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Abstract The dynamic modeling and simulation of a rotating flexible hub-beam based on different discretiza-
tion methods of the deformation fields are studied. For a rotating flexible cantilever beam, assumed mode
method, finite element method (FEM), Bezier interpolation method (BIM), and B-spline interpolation method
(BSIM) are adopted to describe the deformation field of flexible beam and to construct unified. By means of
Lagrange’s equation of the second kind, taking into account both longitudinal and transverse deformations,
as well as longitudinal shortening in the longitudinal deformation caused by transverse bending deforma-
tion, dynamic simulation software based on four different discretization methods is prepared, and simulation
examples are given for dynamic problems of the hub-beam. The simulation results show that FEM has a low
computing efficiency, and the deformation of a flexible beam discretized by FEM cannot be guaranteed second
derivative continuous at the element nodes. BIM and BSIM can be used as new discretization methods to
effectively describe the deformation fields of flexible beams and have high computing efficiencies, perfectly
meeting the needs of actual projects. Therefore, BIM and BSIM have good performance and application value
in multi-flexible-body system dynamics.

Keywords Assumed mode method · Finite element method · Bezier interpolation method · B-spline
interpolation method

1 Introduction

The discretization of deformation fields of flexible beams is a fundamental issue ofmulti-body systemdynamics
as well as one of the difficulties in the current research stage in this regard. Early research work in linkage elas-
todynamics was summarized in Refs. [1,2], and the flexibility of mechanisms was introduced into the research
of multi-body systems. The AMMand FEM are the most widely used discretizationmethods. Originating from
the natural vibration mode of the middle of a beam in structural mechanics, the AMM is characterized by fewer
modals, better approximation results and higher computing efficiency [3]. However, AMM’s applicability in
solving large deformation problems is still to be verified since it derives from small deformation assumptions.
FEM is a popular discretization method for deformation fields, but it requires complicated preprocessing and
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significant time for meshing. Besides, high-order continuous functions are not easily constructed via the FEM,
which generally symbolizes continuity of displacement but not continuity of stress–strain. Moreover, since the
system’s generalized coordinates are finite element nodes, there are a great number of generalized coordinates
for the resulting dynamic equations [4–6], leading to a low real-time computing efficiency for large structures.
As a result, efficient and accurate discretization methods have become a difficult key research point for rapid
real-time computation of complex and flexible multi-body dynamics.

The BIM has been widely used for constructing curves and surfaces [7,8]. Geometric construction via
Bezier curves was studied in Ref. [9], and stretching, deformation, and perturbation energy of Bezier curves
were analyzed. Reference [10] proposed adopting cubic spline functions to describe the deformation of flexible
beams and dissected the dynamic behavior of the flexible stepped beammodel for controlling its vibration. The
B-spline method was used in two-dimensional elastic mechanics to solve statics problems of beams and plane
plates [11]. References [12,13] presented a theoretical derivation of the relationships among BIM, BSIM, and
FEMunder the absolute nodal coordinate formulation (ANCF), achieving the unification of geometricmodeling
in computer-aided design (CAD) and deformation fields description in computer-aided analysis (CAA). The
conversion between geometric computation methods (mainly BIM and BSIM) and FEM under ANCF was
studied in Refs. [14,15], and simulation examples were given, showing that these unifications would help
to achieve isogeometric analysis [16] between CAD and CAA. Later, dynamic problems of rotating flexible
cantilever and tapered beams discretized by BIM and BSIM were studied [17–19]. Li et al. [20] presented
dynamic analysis of an axially rotating FG tapered beams based on a new rigid–flexible coupled dynamic
model using the B-spline method. Smoothed-point interpolation method and radial-point interpolation method
were applied to the discretization of the deformation fields of flexible beams [21,22], and the dynamic issues
of a rotating flexible beam were investigated, thus enriching theories for the deformation fields description of
flexible beams.

