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Abstract This paper studies the analytical solution for the vibration of simply supported beamswith arbitrarily
and continuously varying thickness based on the two-dimensional elasticity theory. The general expression
of stress function, which exactly satisfies the governing differential equations and the boundary conditions, is
derived. Frequency equation governing the free vibration of beams with variable thickness can be obtained by
using the Fourier sinusoidal series expansion on the upper and lower surfaces of the beam. The present solution
method ensures a rapid convergence and meets the need of high accuracy in modern precise instruments.
Several examples are provided to show the application of the proposed solution method which can be used to
assess the validity of various approximate solutions and numerical methods for the beams with arbitrarily and
continuously varying thickness.

Keywords Beam · Arbitrarily and continuously varying thickness · Free vibration · Elasticity solution ·
Fourier sinusoidal series expansion

1 Introduction

It is well known that inmany cases, non-uniform beamsmay achieve a better distribution of strength andweight
than uniform beams and sometimes can satisfy special architectural and functional requirements. Therefore,
the vibration analysis of beams with variable cross sections has been the subject of numerous investigations
because of its relevance to aeronautical, civil and mechanical engineering.

A great deal of attention had been paid to the dynamic characteristics of non-uniform beams, and most
of them were based on the classical beam theory. Granch and Adler [1] presented the closed-form solutions
(in terms of the Bessel functions and/or power series) for the natural frequencies and mode shapes of the
unconstrained non-uniformbeamswith four kinds of rectangular cross sections.Heidebrecht [2] determined the
approximate natural frequencies andmode shapes of a non-uniform simply supported beam from the frequency
equation using a Fourier sine series. Mabie and Rogers [3] considered polynomial variation of the beam cross-
sectional area and themoment of inertia and obtained natural frequencies for a double-tapered beam. Bailey [4]
numerically solved the frequencies of the non-uniform cantilever beams. Gupta [5] numerically determined the
natural frequencies and mode shapes of the tapered beams using a finite element method. Naguleswaran [6,7]
determined the approximate natural frequencies of the single-tapered beams and double-tapered beams with a
direct solution of the mode shape equation based on the Frobenius method. Free vibration of stepped beams has
also received a considerable attention, and a comprehensive review is given by Jang and Bert [8]. Klein [9] used
a combination of finite element approach and Rayleigh–Ritz method to analyze the vibration of non-uniform
beams. Ece et al. [10] investigated the vibration of an isotropic beam with exponentially varying width.
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Banerjee and Williams [11] derived the exact dynamic stiffness matrices of axial, torsional and transverse
vibrations for a range of tapered beam elements. Lee et al. [12] used Green’s function method in Laplace
transform domain to study the vibration of general elastically restrained non-uniform beams and obtained the
approximate fundamental solution by using a number of stepped beams to represent the non-uniform beam.
Furthermore, Lee and Kuo [13] used Green’s function method to study the truncated non-uniform beams on
elastic foundation with polynomial varying bending rigidity and elastically constrained ends, and an exact
fundamental solution is given in power series form. Sato [14] used Ritz method to study a linearly tapered
beam with ends restrained elastically against rotation and subjected to an axial force. Kim and Dickinson [15]
used the Rayleigh–Ritz method, with orthogonally generated polynomials as admissible functions, to analyze
slender beams subject to various complicated effects.

It should be mentioned that the Bernoulli–Euler beam theory has been only successfully applied to the
slender beam analysis. This classical beam theory overpredicts all the eigen frequencies for thick beams and
the higher eigen frequencies for slender beams as it neglects the effects of transverse shear deformation and
rotary inertia. In modern industry, particularly in some high-tech fields such as aerospace engineering and
the design of micro-mechanical apparatus, refining the analysis for dynamic characteristics of the beams is
often necessary. The approximate theories cannot satisfy the requirement of higher accuracy. In such case,
the two-dimensional analysis on the basis of small-strain linear elasticity theory which does not rely on any
hypotheses involving the kinematics of deformation should be used.

