matrix of the
modification. The modification can be local or has additional DoFs. This idea was extended by Hang et al. [5]
to study the forward structural modification of distributed systems. Their study incorporated the condensation
procedures to circumvent the lack of rotational FRFs in experimental measurements. However, a condensation
procedure inherently induces approximation error and thus the usable frequency range can be limited [6].
Structural modifications with additional DoFs, involving beam and plate, on a 3D structure were studied by
Hang et al. [7] using a similar method.Wang and Zhu [8] predicted the response of a modified system using the
subsystems’ FRFs, response of the original system, and the dynamic stiffness matrix of the modifications. The
response prediction for six structural modification scenarios without additional DoFs was presented. The FRF-
based calculation of the nonlinear FRFs of a linear system with local nonlinear modifications was later studied
by Kalaycıoğlu and Özgüven [9] using the describing function method. The nonlinearity in a modification can
be caused by, for instance, the clearances, friction, and nonlinear stiffness. Moreover, the decoupling problem
for nonlinear systems was recently studied by Kalaycıoğlu and Özgüven [10].

Another type of method that can determine the receptances of a modified structure is substructure cou-
pling. There are mainly two approaches to a substructure coupling problem [11]: (i) modal substructuring
or component mode synthesis (CMS) and (ii) FRF-based substructuring (FBS). The Craig-Bampton method
[12], proposed in 1968, is the most well-known CMS technique. For instance, Lindberg et al. [13] combined
the Craig-Bampton method with an undeformed coupling interface approach to describe the coupling of soft
and stiff substructures, which could represent the rubber bushings in a vehicle’s suspension system. Although
CMS was proposed earlier than FBS, FBS has recently attracted more attention than CMS since FBS is able to
use measured FRFs directly, and CMS techniques encounter a number of difficulties in their implementation
in practice, for instance, a sufficient number of modes of the substructures has to be considered in order to
accurately approximate the motion of the coupled system and the issue of modal truncation has to be dealt
with. FBS-basedmethods are widely applied in the noise, vibration, and harshness (NVH) problems in vehicles
[14], and the receptance coupling method proposed by Jetmundsen et al. [15] is possibly the most common
and widely implemented FBS method in the frequency domain. A well-known application of the method,
which is the so-called receptance coupling substructure analysis (RCSA), has been applied to the prediction of
chatter-free cutting conditions in milling machines [16,17] and the identification of joint parameters [18,19].

Another FBS-based method was proposed by De Klerk et al. [20] as the Lagrange multiplier frequency-
based substructuring method (LMFBS). The coupled system could be assembled in a dual coupling manner
in which the Lagrange multipliers were introduced to satisfy the force equilibrium between subsystems and
solved with the associated displacement compatibility equations. Both Jetmundsen’s method and LMFBS can
yield the same results; however, in LMFBS, some FRFs at the interfaceDoFs can be ignored so as to avoid using
inaccessible or noisy FRFs and improve the results. In addition, LMFBS can be extended to the substructure
decoupling problem. A detailed discussion on this issue was presented by Voormeeren and Rixen [21]. The
influence of the uncertainties in the measurements of vibration time histories of substructures on interpreted
FRFs was studied by Voormeeren et al. [22]. Statistical moment method was used to quantify the propagated
uncertainties in the coupled system’s FRFs. It was also shown that the small uncertainties in substructures’
FRFs could result in large errors in the FRFs of lightly damped coupled systems.

Although the substructure coupling problemand the problemof parameter identification are close to the idea
of structural modification, only few papers have reported the direct integration of them. Ram [23] determined
the receptance at the connection interface of a coupled system (mass-spring-damper system) which consisted
of two subsystems connected via a spring, a dashpot, or a mass. The result could be directly extended to a
structural modification problem through solving the value of the basic connecting element, which was later
implemented by Birchfield et al. [24] on a coupled simulated rotor model; however, the practical applications
in both papers were restricted since only the basic elements were considered but the connecting elements can
be rather complex in practice. Kyprianou et al. [25] assigned natural frequencies and antiresonance frequencies
of a L-shaped structure through a straight beam. Their approach is receptance based, and thus, the numerical
models of the structure are not required. The assignment was achieved by finding a solution to the multivariate
polynomial equations in the design variables including the breadth, depth, and thickness of the added beam.
Belotti and Richiedei [26] proposed an inverse structure modification method for eigenstructure assignment
using the addition of auxiliary spring-mass systems whose topology was defined in advance. The method
was based on homotopy optimization, which is an effective approach to solving non-convex problems via
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Fig. 1 The schematic of coupling two subsystems

