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Abstract Harmonic vibrations of a strongly inhomogeneous elastic beam with piecewise uniform stiffnesses
and densities are considered. The focus is on the lowest eigenmodes, which are often most harmful and
unwanted. They are evaluated by perturbing the limiting rigid body translations and rotations of stiff beam
components. The developed methodology is adapted for two particular configurations of a three-span beam.
The derived approximate formulae are tested by comparison with the exact solution of a symmetric beam with
two stiff outer components and free ends.

Keywords Composite beam · Low-frequency vibrations · High contrast · Rigid body motion · Perturbation

1 Introduction

Dynamics of inhomogeneous elastic solids is an important research area due to its numerical applications in
modern industries, e.g., see [1,2]. In particular, multilayered structures, also known as sandwich ones, are
widely used in aerospace, aircraft and automotive engineering, see [3] and references therein. High contrast in
material and geometrical characteristics of the components of elastic laminates is a major focus of a number
of recent developments [4], including laminated glass beams and plates [5,6], photovoltaic panels [7], energy
scavenging devices [8] and functionally graded materials [9]. The related theoretical considerations include
both traditional engineering approaches starting from various physical assumptions, see [10–12] along with
multi-parametric asymptotic approach, see [13,14]. We also mention strongly inhomogeneous multilayered
shells finding interesting implementations in metamaterial design, see [15]. Soft robotics is another advanced
domain concernedwith high-contrast structures [16,17]. Finally,we cite the paper [27] investigating bioinspired
soft composite.
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Longitudinal vibrations of piecewise homogeneous rods composed of alternating stiff and soft components
were studied in [19,20], see also [21]. The main emphasis of these papers is the lowest vibration modes arising
as a perturbation of the rigid body motions of stiff parts. In addition, we cite publications [22–24], dealing
with high-contrast periodic problems. Similarity of periodic and vertically inhomogeneous thin structures was
addressed in [25]. We also mention [26] which investigates the effect of a small misplacement on the deflection
response of the two-span column subjected to transverse loading.

This paper is concerned with time-harmonic vibrations of strongly piecewise inhomogeneous beams con-
sisting of altering stiff and soft components. Specific low-frequencymodes, characteristic only of high-contrast
structure, are studied, see [19]. An asymptotic approach relying on the concept of “almost rigid body motion”
developed earlier in [19] for elastic rods is adapted. Unlike rod demonstrating a single rigid body translation,
a multicomponent beam generally possesses not only vertical translation, but also rigid body translation. As
an example, we consider a three-span beam with one or two stiff elements. Explicit asymptotic formulae are
derived for the lowest eigenfrequencies and eigenforms. The accuracy of the asymptotic results is verified by
comparison with the exact solution of the original problem in case of symmetry.

The paper consists of five sections. In Sect. 1, the governing relations are presented and then rewritten
in nondimensional form. In Sect. 2, for further reference, the exact solution of a three-component beam with
free ends is given for symmetric vibration modes. In Sect. 3, a perturbation scheme is established. The scaling
motivated by the contrast of material parameters and an appropriate small parameter is introduced. The chosen
setups of a beam with two stiff components with free ends and a beam with one stiff component with clamped
ends are treated separately. The explicit formulae for the lowest eigenfrequencies and eigenforms are derived
for a beam of arbitrary geometry. In the next section, the aforementioned formulae are specialized for a
geometrical symmetric beam. In the last section, numerical comparisons of the exact and asymptotic results,
see Sects. 2 and 3, respectively, are presented along with computations for an asymmetric beam.

2 Formulation of the problem

Consider two types of three-span elastic beams composed of stiff and soft components as shown in Figs. 1
and 2 by black and white colors, respectively. In the first case, a beam with free ends contains two stiffer outer
parts whereas in the second case, it has two soft outer parts clamped at both ends.