In this study, BIM and BSIM are adopted as new discretization methods to explore their performance in
the dynamic modeling and analysis of flexible hub-beams. In addition, their formats are unified with those of
AMM and FEM to facilitate the derivation of dynamic equations and the preparation of dynamic simulation
software. In the proposed dynamic model, the transverse bending deformation and longitudinal deformation of
the flexible beam are considered, and the longitudinal shortening caused by transverse bending deformation is
also taken into account. C++ is used to prepare the dynamic simulation software of a flexible hub-beam based
on four different discretization methods (AMM, FEM, BIM, and BSIM). The simulation results calculated by
BIM and BSIM are compared with those calculated by AMM and FEM in Sect. 5; the response amplitudes and
frequencies based on FEM, AMM, BIM, and BSIM are basically the same. Comparison of the advantages and
disadvantages of FEM,AMM,BIM, andBSIM is studied in Sect. 6; in the case that an external torque is applied
on the hub, and the rotational motion of the system is unknown. The simulation results show that the FEM has a
low computing efficiency, and the deformation of a flexible beam discretized by the FEM cannot be guaranteed
second derivative continuous at the element nodes. BIM and BSIM can be used as new discretization methods
to effectively describe the deformation fields of flexible beams and provide high computing efficiencies. BIM
and BSIM have good performance and application value in multi-flexible-body system dynamics.

2 Physical model of rotating flexible beam

Several simplifying assumptions are made to limit the range of applications of the planar rotating hub-beam
system model to be derived.

1. The rotating beam is a uniform, homogeneous Euler–Bernoulli beam. A cross section of the beam is
perpendicular to the centroid line of the beam and remains in a plane after deformation.

2. While stretch along the centroid line of the beam is considered, the area of any cross section of the beam
remains the same after deformation.

3. The beam moves in a horizontal plane, and gravity is not considered.

As shown in Fig. 1, the flexible hub-beammoves within the horizontal plane. To be specific, the hub rotates
around a fixed axis, and its upper part is fixed by a flexible cantilever beam. An inertial coordinate system
oi j is established through the center of rotation of the hub. A floating coordinate system o′i ′ j ′ is built on the
flexible beam. The rotational inertia of the hub around the rotational center o is Joh ; the rotating angle of the
hub is θ measured counterclockwise with respect to the i ′-axis of the floating coordinate system o′i ′ j ′. The
radius of the hub is a; the length of flexible beam is L; the density, cross-sectional area, and second moment
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Fig. 1 Physical model of the rotating flexible beam

of area are ρ, S, and I , respectively; the bending stiffness and compressive stiffness of the beam are E I and
ES, respectively.

It is shown in Fig. 1 that the radius vector based on the floating coordinate system from the origin o to a
certain point P on the flexible beam after the deformation can be written as

r = rA + r0 + u (1)

where rA is the radius vector from the center o of the hub to the base point o′ of the floating coordinate
system, and r0 is the radius vector of point P under the floating coordinate system before the deformation.
The deformation vector of point P is u = [ux , uy]T, which can be written as

{
ux = ux1 + ux2
uy = uy

(2)

where ux1 is the longitudinal deformation, uy is the transverse bending deformation, and ux2 is the longitudinal
shortening caused by transverse bending. This nonlinear coupling term can be expressed as

ux2 = −1

2

∫ x

0

(
∂uy

∂ξ

)2

dξ (3)

Assuming that � is the direction cosine matrix of the floating coordinate system compared to the inertial
coordinate system, the coordinate matrices of the radius vector r under the inertial coordinate system are
written as

r = �(rA + r0 + u) (4)

where rA = (a, 0)T, r0 = (x, 0)T, u = [ux , uy]T, and � =
(
cos θ − sin θ
sin θ cos θ

)
. The velocity vector can be

determined as
ṙ = �̇(rA + r0 + u) + �u̇ (5)

The kinetic energy of the system can be written as

T = 1

2

∫
V

ρS(ṙTṙ)dV + 1

2
Joh θ̇

2 (6)

where Joh is the rotary inertia of hub; θ̇ is the rotational angular velocity of hub.
The potential energy of the system can be written as

U = 1

2

∫ L

0

[
ES

(
∂ux1
∂x

)2

+ 1

2
E I

(
∂2uy

∂x2

)2]
dx (7)
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3 Description of deformation fields