replacing the original objective function with a homotopy map. Although the system matrices were required
in the proposed method, it showed great performances and flexibilities in the assignment problem.

In this paper, receptance coupling technique is implemented to characterize the receptance of a coupled
system in terms of the receptances of the subsystems. The results can be used to assign natural frequencies for
the coupled system via modifying the subsystem. The frequency assignment problem is cast as an optimiza-
tion problem with an additional term penalizing large modifications. A number of numerical examples, which
involve two stationary rotor systems and a joint, are given to demonstrate the validity of the frequency assign-
ment. It is shown that the bending natural frequency and the torsional natural frequency of the coupled system
can be simultaneously or separately assigned. Moreover, the problem of measuring the rotational receptances
(in bending) is also dealt with in this paper. The method proposed by Tsai et al. [27] is extended to produce
high-quality rotational receptance estimations. The proposed rotational receptance estimation technique can
facilitate the implementation of the frequency assignment method to achieve bending and/or torsional natural
frequency assignment in practice.

2 Receptance coupling technique

In this section, the classic receptance coupling technique proposed in [15] is first briefly introduced, and then it
will be extended to predict the receptance functions of a coupled system consisting of three subsystems based
on the receptances from the subsystems.

When applying receptance coupling technique to a coupled system, the conditions of displacement com-
patibility and force equilibrium must be satisfied at the connection interface; moreover, it is assumed that the
subsystems are rigidly connected, i.e., there are no additional degrees of freedom (DoFs) at the connection
interface. The classical receptance coupling technique considers two subsystems A and B rigidly connected
through several DoFs (denoted as t) as shown in Fig. 1. The conditions at the interface can be written as

f t = fAt + fBt , ut = uAt = uBt , (1)

which indicates that the force vector of the coupled system, ft , at the interface is the summation of the force
vectors of the subsystems, fAt and fBt , and that the resultant displacement vector, ut , is equal to the displacement
vectors uAt and uBt , of each subsystem. If the internal DoFs of Subsystems A and B of interest are denoted as
i and j , the displacement vectors on the two subsystems can be represented as{

uAi
uAt

}
=
[
HA

i i HA
i t

HA
ti HA

t t

]{
fi
fAt

}
,

{
uBj
uBt

}
=
[
HB

j j HB
j t

HB
t j HB

t t

]{
f j
fBt

}
. (2)

If the goal is to find the receptance function Hi j of the coupled system, the relationship between uAi and
f j or uBj and fi needs to be established when the reciprocity principle holds. Through Eqs. (1) and (2), it can
be shown that

fBt = (
HB

t t

)−1
ut − (

HB
t t

)−1
HB

t j f j (3)

and

uAt = ut = HA
ti fi + HA

t t ft − HA
t t f

B
t . (4)
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Fig. 2 The schematic showing the coupling of three subsystems

Substituting Eq. (3) into Eq. (4) results in(
I + (

HB
t t

)−1
HA

t t

)
fBt = (

HB
t t

)−1
(
HA

ti fi + HA
t t ft − HB

t j f j
)

. (5)

uAi in Eq. (4) can be expressed explicitly in terms of forces fi , f j , and ft by substituting fBt using Eq. (5), which
leads to

uAi = HA
i i fi + HA

i t ft − HA
i t

(
I + (

HB
t t

)−1
HA

t t

)−1 (
HB

t t

)−1
(
HA

ti fi + HA
t t ft − HB

t j f j
)

. (6)

It is clear that Hi j can be obtained by assuming forces other than f j are zero, that is,