In what follows, we adapt the Euler–Bernoulli beam theory assuming that the lengths of all homogeneous
beam components are much greater than a typical size of its transverse cross section. Then, each of them is
governed by the equation

d4yβ
dx4β

− ω2

a2α
yβ = 0, β = l, c, r, (1)

with

aα = √
Dα/mα (2)

where yβ are displacements, xβ are local longitudinal coordinates, ω is vibration frequency, Dα = Eα I is
stiffness and mα = ραA is linear mass density with Eβ , I , ρβ and A denoting Young’s moduli, moment of
inertia, material density and the cross-sectional area, respectively. Throughout the paper, the suffixes l, c and r

Fig. 1 A composite beam with two stiff outer components

Fig. 2 A composite beam with two soft outer components
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Fig. 3 Rigid body motions of a beam with free ends

correspond to the left, central and right components of the beam, whereas the parameter α stands for the outer
(α = o) or inner (α = i) components of the beam.

The continuity of the displacements, stresses, bending moments and shear forces at the interfaces is given,
respectively, by

yl (xl) = yc (− xc) , yr (− xr) = yc (xc) ,

y′
l (xl) = y′

c (− xc) , y′
r (− xr) = y′

c (xc) ,

Doy
′′
l (xl) = Di y

′′
c (− xc) , Doy

′′
r (− xr) = Di y

′′
c (xc) ,

Doy
′′′
l (xl) = Di y

′′′
c (− xc) , Doy

′′′
r (− xr) = Di y

′′′
c (xc) . (3)

It is well known that a homogeneous beam with free ends has a double zero eigenfrequency ω = 0, corre-
sponding to rigid body translation, (y = A = const), and rotation, (y = Bx, B = const), see Fig. 3.
Therefore, for a stiff component contacted with the soft one, we should expect two lowest eigenfrequencies
arising fromperturbation of zero eigenfrequencies of the aforementioned.Below,we concentrate on the analysis
of such frequencies for the geometrical setups in Figs. 1 and 2.

Let us now introduce local nondimensional longitudinal coordinates and frequency parameters by

ξβ = xβ

Lβ

and Ωβ = Lβ

√
ω

aα

, β = l, c, r. (4)

We, then, have from Eqs. (1) and (3),

d4yβ
dξ4β

− Ω4
β yβ = 0, − 1 � ξβ � 1 (5)

with

yl (1) = yc (− 1) , yc (1) = yr (− 1) , (6)
Lc

L l
y′
l (1) = y′

c (− 1) ,
Lc

L r
y′
r (− 1) = y′

c (1) , (7)

(
Lc

L l

)2

Doy
′′
l (1) = Di y

′′
c (− 1) ,

(
Lc

L r

)2

Doy
′′
r (− 1) = Di y

′′
c (1) , (8)
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and
(
Lc

L l

)3

Doy
′′′
l (1) = Di y

′′′
c (− 1) ,

(
Lc

L r

)3

Doy
′′′
r (− 1) = Di y

′′′
c (1) , (9)

, respectively. In what follows, we restrict ourselves to a beam with free (Fig. 1) or clamped (Fig. 2) ends, for
which

y′′
l (− 1) = y′′

r (1) = 0,

y′′′
l (− 1) = y′′′

r (1) = 0,
(10)

and

yl (− 1) = yr (1) = 0,

y′
l (− 1) = y′

r (1) = 0.
(11)

Finally, we define a small parameter as the ratio of soft and stiff components, i.e.,

ε =
(
Di

Do

) j

j = 1 or j = − 1 (12)

for the configurations in Fig. 1 ( j = 1) or Fig. 2 ( j = − 1), respectively.

3 The exact solution of a three-span beam with two stiff outer components and free ends

In this section, we present the benchmark solution for the symmetric vibration modes of a beam with

L l = L r, Ωl = Ωr. (13)

In this case, we introduce the dimensionless quantities:

D = Di

Do
, m = mi

mo
, a = ai

ao
, l = Li

Lo
. (14)

Then, the symmetric solutions of Eq. (5) are given by

yc (ξc) = Ac cos (Ωcξc) + Cc cosh (Ωcξc) , |ξc| ≤ 1, (15)

and

yr (ξr) =Ar cos (Ωrξr) + Br sin (Ωrξr) +
+ Cr cosh (Ωrξr) + Dr sinh (Ωrξr) , |ξr| ≤ 1.

