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Abstract A finite-form solution for the problem of an elastic body weakened by a straight nano-crack and
disturbed by a screwdislocation in themode-III deformation is proposed. The boundary equations incorporating
the surface effects are established and reduced to single one via the integration over the crack boundary in
the physical region. The cracked physical region is then mapped onto an image region with circular hole. By
using Muskhelishvili (Some basic problems of the mathematical theory of elasticity, Noordhoff, Groningen,
1953) method and Cauchy’s integral formula, the reduced boundary equation is further converted into a first-
order differential equation. Consequently, the solution of the differential equation is mapped back to the
physical region and the complex potential representing the displacement is formulated in finite form. The
results show that the stresses at the crack tip are finite and the stress singularity is eliminated completely by
the incorporation of the surface effects. The non-singularity of the stresses at the crack tip derived from the
present article radically differs from the square-root singularity obtained from the classic theory of the elastic
fracture and, however, is reasonable from the physical essence. The numerical results shows that when the
surface effects are incorporated, the magnitudes of the stresses and the image forces near the crack tip are
reduced, which are strongly dependent on the crack size. The corresponding results approach those from the
classic theory as the crack length increases. The results by the present solution are also compared with those
from other solutions.

Keywords Surface effects · Nano-crack · Screw dislocation · Stress boundary integration · Image force

1 Introduction

The surface/interface effects due to the internal defects in the materials were not incorporated in the classical
solution. These effects would, however, have a dramatic influence on themechanical properties of the materials
when the sizes of the internal defects are at nano-length scales and need to be explicitly addressed [9,19,23].

Atomistic models were used successfully to simulate the nano-mechanical problems involving fracture
and related issues [1–3]. Nevertheless, direct micro-computation at atom scale, even at molecule scale, takes
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up huge computational resources, and thus it is rather difficult for simulating mechanical behavior of a bulk
material with common size. An alternative numerical method involved with less computation is to model the
crack as set of contiguous cracked particles for removing the additional unknowns introduced in the cracking-
particle method [16,17].

Continuum model reflecting surface/interface effects has the advantages of minor calculation and better
calculating stability, and therefore it captures the attention of many researchers. Gurtin and Murdoch [7]
firstly presented the mathematical exposition on surface elasticity and established the “surface/interface effect
model.” Later, the model has been widely used in the problems with surface/interface effects.

Extensive investigations have been reported on interface effects of nano-inhomogeneity. Luo et al. [13]
investigated the interaction between a screw dislocation and an elliptical nanoscale inhomogeneity in an infinite
matrix by applying conformal mapping technique to convert an elliptical nanoscale inhomogeneity into a ring
nanoscale one. Using the complex variable function method, Ou et al. [15] derived analytically the stresses
in a coated nano-inhomogeneity material and the image forces acting on the screw dislocation. By means of
the complex potential functions expanded in Laurent series, Shodja et al. [20] studied the elastic behavior of
an edge dislocation positioned outside of a nanoscale elliptical inhomogeneity, and the elastic modulus and
surface tension of the interface were incorporated.

As contrast, few analyses have been published to this date on surface effects of the nano-crack. In the
research of mode-III line crack problem, Kim et al. [10] found that the stresses with surface effects were
always dependent on the crack length. Recently, the interaction between a nanoscale crack incorporating
surface elasticity and a screw dislocation was investigated by Wang and Fan [22].

Self-evidently, exactly evaluating physical fields such as stresses, displacements and stress intensity factor
of nano-cracks (SIFNCs) is based on the finite-form solution. However, the results in all the literature published
by other researchers so far including surface effects of the nano-cracks were expressed in the form of infinite
series and therefore none of them has obtained the SIFNCs.

In this paper, the finite-form solution was obtained for the problem of an elastic body weakened by a
straight nano-crack and disturbed by a screw dislocation in the mode-III deformation. At first, the Gurtin–
Murdoch [8] surface model was used to incorporate the surface effects and the stress boundary equations were
integrated over the crack boundary and reduced to single one. The reduced boundary equationwas thenmapped
to image region via the conformal mapping technique and converted into a first-order differential equation
by the Muskhelishvili [14] method together with the Cauchy’s integral formula. After inverse mapping, the
finite-form solution for the anti-plane problem was established. The results from the present solution were
compared with other solutions and the singularity at the crack tip was discussed.