Hi j = HA
i t

(
I + (

HB
t t

)−1
HA

t t

)−1 (
HB

t t

)−1
HB

t j . (7)

Equation (7) can be further improved to require fewer matrix inversions by matrix operations, which results
in

Hi j = HA
i t

(
HB

t t + HA
t t

)−1
HB

t j . (8)

It indicates that the cross receptance of the coupled system can be estimated by the receptance functions of
the subsystems; moreover, the point receptances of the coupled system can also be obtained, for instance,
substituting fBt in Eq. (5) into uBj = HB

j j f j + HB
j t f

B
t gives

H j j = HB
j j − HB

j t

(
HB

t t + HA
t t

)−1
HB

t j . (9)

For the purpose of completeness, the generalized formula for receptance coupling [15], which includes all the
DoFs of the coupled system, is well known as

[H] =

⎡
⎢⎢⎣
HA

i i HA
i t 0

HA
ti HA

t t 0

0 0 HB
t t

⎤
⎥⎥⎦−

⎡
⎢⎣

HA
i t

HA
t t

−HB
j t

⎤
⎥⎦[HA

t t + HB
t t

]−1
[
HA

i t H
A
t t −HB

j t

]
. (10)

2.1 Receptance coupling on three subsystems

The classic receptance coupling technique is to be extended to a coupled system containing three subsystems
as shown in Fig. 2. Two cases are discussed below: the first one is to find the cross receptance Hik where i is
on Subsystem A and k is on Subsystem C (Case 1), and the other is to find the receptances at the connection
interface (Case 2), i.e., DoFs t and p. It will be shown that both cases only require partial information from
subsystems to make the estimation.

Case 1
The coupled system consisting of three subsystems can be regarded as a coupled system of two subsystems if
a new Subsystem D is formed by combining Subsystems A and B. If l denotes any internal DoFs in Subsystem
D, the arrangement of DoFs in the coupled system can be illustrated by Fig. 3.
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Fig. 3 A simplification of the coupling of three subsystems

The cross receptance of the coupled system shown in Fig. 3 can be obtained via Eq. (8) as

Hlk = HD
lp

(
HD

pp + HC
pp

)−1
HC

pk (11)

As Subsystem D is formed by connecting Subsystems A and B, HD
lp and HD

pp in Eq. (11) can be expressed in
terms of the receptances of Subsystems A and B according to Eqs. (7) and (8). Assuming that DoFs l is equal
to DoFs i in Fig. 2, HD

lp and HD
pp can be rewritten by the following equations:

HD
lp = HA

i t

(
HB

t t + HA
t t

)−1
HB

tp (12)

and

HD
pp = HB

pp − HB
pt

(
HB

t t + HA
t t

)−1
HB

tp. (13)

Substituting Eqs. (12) and (13) into Eq. (11), one can obtain

Hik = HA
i t

(
HB

t t + HA
t t

)−1
HB

tp

(
HB

pp − HB
pt

(
HB

t t + HA
t t

)−1
HB

tp + HC
pp

)−1
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pk, (14)

which gives the cross receptance of the coupled system.

Case 2
For the case in which the receptance functions at the connections are of concern, a relatively simple expression
can be obtained. For the system shown in Fig. 2, the displacement vectors of the subsystems and the conditions
of displacement compatibility and force equilibrium can be expressed as{

uAi
uAt

}
=
[
HA

i i HA
i t

HA
ti HA

t t

]{
fi
fAt

}

{
uBt
uBp

}
=
[
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t t HB
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}

{
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}
=
[
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}
(15)

and

fAt + fBt = ft , fCp + fBp = fp, (16)

uAt = uBt = ut ,uCp = uBp = up. (17)

Replacing the force vector in Subsystem B by Eq. (16) and associating fAt and fCp with the corresponding
displacement vectors in Subsystem A and Subsystem C in Eq. (15) lead to{
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}
=
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t t HB
tp

HB
pt HB

pp

]⎛
⎝
{
ft
fp

}
−
⎧⎨
⎩
HA−1

t t

(
ut − HA

ti fi
)