A number of researchers have studied the free vibration of beams with constant thickness based on the two-
dimensional elasticity theory. For example, Chen et al. [16] presented a new approach combining the state-space
method and the differential quadrature method for freely vibrating laminated beams.Moreover, Chen et al. [17]
proposed a mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation.
Ying et al. [18] presented exact solution for bending and free vibration of functionally graded beams resting on
elastic foundations. Ye and Jin [19] presented elasticity solution for vibration of generally laminated beams by
a modified Fourier expansion based sampling surface method. By using the state-space differential quadrature
method, Alibeigloo and Liew [20] carried out the bending and free vibrational analyses of functionally graded
carbon nanotube-reinforced composite beam embedded in piezoelectric layers based on the theory of elasticity.
Recently, Xu and Zhou [21] studied the two-dimensional elasticity solutions for static analysis of multi-span
simply supported beams with arbitrarily and continuously variable thickness. Moreover, Xu and Zhou [22,23]
presented the two-dimensional elasticity solution for static analysis of simply supported piezoelectric beams
and functionally graded beams with arbitrarily and continuously variable thickness, respectively. To the best
of authors’ knowledge, no study has been reported on the two-dimensional elasticity solution for free vibration
of beams with arbitrarily and continuously variable thickness. The present work attempts to address this topic.

In this paper, the vibrational characteristics of simply supported beams with arbitrarily and continuously
varying thickness based on the two-dimensional elasticity theory are investigated. The general expression of
stress function, which exactly satisfies the governing differential equations and the boundary conditions, is
derived. Frequency equation governing the free vibration of beams with variable thickness can be obtained by
using the Fourier sinusoidal series expansion on the upper and lower surfaces of the beam. Numerical results
are given for the various beams with variable thickness and compared with the known results. It is seen that
the eigen frequencies can be obtained with high accuracy by using only a small of terms of series. The results
are new and can serve as new data for researchers interested in this type of problem.

2 Basic formulations

Consider an arbitrarily and continuously varying thickness beam, as shown in Fig. 1. The beam is simply
supported at the two ends x = 0 and x = L (called as S–S beam). The length of beam is L , and the thickness
of beam at the left end is H . The upper surface of the beam is described by the continuous functions f1(x),
and the lower surface of the beam is described by the continuous functions f2(x).

The constitutive relations (plane stress) for beam read

σx = E

1 − μ2

(
∂u

∂x
+ μ

∂v

∂y

)
, σy = E

1 − μ2

(
∂v

∂y
+ μ

∂u

∂x

)
, τxy = E

2(1 + μ)

(
∂v

∂x
+ ∂u

∂y

)
(1)

where σx and σy are the normal stress components in the x and y directions, respectively, and τxy is the shear
stress components, u, v are the displacement components in the x, y directions, respectively. E is the Young’s
modulus, and μ is the Poisson’s ratio.
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Fig. 1 The S–S beam with arbitrarily and continuously varying thickness

The dynamic differential equations are

∂σx

∂x
+ ∂τxy

∂y
= ρ

∂2u

∂t2
,

∂σy

∂y
+ ∂τxy

∂x
= ρ

∂2v

∂t2
(2)

where ρ denotes the material density.
Substituting Eq. (1) into Eq. (2), the two-dimensional differential equations expressed by displacements

can be obtained as follows:

E

1 − μ2

(
∂2u

∂x2
+ μ

∂2v

∂x∂y

)
+ E

2(1 + μ)

(
∂2u

∂y2
+ ∂2v

∂x∂y

)
= ρ

∂2u

∂t2

E

1 − μ2

(
∂2v

∂y2
+ μ

∂2u

∂x∂y

)
+ E

2(1 + μ)

(
∂2v

∂x2
+ ∂2u

∂x∂y

)
= ρ

∂2v

∂t2
(3)

For a beam undergoing free vibration, its periodic displacement components can be expressed in terms of
the displacement amplitude functions as follows:

u(x, y, t) = U (x, y)eiωt , v(x, y, t) = V (x, y)eiωt (4)

where ω denotes the natural frequency of the beam and i = √−1.
Substituting Eq. (4) and into Eq. (3), one has

∂2U (x, y)

∂x2
+ 1 + μ

2

∂2V (x, y)

∂x∂y
+ 1 − μ

2

∂2U (x, y)

∂y2
+ 1 − μ2

E
ρω2U (x, y) = 0

∂2V (x, y)