2 Basic formulation

In the linearly elastic, homogeneous and isotropic (bulk) solids, the equilibrium equation and the constitute
relation in the absence of the body force read

σi j ′ j = 0, σi j = λδi jεkk + μεi j (1)

where λ and μ are the Lamé constants.
In the anti-plane problem, the nonzero components are the stresses τxz, τyz and the out-plane displacement

w. From (1) we have

τxz = μ
∂w

∂x
, τyz = μ

∂w

∂y
(2)

In the Gurtin and Murdoch [7] surface elasticity model, the equilibrium equations are expressed as
∥
∥σαβn j

∥
∥ + σ s

βα′β = 0 (3)
∥
∥σ j i ni n j

∥
∥ = σ s

αβkαβ (4)

and the constitute relation on the isotropic surface is given by

σ s
αβ = σ0δαβ + 2(μs − σ0)ε

s
αβ + (λs + σ0)εγ γ δαβ (5)
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Fig. 1 The nanoscale crack and the screw dislocation

where λs and μs are the Lamé constants for the isotropic surface, the superscript s represents the surface, and
σ s

αβ is the surface stress tensor. σ0 stands for the surface tension, kαβ is the curvature tensor of the surface, and
‖∗‖ represents the jump across the surface.

Consider a homogeneous infinite elastic body which occupies the infinite plane (z-plane) and contains a
straight-line crack of the length 2a in nanoscale as shown in Fig. 1. Here z = x + iy is the complex variable.
A screw dislocation with the Burgers vector bz is located at an arbitrary point z0 = x0 + iy0, and the uniform
loads of anti-plane shear stresses, τ1 and τ2, are exerted at the infinite boundary (drawn as dash lines)

For the anti-plane problem, the out-plane displacement and the stresses in z-plane can be represented by a
complex potential function ϑ1(z) as

w(z) = Re[ϑ1(z)] (6)

τxz − iτyz = μϑ ′
1(z) (7)

in which the prime indicates the derivative with respect to the variable in the bracket.
From (3) and (4), the boundary conditions for the upper and lower crack faces in z-plane can be written

as [10]

iμ[ϑ ′
1(z) − ϑ ′

1(z)]+ = −(μs − σ0)[ϑ ′′
1 (z) + ϑ ′′

1 (z)]+ (8a)

iμ[ϑ ′
1(z) − ϑ ′

1(z)]− = (μs − σ0)[ϑ ′′
1 (z) + ϑ ′′

1 (z)]− (8b)

where the symbols “+” and “−” denote the upper and lower crack faces for y > 0 and y < 0 as shown in
Fig. 1.

Now the stress boundary equations (8a) and (8b) are integrated over the boundary of the crack. Probably
worthy to be reminded that the route of the integration should be taken as a loop instead of a line segment, the
variable increases from left end to the right end for integrating over the upper part of the loop, while it is from
right end to the left end for the lower part integration of the loop. This convention will also be used in the later
loop integral calculations.

The integration of the boundary equations (8a) and (8b) leads to the following equation

μ

i
[ϑ1(z) − ϑ1(z)] = (μs − σ0)[ϑ ′

1(z) + ϑ ′
1(z)], z ∈ L (9)

In this way, the original boundary problem expressed by two equations (8a) and (8b), is reduced to one
equation (9), and easy to be calculated by using Cauchy integrals of the complex function theory.

The following complex function pair is used to simplify the geometry of the problem

z = ω(ζ ) = a

2

(

ζ + 1

ζ

)

, ζ = ω−1(z) = z

a

⎡

⎣1 +
√

1 −
(
a

z

)2
⎤

⎦ (10)

where ζ = ξ + iη is the complex variable of the position in ζ -plane.
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Fig. 2 The ζ -plane after transformation

The mapping function pair (10) maps the whole z-plane (the physical region in Fig. 1) into ζ -plane (the
image region in Fig. 2), while the nano-crack in z-plane is mapped onto an orifice of unit radius in ζ -plane.
Equation (9) in ζ -plane becomes