3.1 Assumed mode method (AMM)

Based on the AMM, the longitudinal deformation and transverse bending deformation of a flexible beam can
be written as [23] {

ux1 = �x (x)A(t)
uy = �y(x)B(t) (8)

where�x (x) ∈ R1×Nx and�y(x) ∈ R1×Ny are the modal function row vectors of longitudinal and transverse
vibrations of the flexible beam, respectively;A(t) ∈ RNx and B(t) = RNy ∈ are the modal coordinate column
vectors of longitudinal and transverse vibrations of flexible beam, respectively. These can additionally be
written as {

�x (x) = [φx1(x), φx2(x), · · · φxNx (x)] A(t) = [A1(t), A2(t), · · · ANx (t)]T
�y(x) = [φy1(x), φy2(x), · · · φyNy(x)] B(t) = [B1(t), B2(t), · · · BNy(t)]T (9)

where the modal functions φxi (x) and φyi (x) of a cantilever beam are written as

φxi (x) = sin
(2i − 1)π

2L
x, i = 1, 2, . . . , Nx

φyi (x) = cos(βi x) − cosh(βi x) + γi [sin(βi x) − sinh(βi x)] , i = 1, 2, . . . , Ny
(10)

where

β1L = 1.875, β2L = 4.694

βi L = (i − 0.5)π, i ≥ 3 (11)

γi = −cos(βi L) + cosh(βi L)

sin(βi L) + sinh(βi L)
(12)

Substituting Eq. (8) into Eq. (2) yields the deformation displacement of point P{
ux = �x (x)A(t) − 1

2B
T(t)H(x)B(t)

uy = �y(x)B(t)
(13)

where H(x) = RNy×Ny is the coupling shape function

H(x) =
∫ x

0

(
∂�T

y (ξ)

∂ξ

)(
∂�y(ξ)

∂ξ

)
dξ (14)

3.2 Finite element method (FEM)

As shown in Fig. 2, the FEM is adopted to discretize the deformation fields of a flexible beam. The beam is
divided into n elements, and ux1 and uy of any point P within element j ( j = 1, 2 . . . n) are written as the
linear interpolation of the deformation of the element node

ux1 = N j,1(x̄)E j uy = N j,2(x̄)F j (15)

where x̄ is P’s Y-coordinate in the element coordinate system Oj − X jY j . It is assumed that the element
j has a length of l j and that x̂ = x̄

l j
, so that the shape function matrix can be written as

N j,1(x̄) = [ N11 N12 ]
N j,2(x̄) = [ N21 N31 N22 N32 ] (16)

where
N11 = 1 − x̂ N12 = x̂

N21 = 1 − 3x̂2 + 2x̂3 N31 = l j (x̂ − 2x̂2 + x̂3)

N22 = 3x̂2 − 2x̂3 N31 = l j (−x̂2 + x̂3)

(17)
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Fig. 2 Finite element model of the flexible beam

The deformation array of the element node is shown as:

E j = [umx1 ukx1 ]T F j = [umy θm umk θk ]T (18)

where

θm = ∂uy

∂ x̄

∣∣∣∣
x̄=0

θm = ∂uy

∂ x̄

∣∣∣∣
x̄=l j

(19)

It is assumed that Cx j , Cy j are the positional matrices decided by the element number and that E and F are
the overall longitudinal and transverse deformation arrays. Then, they can be written as

E j = Cx jE F j = Cy jF (20)

where
node number.1 2 · · · · · · m k · · · · · · n + 1

E = [u1x1 u2x1 · · · · · · umx1 ukx1 · · · · · · un+1
x1 ]T

Cx j =
[
0 0 · · · · · · 1 0 · · · · · · 0
0 0 · · · · · · 0 1 · · · · · · 0

]

node number.1 2 · · · · · · m k · · · · · · n + 1

E = [u1y θ1 u
2
y θ2 · · · umy θm uky θk · · · un+1

y θn+1]T

Cx j =
[
02×2 02×2 · · · I2×2 02×2 · · · 02×2
02×2 02×2 · · · 02×2 I2×2 · · · 02×2

]

(21)

Based on the boundary conditions of the beam, E, F can be written as

E = RxA F = RyB (22)

where A, B are the overall independent longitudinal and transverse deformation matrices and Rx , Ry are the
transformed matrices. For example, for a cantilever beam constrained by a fixed end, u1x1 = 0, u1y = 0, θ1 = 0,
Rx , Ry , and A, B can be written as