∂y2
+ 1 + μ

2

∂2U (x, y)

∂x∂y
+ 1 − μ

2

∂2V (x, y)

∂x2
+ 1 − μ2

E
ρω2V (x, y) = 0 (5)

For a beam simply supported at two ends, the displacements and stresses boundary conditions are

σx = v = 0 at x = 0, L (6)

Assume that the displacement distributions have the following form:

U (x, y) =
∞∑

m=0

Um(y) cos
mπx

L

V (x, y) =
∞∑

m=0

Vm(y) sin
mπx

L
, (7)

where Um(y), Vm(y) are the unknown functions about the coordinate y.
Substituting Eq. (7) and into Eq. (5), one has

1 − μ

2
U (2)
m (y) + 1 + μ

2

mπ

L
V (1)
m (y) +

(
1 − μ2

E
ρω2 − m2π2

L2

)
Um(y) = 0

V (2)
m (y) − 1 + μ

2

mπ

L
U (1)
m (y) +

(
1 − μ2

E
ρω2 − 1 − μ

2

m2π2

L2

)
Vm(y) = 0. (8)
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Eliminating functionsUm(y), a fourth-order differential equation of Vm(y) can be derived out from Eq. (8)
as follows

V (4)
m (y) +

[
(3 − μ)(1 + μ)

E
ρω2 − 2m2π2

L2

]
V (2)
m (y)

+
(
1 − μ2

E
ρω2 − m2π2

L2

)[
2(1 + μ)

E
ρω2 − m2π2

L2

]
Vm(y) = 0 (9)

Denoting the square of the roots of the characteristic equation related to Eq. (9) as λ2, one has
[
λ2 −

(
m2π2

L2 − 1 − μ2

E
ρω2

)]{
λ2 −

[
m2π2

L2 − 2(1 + μ)

E
ρω2

]}
= 0 (10)

3 Solution of displacements and stresses

The solution form of Eq. (9) is dependent of the sign of the coefficient m
2π2

L2 − 1−μ2

E ρω2 and m2π2

L2 − 2(1+μ)
E ρω2.

Therefore, there are three possible solutions for Eq. (9):

Solution I When 2(1+μ)
E ρω2 > m2π2

L2 >
1−μ2

E ρω2

Vm(y) = sh(αm y)Am + ch(αm y)Bm + sin(βm y)Cm + cos(βm y)Dm (11)

in which,

αm =
√
m2π2

L2 − 1 − μ2

E
ρω2, βm =

√
2(1 + μ)

E
ρω2 − m2π2

L2 (12)

Substituting Eq. (11) and into Eq. (8), one has

Um(y) = I 1m[ch(αm y)Am + sh(αm y)Bm] + J 1m[cos(βm y)Cm − sin(βm y)Dm] (13)

in which,

I 1m =
1−μ
1+μ

L
mπ

α3
m +

[
(1−μ)2

E
L
mπ

ρω2 + 2μ
1+μ

mπ
L

]
αm

m2π2

L2 − 1−μ2

E ρω2

J 1m =
− 1−μ

1+μ
L
mπ

β3
m +

[
(1−μ)2

E
L
mπ

ρω2 + 2μ
1+μ

mπ
L

]
βm

m2π2

L2 − 1−μ2

E ρω2
(14)

Substituting Eq. (11) and Eq. (13) into Eq. (1), one has

σx = E

1 − μ2 e
iωt

∞∑
m=1

{(
−mπ

L
I 1m + μαm

)
[ch(αm y)Am + sh(αm y)Bm]

+
(
−mπ

L
J 1m + μβm

)
[cos(βm y)Cm − sin(βm y)Dm]

}
sin

mπx

L
,

σy = E

1 − μ2 e
iωt

∞∑
m=1

{(
−μ

mπ

L
I 1m + αm

)
[ch(αm y)Am + sh(αm y)Bm]

+
(
−μ

mπ

L
J 1m + βm

)
[cos(βm y)Cm − sin(βm y)Dm]

}
sin

mπx

L
,

τxy = E

2(1 + μ)
eiωt

∞∑
m=1

{(mπ

L
+ αm I

1
m

)
[sh(αm y)Am + ch(αm y)Bm]