μ

i
[ϑ(ζ ) − ϑ(ζ )] = (μs − σ0)

[

ϑ ′(ζ )

ω′(ζ )
+ ϑ ′(ζ )

ω′(ζ )

]

, ζ ∈ γ (11)

3 Problem: a screw dislocation disturbance

3.1 Solution

When an infinity plane (z-plane) with a nano-crack and a screw dislocation (the Burgers vector bz) is subjected
to uniform loads τ1 and τ2 at infinity, the complex potential function ϑ1(z) can be expressed as

ϑ1(z) = Γ z + bz
2π i

ln(z − z0) + ϑ10(z) (12)

whereΓ = (τ1 − iτ2)/μ, ϑ10(z) is an unknown analytic function in domain S+ (Fig. 1). The potential function
ϑ1(z) satisfies the stress conditions τxz = τ1 and τyz = τ2 at infinity only if the value of the analytic function
ϑ10(z) vanishes at infinity, i.e.,

lim
z→∞ ϑ10(z) = 0 (13)

Besides, the analytic function ϑ10(z) should fulfill the crack-boundary condition. The following conformal
mapping technique is used to find the function ϑ10(z).

On the image plane, the complex potential function can be written as [5,14]

ϑ(ζ ) = Γ a

2

(

ζ + 1

ζ

)

+ bz
2π i

[

ln

(

− a

2ζ0

)

+ ln(ζ − ζ0) + ln

(
1

ζ
− ζ0

)]

+ ϑ0(ζ ) (14)

where ϑ0(ζ ) is an analytic function in domain s+ (Fig. 2), and

ζ0 = 1

a

(

z0 +
√

z20 − a2
)

(15)

With inserting (14) and (10) into (11), the boundary condition on the unit circle in ζ -plane becomes [5]

μ

i
[ϑ0(σ ) − ϑ0(σ )] − (μs − σ0)

[

ϑ ′
0(σ )

ω′(σ )
+ ϑ ′

0(σ )

ω′(σ )

]

= iμ(Γ − Γ̄ )a

2

(

σ + 1

σ

)
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+ μbz
2π

[

ln

(
a2

4ζ0ζ̄0

)

+ ln(σ − ζ0) + ln(σ − ζ̄0) + ln

(
1

σ
− ζ0

)

+ ln

(
1

σ
− ζ̄0

)]

− (μs − σ0)
ibz
πa

{
1

ζ0 − 1/ζ0

[
ζ0

σ − ζ0
− 1

ζ0(σ − 1/ζ0)

]

− 1

ζ̄0 − 1/ζ̄0

[
ζ̄0

σ−1 − ζ̄0
− 1

ζ̄0(σ − 1/ζ̄0)

]}

+ (μs − σ0)(Γ + Γ̄ ) (σ ∈ γ ) (16)

It falls into a problem to find an analytic function ϑ0(ζ ) satisfying the boundary condition (16).
In ζ -plane, for any function f (ζ ) which is analytic in s+, the value of the function at any point ζ in s+ can

be expressed as the Cauchy’s integral over a closed boundary γ [14]

1

2π i

∮

γ

f (σ )

σ − ζ
dσ = − f (ζ ) + f (∞) (17)

Now both sides of (16) are integrated over γ (the boundary of the unit circle) and then the Cauchy’s integral
formula (17) is applied; this leads to the following first-order differential equation for the function ϑ0(ζ ) in
domain s+

ϑ ′
0(ζ )

ω′(ζ )
+ iμ

μs − σ0
ϑ0(ζ ) = q(ζ ) (18)

where

q(ζ ) = qΓ (ζ ) + qb(ζ ) (19)

and

qΓ (ζ ) = μaΓ

(μs − σ0)ζ
(20a)

qb(ζ ) = μbz
2π(μs − σ0)

[

ln(ζ0ζ̄0) − ln

(
1

ζ
− ζ0

)

− ln

(
1

ζ
− ζ̄0

)]

− ibz
πa

[

1

(ζ 2
0 − 1)(ζ − 1/ζ0)

− 1

(ζ̄ 2
0 − 1)(ζ − 1/ζ̄0)

]

(20b)

Two functions, qΓ (ζ ) and qb(ζ ) in (19), are non-homogeneous terms corresponding to Γ and bz , which
represent the stress loads τ1, τ2 at infinity and the screw dislocation at ζ0, respectively.