HC−1

pp

(
up − HC

pkfk
)
⎫⎬
⎭
⎞
⎠ . (18)
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Fig. 4 Schematic of the numerical model

Denoting HB =
[
HB

t t HB
tp

HB
pt HB

pp

]
and HAC =

[
HA

t t 0
0 HC

pp

]
, pre-multiplying both sides by the inverse of HB,

and rearranging the equation further reduce the above displacement vector as{
ut
up

}
=
(
H−1

B + H−1
AC

)−1
({

ft
fp

}
+ H−1

AC

[
HA

ti 0
0 HC

pk

]{
fi
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})
. (19)

Note that

{
uBt
uBp

}
is equal to

{
ut
up

}
according to Eq. (17). Since only the DoFs at the interface are of interests,

it can be assumed that fi = fk = 0. The receptance relations at the interface DoFs of the coupled system can
then be represented as{

ut
up

}
=
(
H−1

B + H−1
AC

)−1
{
ft
fp

}
= HAC (HAC + HB)−1HB

{
ft
fp

}
. (20)

Equation (20) shows that the receptances at the interface of the coupled system can be determined by the
receptances at the connections of the subsystems. It is also clear that the natural frequencies of the coupled
system make det (HAC + HB) vanish.

3 Numerical simulation

The frequency assignment through coupling of subsystems is studied through numerical simulations in this
section. The technique used for the frequency assignment is mainly based on Eq. (20). It should be noted that
not every natural frequency can be assigned to the coupled structure as the structural modifications usually do
not modify the whole structure but only a few design parameters. Moreover, the design parameters are usually
confined by their design constraints. Therefore, the problem is herein treated as a multivariable optimization
problem with inequality constraints.

In the following discussion, the coupled system under consideration consists of three subsystems, and it is
assumed that one of the subsystems is modifiable. In practice, this kind of assembly scenario can be easily seen.
If the modifiable subsystem is the subsystem connected to the other two subsystems and the receptances of the
two subsystems at the interface are known, the receptance of the coupled system at the connection interface
can be represented as a function of the design variable x and Laplace variable s shown as below:

H (x, s) = HAC (s) (HAC (s) + HB (x, s))−1HB (x, s) . (21)
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Table 1 System properties

Young’s modulus (GPa) 210 Transverse bearing stiffness (N/m) 107

Poisson ratio 0.33 Rotational bearing stiffness (Nm/rad) 10
Density (kg/m3) 7850

Table 2 System parameters

Parameter Value (cm) Parameter Value (cm) Disks (OD, ID, thickness) (cm)

l1,2 5 l7,8 2 Node 2 (8, 2, 2)
l2,3 5 l8−10 5 (default) Node 4 (5, 2, 2)
l3,4 5 l10,11 2 Node 6 (5, 2, 2)
l4,5 5 l11,12 5 Node13 (6, 2, 2)
l5,6 5 l12,13 3
l6,7 5

Table 3 Undamped natural frequencies of the original assembled system

Mode number 1 2 3 (torsional) 4

f (Hz) 587.5 617.2 701.1 774.3

3.1 Numerical model

The numerical model of a lightly damped system shown in Fig. 4 is used in the study. The coupled system
consists of three subsystems connected in series in which the subsystem in the middle is modeled as a beam
and represents a modifiable joint. The receptances of Subsystem A and those of Subsystem C are used to
predict the receptances of the coupled system at the connection. It is assumed that the length and the diameter
of Subsystem B are the design variables. Subsystems A and C are both shafting systems containing bearings
and flywheels which can reflect the main features in the standard transmission systems. The shafting systems
are assumed to be axisymmetric and are modeled using Timoshenko beam elements in the x–z plane. Each
node contains three DoFs including one translational DoF in the x direction, one rotational DoF about the
y-axis, and one torsional DoF about the z-axis. The material properties of the shafts, the disks, and the bearing
stiffness are given in Table 1, and the parameters of the systems are listed in Table 2. The shafts in Subsystems
A and C are solid circular shafts and are mostly 2 cm in diameter except that a section in the middle of the shaft
in Subsystem C is 3 cm in diameter. By default, the diameter of Subsystem B is 3 cm and the total length is 5
cm. The first four undamped natural frequencies of the corresponding assembled system are listed in Table 3.