+
(mπ

L
− βm J 1m

)
[sin(βm y)Cm + cos(βm y)Dm]

}
cos

mπx

L
(15)
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Solution II When 2(1+μ)
E ρω2 >

1−μ2

E ρω2 > m2π2

L2

Vm(y) = sin(αm y)Am + cos(αm y)Bm + sin(βm y)Cm + cos(βm y)Dm (16)

in which,

αm =
√
1 − μ2

E
ρω2 − m2π2

L2 , βm =
√
2(1 + μ)

E
ρω2 − m2π2

L2 (17)

Substituting Eq. (16) and into Eq. (8), one has

Um(y) = I 2m[cos(αm y)Am − sin(αm y)Bm] + J 2m[cos(βm y)Cm − sin(βm y)Dm] (18)

in which,

I 2m =
− 1−μ

1+μ
L
mπ

α3
m +

[
(1−μ)2

E
L
mπ

ρω2 + 2μ
1+μ

mπ
L

]
αm

m2π2

L2 − 1−μ2

E ρω2

J 2m =
− 1−μ

1+μ
L
mπ

β3
m +

[
(1−μ)2

E
L
mπ

ρω2 + 2μ
1+μ

mπ
L

]
βm

m2π2

L2 − 1−μ2

E ρω2
(19)

Substituting Eq. (16) and Eq. (18) into Eq. (1), one has

σx = E

1 − μ2 e
iωt

∞∑
m=1

{(
−mπ

L
I 2m + μαm

)
[cos(αm y)Am − sin(αm y)Bm]

+
(
−mπ

L
J 2m + μβm

)
[cos(βm y)Cm − sin(βm y)Dm]

}
sin

mπx

L
,

σy = E

1 − μ2 e
iωt

∞∑
m=1

{(
−μ

mπ

L
I 2m + αm

)
[cos(αm y)Am − sin(αm y)Bm]

+
(
−μ

mπ

L
J 2m + βm

)
[cos(βm y)Cm − sin(βm y)Dm]

}
sin

mπx

L
,

τxy = E

2(1 + μ)
eiωt

∞∑
m=1

{(mπ

L
− αm I

2
m

)
[sin(αm y)Am + cos(αm y)Bm]

+
(mπ

L
− βm J 2m

)
[sin(βm y)Cm + cos(βm y)Dm]} cos mπx

L
(20)

Solution III When m2π2

L2 >
2(1+μ)

E ρω2 >
1−μ2

E ρω2

Vm(y) = sh(αm y)Am + ch(αm y)Bm + sh(βm y)Cm + ch(βm y)Dm (21)

in which,

αm =
√
m2π2

L2 − 1 − μ2

E
ρω2, βm =

√
m2π2

L2 − 2(1 + μ)

E
ρω2 (22)

Substituting Eq. (21) and into Eq. (8), one has

Um(y) = I 3m[ch(αm y)Am + sh(αm y)Bm] + J 3m[ch(βm y)Cm + sh(βm y)Dm] (23)

in which,

I 3m =
1−μ
1+μ

L
mπ

α3
m +

[
(1−μ)2

E
L
mπ

ρω2 + 2μ
1+μ

mπ
L

]
αm

m2π2

L2 − 1−μ2

E ρω2
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J 3m =
1−μ
1+μ

L
mπ

β3
m +

[
(1−μ)2

E
L
mπ

ρω2 + 2μ
1+μ

mπ
L

]
βm

m2π2

L2 − 1−μ2

E ρω2
(24)

Substituting Eq. (21) and Eq. (23) into Eq. (1), one has

σx = E

1 − μ2 e
iωt

∞∑
m=1

{(
−mπ

L
I 3m + μαm

)
[ch(αm y)Am + sh(αm y)Bm]

+
(
−mπ

L
J 3m + μβm

)
[ch(βm y)Cm + sh(βm y)Dm]

}
sin

mπx

L
,

σy = E

1 − μ2 e
iωt

∞∑
m=1

{(
−μ

mπ

L
I 3m + αm

)
[ch(αm y)Am + sh(αm y)Bm]

+
(
−μ

mπ

L
J 3m + βm

)
[ch(βm y)Cm + sh(βm y)Dm]