In this manner, the boundary condition (16) is converted via the Cauchy’s integral formula into a first-order
differential equation (18) for the unknown function ϑ0(ζ ). According to Einar Hille [4] (Chapter 5, Eq. (5.17)),
the solution of (18) is derived as

ϑ0(ζ ) = exp

[

− iμω(ζ )

μs − σ0

] ∫ ζ

i∞
q(s) exp

[
iμω(s)

μs − σ0

]

· ω′(s)ds (21)

It can be verified that the function ϑ0(ζ ) expressed by (21) is the solution of (18) solely by substituting the
former into the latter. Similarly, the potential function ϑ(ζ ) in (14) with its analytic part (21) surely satisfies
the boundary condition (11).

The unknown analytic function ϑ10(z) in (12) is then obtained by

ϑ10(z) = ϑ0[ω−1(z)] (22)

It is easy to check that the value of the right side of (21) approaches zero as ζ → i∞ and thus the analytic
function ϑ10(z) in (22) satisfies the boundary condition (13) at infinity.

After determination of the function ϑ10(z), the displacement w and stresses τxz , τyz can be obtained from
(6) and (7).

Specially, when the surface effects are neglected, i.e., μs = 0, σ0 = 0, and ϑ∗
1 (z) is used to represent the

potential function for this case, the boundary equation (9) reduces to

ϑ∗
1 (z) − ϑ∗

1 (z) = 0 (23)
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Equation (23) is the boundary condition for the classical elastic problem in z-plane. Similarly, the boundary
condition (11) in ζ -plane becomes

ϑ∗(ζ ) − ϑ∗(ζ ) = 0 (24)

in which ϑ∗(ζ ) denotes the potential function without the surface effects. Performing similar derivation, we
then obtain the complex potential function for this case as follows:

ϑ∗(ζ ) = Γ a

2
ζ + Γ̄ a

2ζ
+ bz

2π i

[

ln

(
aζ0ζ̄0

2

)

+ ln(ζ − ζ0) − ln

(

ζ − 1

ζ̄0

)

+ ln ζ

]

(25)

After removing the constant terms irrelevant to stresses, Eq. (25) represents the same solution as that
derived by Muskhelishvili [14].

3.2 Stress field and SIFNCs

In order to obtain the stress distribution near the crack tip and SIFNCs, substituting (22), (21), (12) and (10)
into (7), we have

τxz − iτyz = μΓ − iμbz
πa

· 1

ζ0 − 1/ζ0

[
ζ0

ζ − ζ0
− 1

ζ0(ζ − 1/ζ0)

]

+μq(ζ ) − iμ2

μs − σ0
exp

[

− iμω(ζ )

μs − σ0

] ∫ ζ

i∞
q(s) exp

[
iμω(s)

μs − σ0

]

· ω′(s)ds (26)

For the classical case in which the surface effects are not incorporated, substituting (25) and (10) into (7)
yields

τ ∗
xz − iτ ∗

yz = μ

{

Γ + 2iΓ

ζ 2 − 1
− ibz

πa

[
ζ

(ζ − ζ0)(ζ − 1/ζ0)
+ 1

ζ0ζ(ζ − 1/ζ0)
+ 1

ζ̄0ζ(ζ − 1/ζ̄0)

]}

(27)

The formula for the stress intensity factor (SIF) is given by [21]

KIII = iμ
√
2π lim

ζ→ζt

√

ω(ζ ) − ω(ζt )�(ζ )eiα/2 (28)

in which ζt = ω−1(zt ) is the position coordinate of the crack tip in ζ -plane, �(ζ) = ϑ ′(ζ )/ω′(ζ ), α is
the angle between the crack tangent vector at the crack tip and the vector of the real axis Re(z), i.e., α =
lim
z→zt

arg(z − zt )|z∈ΓC
, where (L)|ΓC

(ΓC is in z-plane) denotes the crack extension line starting from the

crack tip.
When the crack surface effects are incorporated, substituting (21), (14) and (10) into (28), and note ζt = 1,

we have

KIII = iμ
√
2π lim

ζ→1+0

√

ω(ζ ) − ω(1)�(ζ ) = 0 (29)