(16)

Next, applying the continuity conditions along with boundary conditions (6)–(9), we arrive at a set of linear
equations in Ac,Cc, Ar, Br,Cr and Dr having a nontrivial solution provided that the determinant of the matrix
of coefficients vanishes resulting in

cosh(Ωc)
(
cosh(Ωr)

2 (
D2 cos(Ωr)

2 sin(Ωc) − a2 sin(Ωc) sin(Ωr)
2

+a3/2D cos(Ωc) sin(2Ωr)
) − aD sin(Ωr) sinh(2Ωr) (2 cos(Ωr) sin(Ωc)

+√
a cos(Ωc) sin(Ωr)

) + (
a2 cos(Ωr)

2 sin(Ωc) − D2 sin(Ωc) sin(Ωr)
2

+a3/2D cos(Ωc) sin(2Ωr)
)
sinh(Ωr)

2 + a3/2D cos(Ωc) cos(Ωr)
2 sin(2Ωr)

)

+ sinh(Ωc)
(
cosh(Ωr)

2 (− √
aD sin(2Ωr) sin(Ωc) + cos(Ωc)

(
D2 cos(Ωr)

2

−a2 sin(Ωr)
2)) − √

aD sin(Ωc) sin(Ωr)
2 sinh(2Ωr) + sinh(Ωr)

2 (17)
(
a2 cos(Ωc) cos(Ωr)

2 − √
aD sin(2Ωr) sin(Ωc) − D2 cos(Ωc) sin(Ωr)

2)

+√
aD sinh(2Ωr)

(
cos(Ωr)

2 sin(Ωc) + √
a cos(Ωc) sin(2Ωr)

))=0.

This is the sought for exact frequency equation which will be used for testing the asymptotic results in what
follows.



The lowest vibration modes of an elastic beam 343

4 Perturbation analysis

In this section, we study the lowest eigenmodes of the beams as shown in Figs. 1 and 2 using perturbation
techniques earlier developed for longitudinal vibrations of strongly inhomogeneous elastic rods, see [19,20].
Below, we do not impose any conditions on the sizes of beam components.

4.1 Two stiff outer components

First, consider the beam in Fig. 1, for which the small physical parameter is given by (12) with j = 1. We also
assume

ε
mo

mi
= m∗, m∗ ∼ 1, (18)

and

δl = L l

Lc
∼ 1, δr = L r

Lc
∼ 1 (19)

keeping in mind that Ω4
c ∼ Ω4

l ∼ Ω4
r ∼ ε over the low-frequency range of interest.

Let us now expand the frequency parameters and displacements into the asymptotic series

Ω4
β = ε

(
Ω4

β,0 + εΩ4
β,1 + ε2Ω4

β,2 + · · ·
)

,

yβ = yβ,0 + εyβ,1 + ε2yβ,2 + · · · , β = l, c, r
(20)

where

Ω4
l = Ω4

c δ4l m∗, Ω4
r = Ω4

c δ4r m∗. (21)

Thus, the continuity and boundary conditions take the form

yl (1) = yc (− 1) , yr (− 1) = yc (1) ,

y′
l (1) = δly

′
c (− 1) , y′

r (− 1) = δr y
′
c (1) ,

y′′
l (1) = εδ2l y

′′
c (− 1) , y′′

r (− 1) = εδ2r y
′′
c (1) ,

y′′′
l (1) = εδ3l y

′′′
c (− 1) , y′′′

r (− 1) = εδ3r y
′′′
c (1) ,

(22)

and

y′′
l (− 1) = y′′′

l (− 1) = 0,

y′′′
r (1) = y′′′

r (1) = 0.
(23)

On substituting the asymptotic expansions (20) into the equations of motion (5), we arrive at the leading-
order static approximation given by

d4yβ,0

dξ4β
= 0, β = l, c, r. (24)