}
sin

mπx

L
,

τxy = E

2(1 + μ)
eiωt

∞∑
m=1

{(mπ

L
+ αm I

3
m

)
[sh(αm y)Am + ch(αm y)Bm]

+
(mπ

L
+ βm J 3m

)
[sh(βm y)Cm + ch(βm y)Dm]

}
cos

mπx

L
(25)

4 Upper and lower surface conditions

For free vibration problem, the surface of the beam is traction-free. Therefore, the boundary conditions on the
upper surface of the beam can be written as

l1(x)σx + m1(x)τxy = 0, m1(x)σy + l1(x)τxy = 0 (26)

where

l1(x) = cos(N1, x) = −d f1(x)

dx

/√
1 +

[
d f1(x)

dx

]2

m1(x) = cos(N1, y) = −1

/√
1 +

[
d f1(x)

dx

]2
(27)

The boundary conditions on the lower surface of the beam can be written as

l2(x)σx + m2(x)τxy = 0, m2(x)σy + l2(x)τxy = 0 (28)

where

l2(x) = cos(N2, x) = −d f2(x)

dx

/√
1 +

[
d f2(x)

dx

]2

m2(x) = cos(N2, y) = 1

/√
1 +

[
d f2(x)

dx

]2
, (29)
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5 Unknown coefficients

Considering the simultaneous Eqs. (26–29), the Fourier sinusoidal series expansion to each equation can be
made, namely

L∫
0

sin
nπx

L
[l1(x)σx + m1(x)τxy]dx =

L∫
0

sin
nπx

L
·0dx (30)

L∫
0

sin
nπx

L
[m1(x)σy + l1(x)τxy]dx =

L∫
0

sin
nπx

L
·0dx (31)

L∫
0

sin
nπx

L
[l2(x)σx + m2(x)τxy]dx =

L∫
0

sin
nπx

L
·0dx (32)

L∫
0

sin
nπx

L
[m2(x)σy + l2(x)τxy]dx =

L∫
0

sin
nπx

L
·0dx (33)

Substituting Eq. (25) into the above equations and truncating each series to N + 1 terms yield an algebraic
equations in the matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1)
11 · · · A(1)

1N B(1)
11 · · · B(1)

1N C (1)
11 · · · C (1)

1N D(1)
11 · · · D(1)

1N

· · · · · · · · · · · · · · · · · · · · · · · ·
A(1)
N1 · · · A(1)

NN B(1)
N1 · · · B(1)

NN C (1)
N1 · · · C (1)

NN D(1)
N1 · · · D(1)

NN

A(2)
11 · · · A(2)

1N B(2)
11 · · · B(2)

1N C (2)
11 · · · C (2)

1N D(2)
11 · · · D(2)

1N

· · · · · · · · · · · · · · · · · · · · · · · ·
A(2)
N1 · · · A(2)

NN B(2)
N1 · · · B(2)

NN C (2)
N1 · · · C (2)

NN D(2)
N1 · · · D(2)

NN

A(3)
11 · · · A(3)

1N B(3)
11 · · · B(3)

1N C (3)
11 · · · C (3)

1N D(3)
11 · · · D(3)

1N

· · · · · · · · · · · · · · · · · · · · · · · ·
A(3)
N1 · · · A(3)

NN B(3)
N1 · · · B(3)

NN C (3)
N1 · · · C (3)

NN D(3)
N1 · · · D(3)

NN

A(4)
11 · · · A(4)

1N B(4)
11 · · · B(4)

1N C (4)
11 · · · C (4)

1N D(4)
11 · · · D(4)

1N

· · · · · · · · · · · · · · · · · · · · · · · ·
A(4)
N1 · · · A(4)

NN B(4)
N1 · · · B(4)

NN C (4)
N1 · · · C (4)

NN D(4)
N1 · · · D(4)

NN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
· · ·
AN
B1
· · ·
BN
C1
· · ·
CN
D1
· · ·
DN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
· · ·
0
0

· · ·
0
0

· · ·
0
0

· · ·
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)
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Fig. 2 The S–S wedge-shaped beam with linearly varying lower surface