Rx =
[
01×n
In×n

]
(n+1)×n

A = [u2x1 u3x1 · · · · · · un+1
x1 ]T

Ry =
[
02×2n
I2n×2n

]
2(n+1)×2n

B = [u2y θ2 · · · · · · un+1
y θn+1]T

(23)

Thus,

ux1 = N1A, uy = N2B (24)

N1 = N j,1Cx jRx N2 = N j,2Cy jRy (25)

The longitudinal shortening deformation caused by transverse bending deformation is written as

ux2 = −1

2
BT(t)H(x)B(t) (26)

where

H(x) = RT
yC

T
y j

∫ x̄

0

(
∂NT

j,2

∂ x̄
· ∂N j,2

∂ x̄

)
dx̄Cy jRy +

j−1∑
i=1

RT
yC

T
yi

∫ li

0

(
∂NT

i,2

∂ x̄
· ∂Ni,2

∂ x̄

)
dx̄CyiRy (27)
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3.3 Bezier interpolation method (BIM)

Bezier adopted the deformation of vertices of characteristic polygons and linear combinations of Bernstein
bases to express the deformation

r(ε) =
m∑
i=0

Jm,i (ε)Vi (28)

where m is the number of Bezier curves; Vi is the deformation of a vertex of a characteristic polygon, and the
Bernstein functions Jm,i (ε) are written as

Jm,i (ε) = Ci
mεi (1 − ε)m−i (29)

Ci
m = m!

i !(m − i)! (30)

Then, the longitudinal and transverse deformations of the beam can be written as

{
w1 = Ja
w2 = Jb (31)

where

J =
[
Jm,0

( x

L

)
, Jm,1

( x

L

)
· · · · · · Jm,m

( x

L

)]

a = [a0, a1, · · · · · · am]T
b = [b0, b1, · · · · · · bm]T

(32)

where ai , bi are the deformation time variables of a vertex of a characteristic polygon along the longitudinal
and transverse directions of the beam. Based on the BIM, the longitudinal deformation and transverse bending
deformation of any point on the cantilever beam can be written as

{
ux1 = �x (x)A(t)
uy = �y(x)B(t) (33)

where �x (x) ∈ R1×Nx and �y(x) ∈ R1×Ny are the row vectors of the Bernstein functions of the longitudinal
and transverse vibrations of the beam, respectively; A(t) ∈ RNx and B(t) ∈ RNy are the column vectors of
Bezier interpolation controlled-vertex deformations of longitudinal and transverse vibrations, which can be
written as

{
�x (x) = [JNx,1(x), JNx,1(x), · · · JNx,Nx (x)]
A(t) = [a1, a2, · · · aNx ]T (34)

{
�y(x) = [JNy+1,2(x), JNy+1,3(x), · · · JNy+1,Ny+1(x)]
B(t) = [b2, b3, · · · bNy+1]T (35)

The longitudinal shortening caused by transverse bending deformation is written as

ux2 = −1

2
BT(t)H(x)B(t) (36)

where H(x) = RNy×Ny is a coupling shape function

H(x) =
∫ x

0

(
∂�T

y (ξ)

∂ξ

)(
∂�y(ξ)

∂ξ

)
dξ (37)



Dynamic modeling and simulation of a rotating flexible 297

3.4 B-spline interpolation method (BSIM)

Spline partition is conducted on the beam axis along the x direction

0 = x0 < x1 < x2 < · · · < xn = l

xi = x0 + ih h = xi+1 − xi = l/n
(38)

The beam axis within the interval [0, l] is divided into n parts, and the longitudinal and transverse deformation
functions of the beam are written as {

w1 = ϕa
w2 = ϕb (39)

where
a = [u0 u′

0 a1, · · · · · · an−1 un u
′
n ]T

b = [w0 w′
0 b1, · · · · · · bn−1 wn w′

n ]T
ϕ = [φ−1 φ0 φ1 · · · φn−1 φn φn−1]