In this case, for stiff components, we have the leading-order boundary conditions

y′′
β,0 (± 1) = y′′′

β,0 (± 1) = 0, β = l, r (25)

following from the substitution of the second expansion in (20) into the formulae (22) and (23). The solutions
of the boundary value problems (24) and (25) take the form of rigid body motions, i.e.,

yβ,0 = Aβξβ + Bβ, β = l, r (26)

involving both the rigid body translations and rotations, see Fig. 3.
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For soft component (β = c), Eq. (24) has to be subjected to the boundary conditions

yc,0 (− 1) = yl,0 (1) , yc,0 (1) = yr,0 (− 1) ,

δly
′
c,0 (− 1) = y′

l,0 (1) , δr y
′
c,0 (1) = y′

r,0 (− 1) .
(27)

As a result, we have from (24) and (27) taking into account (26)

yc,0 = Acξ
3
c + Bcξ

2
c + Ccξc + Dc (28)

with the coefficients Ac, Bc, Cc and Dc satisfying the equations

Al = (3Ac − 2Bc + Cc)δl,

Bl = − (1 + 3δl)Ac + (1 + 2δl)Bc − (1 + δl)Cc + Dc,

Ar = (3Ac + 2Bc + Cc)δr,

Br = (1 + 3δr)Ac + (1 + 2δr)Bc + (1 + δr)Cc + Dc.

(29)

Now, we proceed to the next-order problems for stiff components having for the left component the “dynamic”
equation of motion

d4yl,1
dξ4l

− Ω4
l,0 yl,0 = 0, (30)

with the boundary conditions

d2yl,1
dξ2l

∣∣∣∣∣
ξl=1

= δ2l
d2yc,0
dξ2c

∣∣∣∣
ξc=− 1

,
d3yl,1
dξ3l

∣∣∣∣∣
ξl=1

= δ3l
d3yc,0
dξ3c

∣∣∣∣
ξc=− 1

, (31)

and

d2yl,1
dξ2l

∣∣∣∣∣
ξl=− 1

= d3yl,1
dξ3l

∣∣∣∣∣
ξl=− 1

= 0. (32)

Inserting yl,0 from (26) into Eq. (30) and then integrating over ξl (− 1 � ξl � 1), we obtain

3δ3l Ac = BlΩ
4
l,0. (33)

Next, multiplying (30) by ξl and integrating, again, over ξl, we have

6δ3l Ac + (6Ac − 2Bc) δ2l = 2AlΩ
4
l,0

3
. (34)

Similarly, we derive for the right component

− 3δ3r Ac = BrΩ
4
r,0, (35)

and

6δ3r Ac + (6Ac + 2Bc) δ2r = 2ArΩ
4
l,0

3
. (36)

The coefficients Aβ and Bβ (β = l, r) in the right-hand side of Eqs. (33)–(36) can be expressed through the
coefficients in (29), leading to the linear set of equations

3δ3l Ac + ((1 + 3δl) Ac − (1 + 2δl) Bc + (1 + δl)Cc − Dc)Ω4
l,0 = 0,

9
(
δ3l + δ2l

)
Ac − 3δ2l Bc − δl (3Ac − 2Bc + Cc)Ω4

l,0 = 0, (37)

3δ3r Ac + ((1 + 3δr) Ac + (1 + 2δr) Bc + (1 + δr)Cc + Dc)Ω4
r,0 = 0,

9
(
δ3r + δ2r

)
Ac + 3δ2r Bc − δr (3Ac + 2Bc + Cc)Ω4

r,0 = 0.



The lowest vibration modes of an elastic beam 345

The latter has a nontrivial solution provided that

9δ4r Ω
8
l,0 + 6δrΩ

4
l,0

(
6δ3l + 9δ2l (2 + δr)

+6δl (3 + δr (3 + δr)) − 4 (2 + δr (3 + 2δr))Ω4
l,0

)
Ω4

r,0 (38)

+ (
9δ4l − 24δl (2 + δl (3 + 2δl)) Ω4

l,0 + 16Ω8
l,0

)
Ω8

r,0 = 0.

in which Ωr,0δl = Ωl,0δr. The obtained frequency equation has two nonzero solutions given by

Ω4
l,0 = 3δl

4δ3r

{
δ3r

(
2δ2l + 3δl + 2

)−2
[
δ6l + 3δ6l δr + 4δ6l δ

2
r + δ3l δ

3
r

(
3δ3l + δ2l − 1

)