Here, the importance of including the rotational receptances (in bending) in the estimation process is first
demonstrated using an example. Figure 5 shows an estimated FRF using both translational and rotational
receptances from the subsystems. The FRF being estimated is the point FRF in the transverse direction at node
10 of the assembled system. It is clear that the estimated FRF perfectly matches the true one in terms of the
magnitude and the phase. Note that the system is lightly damped, and its damping is taken to be proportional
to its mass and stiffness matrices as [C] = 27.9253 [M]+ 2.8294× 10−6 [K]. On the other hand, Fig. 6 gives
the results for the case in which only the translational receptances of the subsystems are considered. It is easily
seen that the estimated FRF fails to match the true FRF and that the two FRFs are fairly different. Thus, it
can be concluded that in this case including both the translational and rotational information in the estimation
process is of vital importance. That is to say, for the purpose of structural modification, the rotational FRFs are
necessary in addition to the translational FRFs. In the following simulations, rotational information is included
unless otherwise specified.

3.2 Bending frequency assignment

Based on Eq. (21), minimizing [det (HAC (s) + HB (x, s))]2 can be one possible objective function for the
structural modification problem. However, it is nonlinear in nature and its value can vary drastically especially
(from a very small number to a big one) when the desired natural frequency is high. A few scaling parameters
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Fig. 5 The estimated FRF using both translational and rotational receptances

Fig. 6 The estimated FRF using only translational receptances
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Table 4 Natural frequencies of the modified coupled system

Mode number 1 (achieved) 2 (torsional) 3 4

f (Hz) 574.96 586.38 599.82 634.39

are required to design an objective function that is numerically more stable for optimization algorithms. It is
assumed that all the subsystems except Subsystem B are (proportionally) damped and that bending and torsion
are decoupled. The objective function for the frequency assignment problem under the context is designed as

min
x

{
n∑

r=1

αr log10
(
(det (HAC (sr ) + HB (x, sr )) /wr )

2)+ βg (x, x0)

}
. (22)

The torsional receptances are excluded in the calculation. Only the real part of (HAC (sr ) + HB (x, sr )) is
taken to calculate the determinant, but for the sake of brevity, the expression is not written down in Eq. (22).
The weighting wr is defined as the product of the diagonal elements in real (HAC (sr )) , and g (x, x0) is a
function used to penalize large solutions defined as g (x, x0) = (||x − x0||/||x0||)2 where x0 is a vector of the
original values of the design variables. αr indicates the weighting of the r th desired frequency. In addition,
the parameter β controls the trade-off between the cost of carrying out large modifications and the cost of the
frequency assignment (the determinant function). A numerical example is given below to first demonstrate the
bending natural frequency assignment of a coupled system by coupling of subsystems.

It is assumed that the desired bending natural frequency for the coupled system given in Fig. 4 is 575
Hz. The goal is to find x that minimizes Eq. (22) given the desired frequency so that s = (2π × 575) i . The
constraints of the design variables in Subsystem B are

0.02 (m) ≤ x1 (diameter = 0.03 bydefault) ≤ 0.06 (m)

0.01 (m) ≤ x2 (length = 0.05 bydefault) ≤ 0.1 (m) .