(40)

where u0 , w0, u′
0, w

′
0 are the longitudinal and transverse deformations of the left end (x = 0) of the beam and

their angles of rotation, respectively; un , wn, u′
n, w

′
n are the longitudinal and transverse deformations of the

right end (x = l) of the beam and their angles of rotation, respectively; and a1, · · · · · · an−1 and b1, · · · · · · bn−1
are the deformation time variables of the vertex of a characteristic polygon. Cubic B-spline functions ϕ3(η)
are employed to construct the basis function φi (x):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ−1 = 3
2ϕ3

( x
h

)
φ0 = h

2ϕ3
( x
h

) − 2hϕ3
( x
h + 1

)
φ1 = ϕ3

( x
h − 1

) − 1
2ϕ3

( x
h

) + ϕ3
( x
h + 1

)
φi = ϕ3

( x
h − i

)
i = 2, 3, · · · n − 2

φn−1 = ϕ3
( x
h − n + 1

) − 1
2ϕ3

( x
h − n

) + ϕ3
( x
h − n − 1

)
φn = 3

2ϕ3
( x
h − n

)
φn+1 = 2hϕ3

( x
h − n − 1

) − h
2ϕ3

( x
h − n

)

(41)

where

ϕ3(η) = 1

6

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(η + 2)3 η ∈ [−2,−1]
(η + 2)3 − 4(1 + η)3 η ∈ [−1, 0]
(2 − η)3 − 4(1 − η)3 η ∈ [0, 1]
(2 − η)3 η ∈ [1, 2]
0 |η| ≥ 2

(42)

The spline function in Eq. (41) has the following characteristics:

⎧⎪⎨
⎪⎩

φi (0) = 0 (i �= −1) φ−1(0) = 1
φ′
i (0) = 0 (i �= 0) φ0(0) = 1

φi (l) = 0 (i �= n) φn(l) = 1
φ′
i (l) = 0 (i �= n + 1) φ′

n+1(l) = 1

(43)

Benefiting from the characteristics of spline function in Eq. (43), the boundary conditions of flexible beam can
be effectively processed. Based on the BSIM, the longitudinal and transverse deformations of the cantilever
beam can be written as {

w1 = �x (x)A(t)
w2 = �y(x)B(t) (44)

where ⎧⎪⎨
⎪⎩

�x (x) = [φ1 φ2 · · · φn φn+1]
A(t) = [a1 a2 · · · un un+1]T
�y(x) = [φ1 φ2 · · · φn φn+1]
B(t) = [b1 b2 · · · wn wn+1]T

(45)
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Substituting Eq. (44) into Eq. (2) gives the deformation of Point P as
{
ux = �x (x)A(t) − 1

2B
T(t)H(x)B(t)

uy = �y(x)B(t)
(46)

where H(x) is a coupling shape function, which can be written as:

H(x) =
∫ x

0

(
∂�T

y (ξ)

∂ξ

)(
∂�y(ξ)

∂ξ

)
dξ (47)

4 Dynamic modeling of rotating flexible beam

The longitudinal and transverse deformations of the beam based on the four discretization methods are sub-
stituted into the expressions (Eqs. 6, 7) for kinetic energy and potential energy of the beam. The generalized
coordinates and generalized external force are taken as q = (θ,AT,BT) and Fq = (τ, 0, 0)T. The Lagrange’s
dynamic equation of the second kind is adopted. Thus, the dynamic equation can be derived as

⎡
⎣ M11 M12 M13
M21 M22 0
M31 0 M33

⎤
⎦

⎡
⎣ θ̈

Ä
B̈

⎤
⎦ =

⎡
⎣ Qθ

QA
QB

⎤
⎦ (48)

where

M11 = Joh + Job + 2SxA + ATM1A + BTM2B − BT(aC + D)B (49)

M21 = MT
12 = −M3B (50)

M13 = MT
31 = STy + MT

3A (51)

M22 = M1 =
∫ L

0
ρS�T

x�xdx (52)

M33 = M2 =
∫ L

0
ρS�T

y�ydx (53)

Qθ = τ − 2θ̇[Sx Ȧ + ATM1Ȧ + BTM2Ḃ − BT(aC + D)Ḃ] (54)

QA = θ̇2STx + 2θ̇M3Ḃ + (θ̇2M1 − K1)A] (55)

QB = θ̇2(M2 − aC − D)B − 2θ̇M3Ȧ + K2B] (56)

In Eqs. (49–56), Sx , Sy , M3, C, D, K1, and K2 are constant coefficient matrices which are shown by Refs.
[17,18].