+ δ4l δ
4
r

(
δ2l + 3δl + 3

) + δ3l δ
5
r

(
2δ2l + 3δl + 1

) + (δl + 1)2 δ6r
(
δ2l + δl + 1

)
(39)

+ δ3l
(
2δ2r + 3δl + 2

)]1/2}
,

and

Ω4
l,0 = 3δl

4δ3r

{
δ3r

(
2δ2l + 3δl + 2

) + 2
[
δ6l + 3δ6l δr + 4δ6l δ

2
r + δ3l δ

3
r

(
3δ3l + δ2l − 1

)

+ δ4l δ
4
r

(
δ2l + 3δl + 3

) + δ3l δ
5
r

(
2δ2l + 3δl + 1

) + (δl + 1)2 δ6r
(
δ2l + δl + 1

)
(40)

+ δ3l
(
2δ2r + 3δl + 2

)]1/2}
.

As might be expected, Eq. (38) has also a double zero eigenvalue corresponding to “pure” rigid body
motions for which the displacement profile of the whole beam is a superposition of translation and rotation as
given in Fig. 3. The eigenform corresponding to the almost rigid body motion of the stiff components can be
found from the linear set of Eq. (37) in which the eigenfrequencies are given by formulae (39) and (40).

4.2 Two soft outer components

Similar to the previous subsection, we start here from the same asymptotic expansions (20) in the small
parameter ε at j = − 1 in (12) having Eq. (5) with

yl (1) = yc (− 1) , yr (− 1) = yc (1) ,

y′
l (1) = δly

′
c (− 1) , y′

r (− 1) = δr y
′
c (1) ,

εy′′
l (1) = δ2l y

′′
c (− 1) , εy′′

r (− 1) = δ2r y
′′
c (1) ,

εy′′′
l (1) = δ3l y

′′′
c (− 1) , εy′′′

r (− 1) = δ3r y
′′′
c (1) ,

(41)

and

yl (− 1) = y′
l (− 1) = 0,

yr (1) = y′
r (1) = 0,

(42)

The last formula corresponds to a beam with clamped ends.
The leading-order displacements of the beam are written as, see (24),

yc,0 = Acξc + Bc,

yl,0 = Alξ
3
l + Blξ

2
l + Clξl + Dl,

yr,0 = Arξ
3
r + Brξ

2
r + Crξr + Dr.

(43)

They satisfy the conditions

yl,0 (1) = yc,0 (− 1) , y′
l,0 (1) = δly

′
c,0 (− 1) ,

yr,0 (− 1) = yc,0 (1) , y′
r,0 (− 1) = δr y

′
c,0 (1) .

(44)
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and

yl,0 (− 1) = y′
l,0 (− 1) = 0,

yr,0 (1) = y′
r,0 (1) = 0,

(45)

following at the leading order from substituting the second equation in (20) into (44) and (45). Then, we have

Al = Ac

4
(1 + δl) − Bc

4
, Bl = Ac

4
δl,

Cl = − Ac

4
(3 + δl) + 3Bc

4
, Dl = − Ac

4
(2 + δl) + 2Bc

4
,

(46)

and

Ar = Ac

4
(1 + δr) + Bc

4
, Br = − Ac

4
δr,

Cr = − Ac

4
(3 + δr) − 3Bc

4
, Dr = Ac

4
(2 + δr) + 2Bc

4
.

(47)

It readily follows from (43), (46) and (47) that

yl,0 (ξl) =
(
Ac

4
(1 + δl) − Bc

4

)
ξ3l + Ac

4
δlξ

2
l +

(
− Ac

4
(3 + δl) + 3Bc

4

)
ξl

− Ac

4
(2 + δl) + 2Bc

4
,

(48)

and

yr,0 (ξl) =
(
Ac

4
(1 + δr) + Bc

4

)
ξ3r − Ac

4
δrξ

2
r −

(
Ac

4
(3 + δr) + 3Bc

4

)
ξr

+ Ac

4
(2 + δr) + 2Bc

4
.