Recall that the default values for the design variables are 0.03m and 0.05m, respectively. β is set to 5 and α1 is
set to 1 in this example. To avoid falling into a local minimum, a particle swarm algorithm is implemented. A
solution is found to be

[
x1 x2

]T = [
0.0504 0.0814

]T. The first four natural frequencies of the modified

coupled system are listed in Table 4, which shows that the achieved natural frequency is only 0.04 Hz lower
than the desired one. As the number of design variables is two, the objective function surface can be visualized
in a three-dimensional space, which is shown in Fig. 7. The circle denotes the initial points while the cross
indicates the solution found by the algorithm. It can be seen that the solution is just one of many possible
solutions in the feasible domain. Note that a natural frequency is assigned to the coupled system without
specifying the associated mode, in other words, the current method is not able to assign a natural frequency
to a specific mode. In order to do so, the relationship between the modifications and the modal displacements
has to be established; however, to establish such a relationship requires a further study which is beyond the
scope of this paper. If the natural frequencies of the target system are well separated, it is possible to assign a
natural frequency to a particular mode by not shifting the original natural frequency too much as the example
suggests.

A different solution can be found by adjusting the trade-off parameter β. Figure 8 shows the top view of
the objective function surface of the case in which β = 15. It can be noted that the surface is different from
Fig. 7 and that the region where the last solution is located is not as obvious. The solution to this objective
function

[
0.0205 0.0544

]T is now closer to the initial point, which clearly demonstrates the influence of
the penalty term. The achieved natural frequency for the solution is almost equal to the desired one, which is
575.01 Hz. This solution could be preferable over the previous one since the effort for the modification is less
and the achieved natural frequency is closer to the desired one.
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Fig. 7 The surface profile of the objective function when β = 5

Fig. 8 The surface profile of the objective function surface when β = 15 (a) in 3D space and (b) its top view

3.3 Torsional frequency assignment

Since torsion is assumed to be independent of bending, only the DoFs in the torsional direction should be
considered; thus, Eq. (14) can be rewritten as

hik = hAi t h
B
tph

C
pk(

hAt t + hBt t
) (

hBpp + hCpp
)

− hBpt h
B
tp

, (23)

which gives the cross receptance of DoF i (in Subsystem A) to DoF k (in Subsystem C) of the coupled system.
The denominator can be rearranged in the form of det (HAC (s) + HB (s)) with the same definitions of the two
matrices. Thus, the objective function presented in the bending natural frequency assignment problem can also
be applied to the torsional frequency assignment problem.

In the following example, the desired torsional natural frequency is set to 715 Hz while β is set to 10 and α1
is set to 1. The constraints of the design variables and the initial values are the same as the previous example.
A solution is found using the particle swarm algorithm, which is

[
x1 x2

]T = [
0.0273 0.0231

]T. The
achieved natural frequencies are listed in Table 5, and the difference from the desired torsional frequency is
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Table 5 Natural frequencies of the modified coupled system

Mode number 1 2 3 (torsional) 4

f (Hz) 575.70 617.29 714.91 809.32

Fig. 9 The top view of the objective function surface

Table 6 Natural frequencies of the modified coupled system

Mode number 1 2 3 (torsional) 4

f (Hz) 598.83 616.61 669.93 695.94

just 0.09 Hz. The top view of the corresponding objective function surface is given in Fig. 9, which suggests
that a solution is found in the feasible domain and that the solution is relatively closer to the initial values than
the other solutions owing to the penalty term.

3.4 Two-frequency assignment

The two-frequency assignment problem is rather demanding under the current context as there are only two
design variables. Since it has been demonstrated that either a bending natural frequency or a torsional natural
frequency can be assigned using the same objective function, simultaneously assigning both frequencies to the
coupled system is thus possible.

It can be seen from observation (see Figs. 8, 9) that the optimal solutions in the feasible domain are
continuous in the sense that connecting their locations in the feasible domain could result in lines of troughs.
That is to say, finding a solution for a multiple-frequency assignment problem is equivalent to searching for
the intersection of the lines of troughs of the individual frequency assignment problem. In this example, the
desired frequencies for bending and torsion are 600 and 670 Hz, respectively. The weightings {αr }2r=1 are both
set to 1 and β is set to 10. A solution is found within the feasible domain using the particle swarm algorithm,
which is

[
x1 x2

]T = [
0.0348 0.0875

]T. The achieved natural frequencies, listed in Table 6, show that
the assignment is successful. The errors of the desired frequencies are 1.17 Hz for the bending and 0.07 for
the torsion. The top view of the objective function surface, given in Fig. 10, shows that the solution is found
at the intersection of two lines of troughs as expected. The number of solutions to this problem is lower than
that of the previous examples, which is also expected since the number of desired frequencies increases.