5 Interpolation method validation

In this section, the results calculated by BIM andBSIM are comparedwith those calculated byAMMand FEM.
Adams’ predictor–corrector method was used to solve the system’s equations. The parameters of the rotating
hub-beam [23] area = 0m, L = 8m, S = 7.2968×10−5 m2, I = 8.2189×10−9 m4,ρ = 2.7667×103 Kg/m3,
and E = 6.8952 × 1010 N/m2. Four degrees of freedom for the transverse bending direction are chosen by
AMM, FEM, BIM, and BSIM, shown in figures as AMM4, FEM4, BIM4, and BSIM4.

5.1 Dynamic of the rotating hub-beam system when the angular velocity of the hub is given

When the angular velocity of the hub is given, Eq. (48) can be written as
[
M22 0
0 M33

] [
Ä
B̈

]
=

[
QA −M21θ̈

QB −M31θ̈

]
(57)
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Fig. 3 Tip transverse bending deformation of the beam when �0 = 4 rad/s
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Fig. 4 Tip transverse bending deformation of the beam when �0 = 10 rad/s

where M21, M31, M22, M33, QA, and QB are shown in Eqs. (50),(51),(52),(53),(55), and (56). The spin-up
maneuver of the flexible beam is prescribed by the angular rate of the hub:

θ̇ =
{

�0
T t − �0

2π sin
(
2π
T t

)
, 0 ≤ t ≤ T

�0 t > T
(58)

This function can guarantee that angular speed increases very smoothly (when t ≤ 15s). Then, the beam can
rotate at the constant angular speed after reaching a steady-state angular speed (t > 15s). For these examples,
�0 = 4 rad/s and �0 = 10 rad/s.

Figure 3 presents the tip transverse deformation of the beam when �0 = 4 rad/s.The response amplitudes
and response frequencies based on FEM, AMM, BIM, and BSIM are basically the same, consistent with
the simulation results in Refs. [17–19,21,23]. Figure 4 presents the tip transverse bending deformation of
the beam when �0 = 10 rad/s; the simulation results based on FEM, BIM, BSIM and AMM again show
no difference. Figure 5 shows the tip longitudinal deformation ux1 of the beam without the longitudinal
shortening ux2. Figure 6 shows the tip longitudinal deformation ux = ux1 + ux2 (the longitudinal shortening
caused by transverse bending deformation is considered) of the beam. The results in Figs. 5 and 6 show
that the longitudinal deformation compared with the longitudinal shortening caused by transverse bending
deformation is very small; thus, longitudinal deformation will not greatly influence transverse deformation
and the longitudinal shortening caused by transverse bending cannot be neglected. The computing efficiencies,
errors, response frequencies, and response amplitudes for the flexible beam when the angular velocity of the
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Fig. 5 Tip longitudinal deformation of the beam when �0 = 4 rad/s (the longitudinal shortening caused by transverse bending
deformation is not considered)
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Fig. 6 Tip longitudinal deformation of the beam when �0 = 10 rad/s (the longitudinal shortening caused by transverse bending
deformation is considered)

Table 1 Computation time, errors, response frequencies, and response amplitudes for the beam based on four discretization
methods of FEM, BIM, BSIM, and AMM (�0 = 4 rad/s)

Discretization
methods

Relative compu-
tation
time

Computation
errors (%)

Response amplitudes
in constant large
overall motions (m)

Response frequencies
in constant large
overall motions (Hz)

FEM 24.1 – 0.0074 0.5326
AMM 2.1 0.1 0.0074 0.5319
BIM 1 0.15 0.0074 0.5324
BSIM 1.67 0.14 0.0074 0.5314

hub is�0 = 4 rad/s based on FEM, BIM, BSIM, and AMM are presented in Table 1; From this table, it is seen
that the response frequencies and amplitudes for the beam are basically the same across all methods. It can
be found from the computation errors in the FEM that AMM, BIM, and BSIM all meet the needs of projects,
while BIM and BSIM have higher high-speed simulation precision. In terms of computing efficiency, the FEM
has the lowest efficiency; BIM has the highest efficiency, followed by the BSIM.