(49)

At the next order, we obtain from (5) and (41) the boundary value problem

d4yc,1
dξ4c

− Ω4
c,0 yc,0 = 0, (50)

with

d2yc,1
dξ2c

∣∣∣∣
ξc=− 1

= 1

δ2l

d2yl,0
dξ2l

∣∣∣∣∣
ξl=1

,
d3yc,1
dξ3c

∣∣∣∣
ξc=− 1

= 1

δ3l

d3yl,0
dξ3l

∣∣∣∣∣
ξl=1

, (51)

d2yc,1
dξ2c

∣∣∣∣
ξc=1

= 1

δ2r

d2yr,0
dξ2r

∣∣∣∣
ξr=− 1

,
d3yc,1
dξ3c

∣∣∣∣
ξc=1

= 1

δ3r

d3yr,0
dξ3r

∣∣∣∣
ξr=− 1

, (52)

First, integrating Eq. (50) over the interval −1 � ξc � 1 and applying the conditions (51) and (52), we find

3

2δ3r
(Ac (1 + δr) + Bc) − 3

2δ3l
(Ac (1 + δl) − Bc) = 2BcΩ

4
c,0. (53)

Next, multiplying (50) by ξc and integrating over the same interval, we obtain, taking into account (51) and
(52),

3

2δ3r
(Ac (1 + δr) + Bc) + 3

2δ3l
(Ac (1 + δl) − Bc)

+ 3

2δ2r

(
Ac

(
1 + 4

3
δr

)
+ Bc

)
+ 3

2δ2l

(
Ac

(
1 + 4

3
δl

)
− Bc

)
= 2AcΩ

4
c,0

3

(54)
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Computability of the last two equations leads to the asymptotic formulae for the lowest eigenfrequencies
given by

Ω4
c,0 = 3

4δ3l δ
3
r

{
2δ3r + 3δlδ

3
r + 2δ2l δ

3
r + δ3l

(
2δ2r + 3δr + 2

) − 2
[
δ6r + 3δlδ

6
r

+ 4δ2l δ
6
r + δ6l (δr + 1)2

(
δ2r + δr + 1

) + δ5l δ
3
r

(
2δ2r + 3δr + 1

)
(55)

+ δ3l δ
3
r

(
3δ3r + δ2r − 1

) + δ4l δ
4
r

(
δ2r + 3δr + 3

)]1/2}
,

and

Ω4
c,0 = 3

4δ3l δ
3
r

{
2δ3r + 3δlδ

3
r + 2δ2l δ

3
r + δ3l

(
2δ2r + 3δr + 2

) + 2
[
δ6r + 3δlδ

6
r

+ 4δ2l δ
6
r + δ6l (δr + 1)2

(
δ2r + δr + 1

) + δ5l δ
3
r

(
2δ2r + 3δr + 1

)
(56)

+ δ3l δ
3
r

(
3δ3r + δ2r − 1

) + δ4l δ
4
r

(
δ2r + 3δr + 3

)]1/2}
,

In contrast to the setup analyzed in the previous section, the boundary conditions corresponding to the clamped
ends do not support “pure” rigid body motions with zero eigenfrequencies.

5 Symmetric structure

Here, we consider an important particular case, in which δl = δr = δ. This assumption will drastically simplify
the pretty lengthy formulae (39), (40), (55) and (56) for the lowest eigenfrequencies and also the expressions
of the associated eigenforms. In this case, due to symmetry of the problem, the derivation may be reduced to
analysis of simpler problems for only one, say left, half of the structure.

First, analyze the symmetric vibration modes of the beam shown in Fig. 1, for which, we have from (26)
and (28)

yl,0 = Alξl + Bl,

yc,0 = Acξ
2
c + Bc,

(57)

On substituting these eigenforms into the continuity conditions given by the first and the third equations in
(27), we get

yc,0 (ξc) = − Al

2δ
ξ2c + Al

(
1 + 1

2δ

)
+ Bl. (58)

At the next order, we arrive at the boundary value problem for Eq. (30) subjected to the conditions (32) and
(51) with δl = δ.