From which the following frequency equation is derived for the requirement of non-trivial solutions:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A(1)
11 · · · A(1)

1N B(1)
11 · · · B(1)

1N C (1)
11 · · · C (1)

1N D(1)
11 · · · D(1)

1N

· · · · · · · · · · · · · · · · · · · · · · · ·
A(1)
N1 · · · A(1)

NN B(1)
N1 · · · B(1)

NN C (1)
N1 · · · C (1)

NN D(1)
N1 · · · D(1)

NN

A(2)
11 · · · A(2)

1N B(2)
11 · · · B(2)

1N C (2)
11 · · · C (2)

1N D(2)
11 · · · D(2)

1N

· · · · · · · · · · · · · · · · · · · · · · · ·
A(2)
N1 · · · A(2)

NN B(2)
N1 · · · B(2)

NN C (2)
N1 · · · C (2)

NN D(2)
N1 · · · D(2)

NN

A(3)
11 · · · A(3)

1N B(3)
11 · · · B(3)

1N C (3)
11 · · · C (3)

1N D(3)
11 · · · D(3)

1N

· · · · · · · · · · · · · · · · · · · · · · · ·
A(3)
N1 · · · A(3)
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NN C (3)
N1 · · · C (3)

NN D(3)
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NN
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1N B(4)
11 · · · B(4)
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11 · · · C (4)

1N D(4)
11 · · · D(4)
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· · · · · · · · · · · · · · · · · · · · · · · ·
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N1 · · · A(4)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (35)

The elements in the above matrix equation are given in Appendix A. It should be noted that Eq. (35) is not a
polynomial equation aboutω anymore as obtained by various conventional beam theories, but a transcendental
equation. Consequently, the number of solutions to this equation is infinite, that is, one can obtain innumerable
natural frequencies from Eq. (35) theoretically.

6 Convergence studies

In the following studies, the material properties of the beam are fixed at E = 2.06 × 1011 Pa, μ = 0.3,
ρ = 7800 kg/m3, unless otherwise stated. In order to verify the accuracy of the proposed method, the conver-
gence of the present solutions is studied firstly. An S–S wedge-shaped beam with the linearly varying lower
surface is shown in Fig. 2. The depth-to-length ratio of the beam is H/L = 0.05.

Five different series terms N = 10, 20, 30, 40, 50 have been checked. The first eight frequency parameters
with two depth ratios H1/H = 1.5, 2 have been calculated and given in Table 1.

It can be seen from Table 1 that the numerical results of N = 40 and N = 50 have a good agreement. The
results from N = 50 are accurate up to the fourth significant digit for both cases. The maximum relative errors
of frequency between N = 40 and N = 50 are no more than 0.1%. This indicates the rapid convergence of the
proposed method. Therefore, all the series terms are fixed at N = 40 in the following numerical calculations.
It should be mentioned that the usable number of terms in numerical calculations is limited, which is related
to the effective digit of computer used. Overly increasing the number of terms in the series may lead to the
ill-conditioned results.

7 Comparison studies

In order to validate the formulations, the present two-dimensional elasticity solutions are compared with the
classical beam theory (CBT) and the finite element (FE) simulation. Consider an S–S beam with constant
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Table 1 Convergence of frequency parameters ω for S–S wedge-shaped beam with the linearly varying lower surface

H1/H N ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

1.5 10 14.275 56.388 123.22 211.10 258.46 316.12 434.63 514.33
20 14.276 56.390 123.22 211.10 258.46 316.12 434.64 514.33
30 14.276 56.390 123.22 211.11 258.46 316.12 434.64 514.33
40 14.276 56.390 123.22 211.11 258.46 316.12 434.64 514.33
50 14.276 56.390 123.22 211.10 258.46 316.12 434.64 514.33

2 10 16.649 66.008 142.62 241.36 261.28 357.22 485.60 515.54
20 16.650 66.017 142.64 241.40 261.28 357.25 485.68 515.54
30 16.650 66.018 142.64 241.40 261.28 357.25 485.68 515.54
40 16.650 66.018 142.64 241.40 261.28 357.25 485.68 515.54
50 16.650 66.018 142.64 241.40 261.28 357.25 485.68 515.54