5.2 Dynamic of the rotating hub-beam system when an external torque is applied on the hub

As shown by Refs. [18,23], a rotating torque on the hub is given by:

τ(t) =
{

τ0 sin
(
2π
T t

)
, 0 ≤ t ≤ T

0 t > T
(59)
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Fig. 7 Tip transverse bending deformation of flexible beam when τ0 = 1Nm
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Fig. 8 Tip transverse bending deformation of flexible beam when τ0 = 10Nm

where T = 10s, τ0 = 1Nm, and τ0 = 10Nm.
Figures 7 and 8 present the tip transverse deformation of the beam when τ0 = 1Nm and τ0 = 10Nm.

Again the results for four different discretizationmethods are basically the same; as shown in partially enlarged
graph, their response frequencies show no difference.

6 Comparison of four discretization methods

In this section, the advantages and disadvantages of FEM, AMM, BIM, and BSIM are studied when an external
torque is applied to the hub. The parameters of the rotating beam and the rotating torque on the hub are the
same as in Sect. 5. As shown by Sect. 5 and Refs. [18,23], the longitudinal deformation is very small compared
to the longitudinal shortening caused by transverse bending. So the longitudinal deformation can be neglected
in this section.

Figures 9, 10, 11, and 12 show tip transverse bending deformation of a flexible beam using different dis-
cretization methods when τ0 is chosen to be 1 and 10 Nm. The simulation results are compared by changing
degrees of freedom for the transverse bending direction. Figure 9 shows that the tip transverse bending defor-
mation of the flexible beam discretized by the FEM are not the same when τ0 is chosen to be 1 and 10 Nm.
Shape functions for the FEM are derived fromHermite interpolation, which is not guaranteed second derivative
continuous at the element nodes. As shown in Fig. 10, the tip transverse bending deformations of the flexible
beam discretized by the AMM are the same. Shape functions of the AMM are represented by trigonometric
functions, which are guaranteed unlimited number of derivative continuous. The simulation result discretized
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Fig. 9 Tip transverse bending deformation of flexible beam by using the FEM a when τ0 = 1Nm and b when τ0 = 10Nm
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Fig. 10 Tip transverse bending deformation of flexible beam using the AMM a when τ0 = 1Nm and b when τ0 = 10Nm
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Fig. 11 Tip transverse bending deformation of flexible beam using the BIM a when τ0 = 1Nm and b when τ0 = 10Nm
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Fig. 12 Tip transverse bending deformation of flexible beam using the BSIM: a when τ0 = 1Nm and b when τ0 = 10Nm

by the AMM is more correct as the modal order increases. As shown in Fig. 11, the tip transverse bending
deformations of the flexible beam discretized by the BIM are the same. Shape functions of the BIM are derived
from Bernstein functions, which are guaranteed m-order derivative continuous. As shown in Fig. 12, the tip
transverse bending deformations of the flexible beam discretized by the BSIM are the same. Shape functions of
the BSIM are derived from cubic spline function, which is guaranteed second derivative continuous. In terms
of computing efficiency, the FEM has a low real-time computing efficiency because it needs to deal with the
subsection integral. The BIM has the highest efficiency, followed by AMM and BSIM.

7 Conclusions

(1) For dynamic problems with flexible beams in rotation, under small deformation, AMM, BIM, and BSIM
all have high computing efficiencies and precisions, while FEM has a relatively low computing efficiency.

(2) In the dynamic analysis of rotating cantilever beams, the neglect of longitudinal deformation will not have
a great influence on the dynamic behavior of the transverse vibration, but longitudinal shortening caused
by transverse bending deformation should not be neglected.

(3) The deformation of flexible beams discretized by the FEM cannot be guaranteed second derivative contin-
uous at the element nodes; therefore, the stress–strain of the system is not necessarily continuous. AMM,
BIM, and BSIM do not have this problem.
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