Similar to the consideration above, the solvability of the aforementioned boundary value problem gives
the expression for the sought for lowest nonzero eigenfrequency. It is

Ω4
l,0 = 3δ

2
, (59)

corresponding to the eigenform with Bl = 0.
For the antisymmetric modes, we have

yl,0 (ξl) = Alξl + Bl,

yc,0 (ξc) =
(
Al

2

(
1 + 1

δ

)
+ Bl

2

)
ξ3c −

(
Al

2

(
3 + 1

δ

)
+ 3Bl

2

)
ξc

(60)

satisfying the continuity conditions at the interface between stiff and soft components. Finally, we arrive at the
asymptotic formula for nonzero eigenfrequency given by

Ω4
l,0 = 3δ

2

(
3 (1 + δ)2 + δ2

)
. (61)
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Fig. 4 The asymptotic eigenform of a symmetric beam with two stiff outer components for the eigenfrequency (39), ε = 0.1

In this case, the coefficients of the left displacement are related by

Al = 3(δ + 1)

δ
Bl. (62)

Comparison of formulae (59) and (61) with their general counterparts (39) and (40) at δl = δ shows that they
are identical.

For symmetric (yc,0 = Ac) and antisymmetric (yc,0 = Bcξc) vibration modes of the beam in Fig. 2, we
have, by substituting δl = δr = δ into formulae (55) and (56), respectively,

Ω4
c,0 = 3

2δ3
, (63)

and

Ω4
c,0 = 3

(
4δ2 + 6δ + 3

)

2δ3
. (64)

6 Numerical results

Below, we compute the lowest eigenfrequencies and eigenforms for the beams in Figs. 1 and 2.
Figures 4 and 5 show the eigenforms of the beam with two stiff parts given by the asymptotic formulae in

the previous section, see (57), (58) at Bl = 0 and (60), (62), respectively. The associated eigenfrequency is
estimated by (59) and (61). In these figures, ε = 0.1, δ = 4 and δ = 1.01.

Figures 6 and 7 illustrate the effect of beam’s asymmetry at ε = 0.1 δr = 0.2, δl = 0.4 or δl = 0.8, for
a beam with two stiff and two soft components, respectively. The eigenforms are calculated using the linear
Eqs. (37) and (53), (54) leading to the asymptotic formulae (39) and (55).

Figure 8 illustrates the comparison of the exact and approximate values of the lowest eigenfrequency
evaluated from transcendental Eq. (17) and the approximate formula (39) plotted by dotted and solid lines,
respectively, at δ = 1.01.
The comparison of the associated eigenforms is presented in Fig. 9, where ε = 0.1. The exact eigenform is
given by (15) and (16) while the asymptotic one is expressed by (57).

7 Concluding remarks

An asymptotic procedure for evaluating the lowest eigenfrequency of strongly inhomogeneous beams with
piecewise uniformmaterial parameters is developed. The procedure starts from perturbations around rigid body
translations and rotations of stiff components in small parameter arising from the contrast in stiffnesses. At the
leading order, the displacements of stiff components are given by linear functions of the longitudinal coordinate,
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Fig. 5 The asymptotic eigenform of an antisymmetric beam with two stiff outer components for the eigenfrequency (55), ε = 0.1

Fig. 6 The asymptotic eigenform of a beam with two stiff outer components for the eigenfrequency (39), ε = 0.1 and δr = 0.2

Fig. 7 The asymptotic eigenform of a beam with two soft outer components for the eigenfrequency (55), ε = 0.1 and δr = 0.2
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Fig. 8 The asymptotic formula (39) versus the numerical solution of the transcendental Eq. (17) at δ = 1.01

Fig. 9 The asymptotic eigenform (57) versus the exact one (15) and (16) at ε = 0.1 and δ = 1.01

while the displacements of soft component are generally expressed in the form of third-order polynomials.
Comparison with the exact sinusoidal solution of a symmetric beam with two stiff outer components and free
ends demonstrated the efficiency of the asymptotic formulae for the lowest eigenvalue and eigenform.