The cross FRFs in the lateral direction between node number 2 and number 13 before and after the
modifications are plotted in Fig. 11. In this case, the vibration response of the coupled system operating under
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Fig. 10 Top view of the objective function surface of the two-frequency assignment problem

Fig. 11 Cross FRFs before and after the modifications

the first critical speed can then be reduced and the operating frequency range is increased. It can also be noticed
that the second bending mode has low sensitivity to the modifications made as the joint is roughly in the middle
of the coupled system and close to a node of the second bending natural frequency.

4 Estimation of rotational receptances

The importance of including the rotational receptances has been demonstrated in Figs. 5 and 6. However, it
is currently not possible to directly measure high-quality rotational receptances in practice due to the lack of
instruments for moment excitation and measurement. As a result, indirect measurement techniques have been
proposed. The method recently proposed by Tsai et al. [27] (Method 2 in the article) for estimating torsional
receptances using a T-block attachment has shown better results than those reported in the literature. Generally
speaking, torsional receptance is a rotational receptance but it is about the longitudinal (axial) direction; thus,
in theory, the method can be applied to the measurements of rotational receptances in bending by changing the
T-block’s orientation. The setup is illustrated in Fig. 12. In that case, the imparted translational force can yield
moment excitation to the parent structure at the rotational DoF of interest in the x–z plane. Additionally, since
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Fig. 12 Schematic showing the arrangements of the orientations for rotational receptance estimation

only the receptances at the connection DoFs of the subsystems are required for the frequency assignment of
the coupled system, the results obtained from the indirect measurement technique can produce the necessary
information for the assignment problem.

The receptances in the x–z plane pertaining to θy that cannot be conventionally measured are hx,θy , hθy ,x ,
and hθy ,θy . In fact, hθy ,x can be directly measured using rotational accelerometers and an impact hammer,
but the rotational accelerometers require a flat mounting surface for optimal measurement performance. This
suggests that the structure of interest might have to be machined or altered. For a shaft or a rotor, this kind of
alteration might not be favorable as it could introduce asymmetry and increase costs; for that reason, hθy ,x is
treated as unmeasurable and will later be indirectly measured.

As an example, the receptances of Subsystem A alone at the interface (DoFs at node 8 in Fig. 4) are to
be measured using the setup in Fig. 12. Subsystem A and the assembled structure are assumed to be lightly
proportionally damped, and the damping of the T-block is excluded in the estimation process. The selections
of the DoFs for response are DoFs 4, 8, and 21, and that for excitation are DoFs 4, 18, and 19 (see Fig. 12).
The receptances hθy ,θy and hx,θy of Subsystem A at the connection end are estimated. Figure 13 gives the
corresponding estimation results using Eq. (22) in [27] with noise level equal to 0% and 2.5%, respectively. It
can be seen that the estimated FRFs agree well with the exact ones when noise is not present (see Fig. 13a).
However, Fig. 13b suggests that the estimation is quite sensitive to noise, and the results are not satisfactory
even when the rotational information (DoF 8) is included in the estimation process. It is also found that the
noticeable fluctuation around 500 Hz is associated with a bending natural frequency of the assembled system
(Subsystem A plus T-block, 496.84 Hz to be exact).

The results can be improved by measuring hx,x and modifying the estimation equation. For the connection
end, assuming that the motion in the z-axis direction is not coupled with the motion in the other directions,
HA

cc in Eq. (19) in [27] can be expressed explicitly and rewritten as

L =
⎡
⎢⎣

hx,x hx,θy 0

hθy ,x hθy ,θy 0

0 0 hz,z

⎤
⎥⎦R, (24)

with the same definitions of matrices L and R as in [27]. Since the axial receptance hz,z is not of interest, the
last row and the last column in L and R can both be removed, leading to[

lT1
lT2

]
=
[
hx,x hx,θy
hθy ,x hθy ,θy

][
rT1
rT2

]
, (25)

where the remaining entries in L and R are arranged in the row vectors whose lengths are determined by the
number of excitations. If hx,x can be measured directly, then hx,θy and hθy ,θy can be estimated using the two
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Fig. 13 Comparison of the estimated FRFs and the true FRFs when (a) the noise level is 0% and (b) the noise level is 2.5%

equations in Eq. (25), respectively. The equations can be solved in a least-squares sense. For instance, the
residual of the first equation can be written as(

lT1 − hx,xrT1
)− hx,θyr

T
2 = eT. (26)