Fig. 3 The S–S beam with constant thickness

Table 2 Comparison of the first eight frequency parameters ω for S–S beam with constant thickness

H/L Solution method ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

0.01 CBT 2.3303 9.3213 20.973 37.285 58.258 83.892 114.19 149.14
Present 2.3299 9.3152 20.942 37.187 58.020 83.400 113.28 147.60
FE 2.3292 9.3123 20.935 37.176 58.002 83.374 113.24 147.56

0.05 CBT 11.652 46.606 104.86 186.43 291.29 419.46 570.93 745.70
Present 11.604 45.863 101.23 175.48 256.93 266.05 370.35 485.98
FE 11.604 45.862 101.23 175.48 256.93 266.04 370.34 485.98

0.1 CBT 23.303 93.213 209.73 372.85 582.58 838.92 1141.9 1491.4
Present 22.931 87.741 185.17 256.86 305.42 440.73 513.12 585.67
FE 22.932 87.741 185.17 256.86 305.42 440.73 513.12 585.67

thickness, as shown in Fig. 3. The first eight frequency parameters for beams with three different depth-
to-length ratio H/L = 0.01, 0.05, 0.1 calculated using the present method are given in Table 2. Note that
H/L = 0.01 corresponds to a very thin beam, H/L = 0.1 correspond to moderately thick beams. It can be
seen from Table 2 that with the increase in the beam thickness, the error of the classical beam theory solution to
the two-dimensional elasticity solution rapidly increases, especially for the higher eigenfrequency. Therefore,
the solution of the two-dimensional elasticity theory is more accurate than that of the classical beam theory.
However, the excellent agreement of the two-dimensional elasticity with the FE solution for both thin beams
and moderately thick beams can be seen from Table 2. The maximum relative error of the two-dimensional
elasticity solution to the FE solution is no more than 0.1%.

A finite element (FE) simulation using the software ABAQUS has been also carried out to verify the
correctness of the present two-dimensional elasticity solution for varying thickness beams. The beam with the
linearly varying lower surface in two directions is considered, as shown in Fig. 4. The depth-to-length ratio of
the beam is H/L = 0.05. The depth ratio of the beam is H1/H = 2. The first eight frequency parameters for
beams computed using the present method are given in Table 3 and compared with finite element simulation
results. It can be seen from Table 3 that the present two-dimensional elasticity solution matches well with the
FE solution. This comparison study validates the proposed method and verifies its accuracy again.
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Fig. 4 The S–S beam with linearly varying lower surface in two directions

Table 3 Comparison of the first eight frequency parameters ω for S–S beam with linearly varying lower surface in two directions
(H/L = 0.05, H1/H = 2)

Solution method ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Present 18.666 64.752 145.00 241.60 293.20 359.64 485.71 521.13
FE solution 18.666 64.749 145.00 241.62 293.20 359.65 485.69 521.13

Fig. 5 The S–S beam with parabolic concave lower surface

Table 4 The first eight frequency parameters ω for S–S beam with the parabolic concave lower surface

H1/H Solution method ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

0.5 FE 12.557 55.318 125.44 216.38 219.93 324.12 444.55 503.63
Present 12.557 55.318 125.44 216.38 219.94 324.12 444.55 503.64

0.6 FE 14.753 62.588 138.99 229.73 237.36 352.64 480.00 504.67
Present 14.753 62.588 138.99 229.74 237.37 352.65 480.01 504.68

0.7 FE 16.881 69.416 151.68 238.02 256.58 378.19 505.02 512.70
Present 16.881 69.417 151.68 238.03 256.58 378.19 505.02 512.71

0.8 FE 18.950 75.861 163.57 245.16 274.23 401.17 508.15 539.43
Present 18.950 75.862 163.57 245.16 274.23 401.18 508.15 539.43

0.9 FE 20.966 81.961 174.72 251.38 290.47 421.93 510.66 563.85
Present 20.966 81.961 174.72 251.38 290.47 421.94 510.66 563.86

8 Numerical examples

A survey on the literature reveals that the available results for vibrations of beams with arbitrarily and continu-
ously varying thickness are very limited. Therefore, it is meaningful to systematically provide some data what
can serve as a benchmark of further reference for researchers and present useful information for designers.
In this section, three types of beams with variable thickness are analyzed in detail. Figure 5 shows an S–S
beam with parabolic concave lower surface. The maximum depth-to-length ratio of the beam is H/L = 0.1.
The first eight frequency parameters for beams with five different depth ratios H1/H = 0.5, 0.6, 0.7, 0.8, 0.9
computed using the present method are given in Table 4. From Table 4, one can see that the eigenfrequencies
of beams increase with the increase in the depth ratios.