As the comparison, for the classical case where the crack surface effects are excluded, substituting (25)
and (10) into (28) yields

K ∗
III = iμ

√
2π lim

ζ→1+0

√

ω(ζ ) − ω(1)
[ϑ∗(ζ )]′
ω′(ζ )

= iμ
√

πa

[
Γ − Γ̄

2
+ bz

2π ia

(
1

1 − ζ0
− 1

1 − 1/ζ̄0
+ 1

)]

(30)

which has non-trivial value.
By reducing the non-standard boundary condition for incorporation of the surface effects and solving

the Cauchy singular integro-differential equation numerically, Kim et al. [10] developed a complete solution
for traction-free mode-III problem. They asserted that the stress singularity at the crack tip is eliminated
when the surface effects are incorporated. However, further investigation showed that the incorporation of



Finite-form solution for anti-plane problem of nanoscale crack 391

the surface effects in Kim et al. [10] model alleviates the square-root stress/strain singularity to being weaker
logarithmic [24]. In their later work, Kim et al. [11] suggested that the different set of the employed end-point
conditions results in the two cases, (1) eliminating completely the classical stress singularity at the crack
tip when the end-point conditions exceed the maximum number, and (2) diminishing the strong square-root
singularity to the weaker logarithmic one for the end-point conditions in admissible number.

Wang and Fan [22] investigated the interaction between a nano-crack and a screw dislocation in mode-III
deformation. They argued that the stress singularity at the crack tip exhibits two types depending on the location
of the screw dislocation, i.e., being the logarithmic plus square root (dislocation is not on real axis) or the
logarithmic only (dislocation is on real axis).

As so far, in all the already published literature for the nano-crack incorporating the surface effects in
mode-III deformation, the stresses were expressed in infinite series together with the auxiliary conditions to
find the solution. However, the singularity at the crack tip is, at least partially, dependent on the form of the
series employed in analysis.

In present formalism, firstly the boundary equations are established and integrated over the crack boundary,
and the cracked region is mapped from z-plane onto ζ -plane for simplifying the boundary geometry. Then the
equation of the boundary problem is converted into a first-order differential equation in ζ -plane after Cauchy’s
integral formula is performed. The differential equation is solved and the solution is mapped back to z-plane
thereafter. In this manner, it is unnecessary to preset the solution form and auxiliary conditions to bound the
stresses at the crack tip. In other words, in our process, the range of the stresses (finite or infinite) at the crack
tip is assumed to be unknown previously. The derived finite-form solution (26) shows that the stresses at the
crack tip are indeed finite and the stress singularity is removed completely. As a result, the SIFNC will be
trivial (KIII = 0).

3.3 Image forces

Now the stresses generated by the screw dislocation in an uncracked infinite elastic body are subtracted from
(26) and (27) respectively, and then taking limit z → z0, the perturbation stresses due to the dislocation
read [12]

τ̃xz(z0) − iτ̃yz(z0) = lim
z→z0

[

τxz(z0) − iτyz(z0) − μbz
2iπ(z − z0)

]

(31)

where z − z0 can be expressed by ζ0

z − z0 = a

2

(

ζ − ζ0 + 1

ζ
− 1

ζ0

)

(32)

Consider the physical process: in an infinite body there is a dislocation which is in stable state, and then an
operation is performed that a crack is generated and the loads are exerted at infinity. The perturbing stresses,
which are resulted from such an operation and act at the position of the dislocation, thus might be understood
as the increment of the stresses.