Although the results are obtained for two types of three-span beams, see Figs. 1 and 2, the methodology
is not seemingly restricted to the considered layouts and it may be implemented for multilayered structures
resting on elastic foundation, see, for example [27]. The proposed approach is not strict to the extra restriction
on the contrast in densities presented by formula (18) as well as assumption (19) excluding very short or long
components. It also has a potential to be extended two multi-span high-contrast plates. Finally, the so-called
local low-frequency regimes with a sinusoidal (not polynomial) behavior along soft components, similar to
those in rods, [19], might be also studied.
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9 Appendix

The coefficients in the expression (15) and (16) for the eigenform of a symmetric beam with two outer stiff
components and free ends can be written as

Ac = 2

a3/2
{√

a cosh(Ωc) ((a − D) cos(2Ωr) − (a + D) cos(2Ωr))
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+ sinh(Ωc) ((a − D) sin(2Ωr) − (a + D) sin(2Ωr))} ,

Cc = 2

a3/2

{√
a cos(Ωc) ((a − D) cosh(2Ωr) − (a + D) cos(2Ωr))

− sin(Ωc) ((a − D) sinh(2Ωr) − (a + D) sin(2Ωr))
}

,

Ar = − 2

a5/2

{
cosh(Ωc)

(
a cosh(Ωr)

2 (
2
√
aD cos(Ωc) cos(Ωr)

− (a + M) sin(Ωc) sin(Ωr)) + (a − D)2 sin(Ωc) cos(Ωr) sinh(Ωr) cosh(Ωr)

+ D sinh(Ωr)
2 (

2a3/2 cos(Ωc) cos(Ωr) − (a + D) sin(Ωc) sin(Ωr)
))

sinh(Ωc)
(− a(a − D) cos(Ωc) sin(Ωr) cosh(Ωr)

2 + cosh(Ωr) sinh(Ωr)
(
(a2 + D2) cos(Ωc) cos(Ωr) − 4

√
aD sin(Ωc) sin(Ωr)

) + D cos(Ωc) ((a − D)

sin(Ωr) sinh(Ωr)
2 + a cos(Ωr) sinh(2Ωr)

))}
,

Br = 2

a5/2

{
cosh(Ωc)

(
D cosh(Ωr)

2 ((a + D) cos(Ωr) sin(Ωc)

+ 2a3/2 cos(Ωc) sin(Ωr)
) + (a − D)2 sin(Ωc) sin(Ωr) sinh(Ωr) cosh(Ωr)

+ a sinh(Ωr)
2 (

(a + D) cos(Ωr) sin(Ωc) + 2
√
aD cos(Ωc) sin(Ωr)

))

+ sinh(Ωc)
(− D(a − D) cos(Ωc) cos(Ωr) cosh(Ωr)

2 + cosh(Ωr) sinh(Ωr)
(
4
√
aD cos(Ωr) sin(Ωc) + (a2 + D2) cos(Ωc) sin(Ωr)

) + a cos(Ωc) ((a − D)

cos(Ωr) sinh(Ωr)
2 + D sin(Ωr) sinh(2Ωr)

))}
,

Cr = 1

a5/2

{
cosh(Ωr)

(
cosh(Ωc)

(−4a3/2D cos(Ωc)cos(2Ωr)+(a+D)2 sin(Ωc)sin(2Ωr)

+ (a − D)2 cos(Ωc) sin(2Ωr) sinh(Ωc)
)) − sinh(Ωr) ((a − D) (a + D

+ (a − D) cos(2Ωr)) cosh(Ωc) sin(Ωc) + sinh(Ωc) ((a + D) cos(Ωc)

(a − D + (a + D) cos(2Ωr)) − 8
√
aD cos(Ωr) sin(Ωc) sin(Ωr)

)) }
,

Dr = 1

a5/2

{
sinh(Ωc) (cosh(Ωr) (− (a + D) cos(Ωc) (− a+D+(a+D) cos(2Ωr))

+4
√
aD sin(Ωc) sin(2Ωr)

) + (a − D)2 cos(Ωc) sin(2Ωr) sinh(Ωr)
) + cosh(Ωc)

(−(a−D) (−a−D+(a−D) cos(2Ωr)) cosh(Ωr) sin(Ωc) + sin(2Ωr)
(− 4a3/2D cos(Ωc) cos(2Ωr) + (a + D)2 sin(Ωc) sin(2Ωr)

)) }
.
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