Figure 6 shows an S–S beam with the parabolic convex lower surface. The minimum depth-to-length ratio
of the beam is H/L = 0.05. The first eight frequency parameters for beams with three different depth ratios
H1/H = 1.2, 1.6, 2.0 computed using the present method are given in Table 5. From Table 5, one can find that
the depth ratios H1/H have an important effect on the eigenfrequencies of the beams with varying thickness.
It is seen that decreasing the depth ratios trends to lower the eigenfrequencies of the beam.
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Fig. 6 The S–S beam with parabolic convex lower surface

Table 5 The first eight frequency parameters ω for S–S beam with the parabolic convex lower surface

H1/H Solution method ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

1.2 FE 13.575 52.052 113.87 195.89 266.23 294.81 407.41 518.81
Present 13.575 52.052 113.88 195.90 266.23 294.81 407.41 518.81

1.6 FE 17.344 63.415 136.97 232.34 280.08 344.79 469.91 528.17
Present 17.343 63.414 136.97 232.33 280.07 344.78 469.90 528.16

2.0 FE 20.913 73.621 157.43 263.65 289.94 386.28 518.93 536.84
Present 20.910 73.612 157.41 263.62 289.93 386.24 518.88 536.82

Fig. 7 The S–S beam with parabolic convex lower surface

Table 6 The first eight frequency parameters ω for S–S beam with varying thickness

μ Solution method ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

1/6 FE 13.295 65.783 150.19 217.53 255.20 370.72 501.14 541.10
Present 13.295 65.782 150.19 217.54 255.19 370.72 501.16 541.09

1/4 FE 13.292 65.694 149.78 217.50 254.01 368.38 497.21 540.75
Present 13.292 65.694 149.78 217.50 254.00 368.39 497.23 540.74

0.3 FE 13.290 65.641 149.54 217.48 253.30 367.00 494.88 540.49
Present 13.290 65.641 149.54 217.48 253.29 367.00 494.90 540.48

0.4 FE 13.286 65.536 149.06 217.43 251.90 364.27 490.30 539.87
Present 13.286 65.535 149.05 217.43 251.89 364.27 490.32 539.86

Figure 7 shows an S–S varying thickness beamwhich can be usually found in civil engineering. The depth-
to-length ratio of the beam is H/L = 0.1. The depth ratio of the beam is H1/H = 0.5, and L1/L is fixed at
0.2. The effect of Poisson’s ratio on natural frequencies of the beam has been studied. The first eight frequency
parameters for beams with four different Poisson’s ratios μ = 1/6 1/4, 0.3, 0.4 are calculated and given in
Table 6. It can be seen from Table 6 that increasing the Poisson’s ratios can not lower the eigenfrequencies of
the beam.

9 Conclusions

The general expression of stress function for S–S beams, which exactly satisfies the governing differential
equations and simply supported boundary conditions at two ends, is deduced based on the two-dimensional
elasticity theory. Frequency equation governing the free vibration of beams with variable thickness can be
obtained by using the Fourier sinusoidal series expansion on the upper and lower surfaces of the beam. The
solution can be applied to the free vibration analysis of arbitrarily and continuously varying thickness beams.
A convergence study has shown that the solutions converge quickly with an increase in the series terms. A
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comparative study has indicated that the present solutions agree well with the results from the finite element
method. To demonstrate the effectiveness of the proposed solution method, three examples have been taken.
Numerical results have been presented and discussed in detail. The study has shown that the proposed solution
method is effective. It preserves some advantages of the analytical solution such as maintaining a physical
insight in the solution process. It is expected that the presented method offers a valid alternative in solving
engineering problems in which ultra-high solution accuracy is required.
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Appendix A. Elements in matrix equation (35)
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