Substituting (26) and (27) into (31) results in the stress fields for both cases of including and excluding
surface effects, respectively

τ̃xz(z0) − iτ̃yz(z0) = μ[Γ + q(ζ0)]
− iμ2

μs − σ0
exp

[

− iμω(ζ0)

μs − σ0

] ∫ ζ0

i∞
q(s) exp

[
iμω(s)

μs − σ0

]

· ω′(s)ds (33)

τ̃ ∗
xz(z0) − iτ̃ ∗

yz(z0) = μ

{

Γ + 2iΓ

ζ 2
0 − 1

− ibz
πa

[

1

ζ0(ζ
2
0 − 1)

+ 1

ζ0(ζ̄0ζ0 − 1)

]}

(34)

The Peach–Koehler formula for the image forces reads [6]

fx − i fy = ibz[τ̃xz(z0) − iτ̃yz(z0)] (35)
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Fig. 3 Dimensionless stress versus surface effects at crack tip for τ1 = 0, τ2 = 0.1μ and z = x = a + 0, Se = (μs − σ0)/μa

When the screw dislocation in z-plane is located at x-axis, and z0 = x0 > a, the corresponding coordinate
of the screw dislocation in ζ -plane is expressed as

ζ0 = x0
a

⎡

⎣1 +
√

1 −
(
a

x0

)2
⎤

⎦ = ξ0 (36)

Therefore ζ0 is a real constant. Substituting (33) and (34) into (35) respectively, the image forces in x-axis
direction due to the screw dislocation for the cases of including and excluding surface effects, respectively,
become

fx − i fy = iμbz

{

Γ + q(ζ0) − iμ

μs − σ0
exp

[

− iμω(ζ0)

μs − σ0

] ∫ ζ0

i∞
q(s) exp

[
iμω(s)

μs − σ0

]

· ω′(s)ds
}

(37)

f ∗
x − i f ∗

y = iμbz

[

Γ + 2iΓ

ζ 2
0 − 1

− 2ibz
πaζ0(ζ

2
0 − 1)

]

(38)

4 Numerical results and discussion

In this section, the influence of the surface effects is further analyzed and discussed by using numerical
calculations. The surface parameters for the nano-crack were suggested as [18]

μs = 161.73 J/m2, σ0 = 1.3 J/m2, μ = 168 GPa

4.1 Problems with dislocation disturbance

(1) Stress field and comparison with other solution
The stress field at the crack tip evaluated by the present analysis is compared with that from Kim et al. [10].

The case analyzed by Kim et al. [10] can be considered as a simplified one of the present analysis, in which the
loads were taken as τ1 = 0, τ2 	= 0 and bz = 0 in the relevant equations above. In this case, Eq. (26) reduces
to

τxz − iτyz = −iτ2 − μaτ2

(μs − σ0)ζ
+ iμ2aτ2

(μs − σ0)2
exp

[

− iμω(ζ )

μs − σ0

] ∫ ζ

i∞
1

s
exp

[
iμω(s)

μs − σ0

]

· ω′(s)ds (39)

The comparison between the results from the present analysis and those byKim et al. [10] is plotted in Fig. 3
where the loads at infinity in present analysis are the same as that in Kim et al. [10], i.e., τ1 = 0, τ2 = 0.1μ,



Finite-form solution for anti-plane problem of nanoscale crack 393

Fig. 4 Dimensionless stress field τyz/μ versus the ratio x/a for different Se and τ1 = 0, τ2 = 0.1μ, z = x, Se = (μs − σ0)/μa

and the parameter Se = (μs − σ0)/μa represents the effects of the surface contribution. Both the results
indicate that the dimensionless stress τyz/μ decreases gradually as Se increases. There is, however, significant
difference near the start point Se = 0 where the results by present solution are much higher than that from
Kim et al. [10]. The reason for this difference may be that Kim et al. [10] expressed the solution in the form of
infinite series so that their formula can only evaluate the stress approximately when Se tends to be zero, while
the present solution can calculate the stress accurately since the formulation is in finite form.

The phenomenon that the stress decreases with increasing Se is also observed in the following figures.
(2) Influence of the surface effects on the stress distribution

The classical counterpart corresponding to (39) can be obtained by taking τ1 = 0 and bz = 0 in (27),
which yields

τ ∗
xz − iτ ∗

yz = −iτ2 · ζ 2 + 1

ζ 2 − 1
(40)

Since the crack length a is inversely proportional to Se, the influence of the surface effects is dependent
on the crack length a. The numerical results of the dimensionless stress τyz/μ versus the ratio x/a for τ1 =
0, τ2 = 0.1μ and Se = 0.1, Se = 0.05, Se = 0.01 are plotted in Fig. 4, and the results from classical case (40)
in which the influence of surface effects is not incorporated are also plotted for comparison. It is seen that with
increase in the ratio x/a, the dimensionless stresses for all cases decrease while the results incorporating the
surface effects are always lower than those of the classical solution.