Note that all the terms in Eq. (26) are complex for damped structures; thus, the real part and the imaginary part
are solved separately. Considering the real part of each term is extracted, the residual squared can be expressed
as

ε = eTe = pT1p1 − 2hx,θyp
T
1 r2 + h2x,θyr

T
2 r2, (27)

where pT1 = (
lT1 − hx,xrT1

)
. ∂ε/∂hx,θy = 0 results in the following equation:

hx,θy = pT1 r2
rT2 r2

. (28)

The real part of hx,θy can now be obtained, and the imaginary part of hx,θy can be solved similarly. Once hx,θy
is estimated, hθy ,θy can be estimated using the second equation in Eq. (25). If the principle of reciprocity holds,
the equation can be written as (

lT2 − hx,θyr
T
1

) = hθy ,θyr
T
2 , (29)

inwhich hθy ,θy can also be solved in the same fashion. Figure 14a gives the results using themodified equations.
Compared with Fig. 13b, it is clear that the fluctuations due to the noise are greatly reduced. The noticeable
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Fig. 14 The comparison of the estimated FRFs and the true FRFs when a hx,x is included in the estimation process and b FRFs
are filtered to remove noise

fluctuation around the assembled system’s bending natural frequency disappears, and the variation in errors
is reduced. However, the quality of the receptances is still not good enough for receptance-based structural
modifications.

For this reason, the noise elimination technique proposed by Sanliturk and Cakar [28] is applied to filter
out the noise in the FRFs. The number of singular values used to separate the meaningful data from noise is
set to 20 for hθy ,θy and 40 for hx,θy , respectively. The corresponding filtered FRFs are given in Fig. 14b. It is
clear that the noise is almost eliminated and that now the filtered FRFs match the exact FRFs quite well. It can
be noted that the noise around the peaks of the FRF remains, which is because of the magnitude-dependent
noise assumption. Fortunately, this type of noise may not be very common in reality. Therefore, it is believed
that the proposed technique for rotational receptance estimation is able to produce high-quality FRFs for the
structural modification problem.

5 Conclusions

The work presented in this paper deals with the problem of frequency assignment through coupling of sub-
systems. A technique that integrates receptance coupling method, structural modification, and optimization
is presented. The receptance method is first extended to a coupled system of three subsystems, and a simple
representation of the receptance functions at the interface of the coupled system is derived. The formulation
shows that only the receptance functions of the subsystems at the connection coordinates are required to deter-
mine the receptance functions of the coupled system at the same coordinates. This relationship is further used
as a basic formula for the objective function for structural modification.
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The technique is applied to a lightly damped finite element model to verify its applicability. The model
consists of three subsystems that are connected in series. It is assumed that the middle subsystem is the only
undamped subsystem and is a circular beam whose diameter and length can be modified within certain ranges.
Through modifying the undamped middle beam, the coupled system can thus possess some desired natural
frequencies. The simulation results suggest that the current techniqueworkswellwith the frequency assignment
problems. Bending natural frequencies or torsional natural frequencies can be assigned to the coupled system
either respectively or simultaneously. None of the simulation examples exceeds more than 1% of error between
the desired natural frequencies and the achieved ones.

The rotational receptances are essential to the structural modification problem in the context. In the paper,
an improvement is made to a known technique to improve the technique’s robustness on the rotational recep-
tance estimation. The numerical simulation results also suggest that the technique is able to produce accurate
estimations and is appropriate for the frequency assignment problem of concern.
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