The significant difference appears near x/a = 1, and the influence of surface effects weakens with the
decrease in Se, i.e., the increase in crack length according to the formula Se = (μs − σ0)/μa. Different from
the classical solution where the shear stress tends to be infinite at the crack tip, the shear stress from the present
analysis with surface effects is a finite value. It is also seen that the stress evaluated by (39) approaches that of
the classical solution as Se approaches zero.
(3) Influence of surface effects on the image forces

The image forces from the present solution are compared with those by Wang and Fan [22] in this section.
Wang and Fan [22] calculated the image forces in the casewithout shear stress at infinity and a screw dislocation
at point z0, which is located on the x-axis and z0 = z̄0 = x0 > a. For this case, the image forces expressed by
(37) and (38) reduce to

fx − i fy = iμbz

{

qb(ζ0) − iμ

μs − σ0
exp

(

− iμz0
μs − σ0

)∫ ζ0

i∞
qb(s) exp

[
iμω(s)

μs − σ0

]

· ω′(s)ds
}

(41)

f ∗
x − i f ∗

y = 2μb2z
πaζ0(ζ

2
0 − 1)

(42)
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(a)

(b)

Fig. 5 Dimensionless image force fxπa/μb2z versus the ratio x0/a, Se = (μs − σ0)/μa

The numerical results of the dimensionless image force fxπa/μb2z versus the relative position x0/a of the
screw dislocation for the cases of Se = 1, Se = 0.5, Se = 0.1 and Se = 0.001 are shown in Fig. 5a. It is seen
that:

1. For the cases with and without the surface effects, the variation trend of the image forces fxπa/μb2z for
both cases is similar; however, the magnitude of the former force is always less than that of the later one.

2. The influence of the surface effects is localized, and themagnitude of the image force fxπa/μb2z approaches
zero with the increase in the ratio x0/a.

3. The image force is negative and its magnitude increases as the ratio x0/a decreases; hence, the crack always
attracts the dislocation.

4. From the formula Se = (μs − σ0)/μa where Se is inversely proportional to the crack length a, the
magnitude of the image force fxπa/μb2z , therefore, increases with the decrease in Se. This means that
when the surface effects descend progressively, the image force approaches that of the classical case in
which the influence of surface effects is not incorporated, e.g., the image force is approximately equal to
that from classical elastic theory for Se = 0.001.

The image forces evaluated by present article and those from Wang and Fan [22] are compared in Fig. 5b
in which only the results corresponding to Se = 1 and Se = 0.001 are plotted for explicit. It shows that the
results from two solutions are in agreement with each other.
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5 Conclusions

Asolution for the nano-crack problemwith surface effects inmode-III deformationwas proposed. The potential
function was calculated via the conformal mapping technique. At first, the boundary equations were integrated
over the crack boundary and reduced to single one, and the physical domain was mapped onto ζ -plane by the
mapping function. Then Muskhelishvili’s method was applied in ζ -plane and the reduced boundary equation
was converted into a first-order differential equation after carrying out the Cauchy integrals. Next, the unknown
analytic function in z-plane was obtained via the inverse mapping.

Compared to other solutions published in the literature for nano-crack in mode-III deformation, the present
solution was expressed in finite form instead of the infinite series. This makes it possible to evaluate the
stresses at the crack tip exactly. Different from analyses by others, the solution in the present method was
derived without pre-settings such as the solution form and the auxiliary conditions for the stress limitation at
the crack tip. The results from the present solution showed that the stresses at the crack tip are indeed finite
and the stress singularity is completely removed when the surface effects are incorporated, which leads to the
conclusion that the stress intensity factor for the nano-crack in mode-III deformation is zero. This is against
the classic elastic fracture theory but reasonable in the nature.

When the surface effectswere incorporated, the numerical results showed that themagnitudes of the stresses
and the image forces near the crack tip are always less than those from the classical solution. As the crack
length increases, the reduction of the stresses and the image forces due to the surface effects decreases, and
the results approach that by the classical elastic theory.
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