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Abstract In this paper, free vibration of a metal foam core sandwich (MFCS) beam embedded in Winkler–
Pasternak elastic foundation is studied using the Chebyshev collocation method (CCM). This method can
achieve high precision within the range allowed by the effective number of bits of computers. Three foam
distribution types along the thickness direction are considered for the core. The Timoshenko beam theory is
adopted and Hamilton’s principle is utilized to derive the boundary conditions and governing equations of
the model. The numerical results show that natural frequencies of the sandwich beam initially increase and
then decrease with the rise in thickness of metal foam core. By arranging the foam distribution in the core,
natural frequencies of the sandwich beam can be significantly changed. Moreover, natural frequencies of the
uniform foam distribution beam are insensitive to the foam coefficient. For the beam with non-uniform foam
distribution, however, the natural frequencies increase or decrease with the foam coefficient, depending closely
on the foam type. In addition, the present method is validated by comparing with the published ones for special
cases.

Keywords Metal foam core sandwich beam · Chebyshev collocation method · Free vibration · Timoshenko
beam theory · Winkler–Pasternak foundation

1 Introduction

Metal foam, as a novel class of porous materials, has a series of advantages such as good thermal insulation,
low density, excellent capacity of damping and effective capacity of energy dissipation [1]. One can disperse
foams continuously and smoothly along one or more directions to adjust the local parameter of metal foams
for achieving specific functions. Due to their excellent characteristics, metal foam structures have attracted
much attention and their mechanical properties have been studied by some researchers. Chen et al. [2] utilized
the Timoshenko beam theory to analyze forced and free vibrations of metal foam beams. Jabbari et al. [3]
explored the buckling problem of metal foam beams using the classical plate theory. Rezaei and Saidi [4]
studied free vibration of beams made of metal foams based on the Carrera unified formulation. By utilizing
the Timoshenko and Euler–Bernoulli beam theories, Wang et al. [5] performed wave propagation analysis of a
metal foam beam. Jasion et al. [6] presented global and local buckling analysis of metal foam plates utilizing
the finite element method. Zheng et al. [7] used a cell-based finite element model to analyze dynamic uniaxial

Y. Q. Wang (B) · H. L. Zhao
Department of Mechanics, Northeastern University, Shenyang 110819, China
E-mail: wangyanqing@mail.neu.edu.cn

Y. Q. Wang
Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-019-01579-0&domain=pdf


2336 Y. Q. Wang, H. L. Zhao

impact behavior of metal foams. Liu et al. [8] investigated the dynamic behavior of metal foam material via
the impact Hopkinson bar test. Wang et al. [9] studied the nonlinear vibration of a cylindrical shell made of
metal foam materials.

Structural mechanical behaviors have attracted much attention of researchers [10–26]. Sandwich structures
have a wide range of applications in aerospace, transportation and civil engineering industries. Typically,
sandwich structure consists of three parts: two single face layers and a core [27–30]. Metal foam as the core
of sandwich structures has many advantages such as high energy absorption ability, high resistance to impact,
high strength-to-weight ratio and high stiffness-to-weight ratio [31–33]. Thus, some researches have paid their
attention to this type of structures. Zhang et al. [34] studied the low-velocity impact response of MFCS beams
using numerical, experimental and analytical methods. Jing et al. [35] analyzed the failure and deformation
modes of MFCS beams via experiment. By utilizing the finite element method, the mechanical impedance of
MFCSbeamswas investigated byStrek et al. [36].Grygorowicz et al. [37] presented buckling analysis ofMFCS
beams by using the ANSYS software. Under the three-point bending testing, Omar et al. [38] investigated the
flexural properties of MFCS beams. Smyczynski and Magnucka-Blandzi [39] explored the stability problem
of sandwich beams with metal foam core. Caliskan and Apalak [40] experimentally investigated low-velocity
impact bending response of MFCS beams.

Usually, structures are embedded in elastic foundations in engineering applications. Winkler’s elastic
foundation [41], a widely used one-parameter model [42–47], is consisted of countless closed-spaced linear
springs. Winkler’s foundation assumes no interaction between the springs, and the continuity of the foundation
soil is not considered. In order to avoid this limitation, several two-parameter models were proposed [48–53].
Among them, the Winkler–Pasternak elastic foundation considers the interaction among the points in the
foundation and the effect of transverse shear deformation of the foundation. Therefore, the Winkler–Pasternak
elastic foundation is a more accurate model to depict the elastic foundation effect on structures [54–61].

The Chebyshev collocation method is a kind of numerical methods based on the Chebyshev polynomials
of the first kind. It is worth mentioning that this method can achieve high precision within the range allowed
by the effective number of bits of computers. This method can solve ordinary differential equations and its
main advantage is that it is easy to deal with the singularity problem. In particular, the Chebyshev collocation
method possesses a better computational accuracy and efficiency than Galerkin’s method and finite element
method [62,63].

In the existing literature, vibration of MFCS beams embedded inWinkler–Pasternak elastic foundation has
not been investigated. In this article, the CCM is applied to investigate free vibration of this advanced structure.
The Timoshenko beam theory is used to model the present system. Three types of foam distribution for the
core are considered. Hamilton’s principle is used to obtain boundary conditions and governing equations.
Additionally, the influences of various parameters are discussed on the free vibration of MFCS beams.

2 Theory and formulation

2.1 Metal foam core sandwich beam

A sandwich beam with metal foam core embedded in the Winkler–Pasternak elastic foundation is shown in
Fig. 1. The top and bottom face layers of the beam are steel, and the core is steel foam. It is assumed that the face
layers are bonded perfectly to the core. The width and length of the beam are denoted by b and L , respectively.
The total thickness of the sandwich beam ht is ht = hc + 2hl, where hc and hl are the thicknesses of the core
and single face layer, respectively. The Winkler parameter and Pasternak parameter of the Winkler–Pasternak
elastic foundation are Kw and Kp, respectively. For the core, three types of foam distribution are considered,
as shown in Fig. 2.

The largest size pore is located at the mid-plane of core for non-uniform foam distribution 1 (foam-I) while
at the bottom and top surfaces of the core for non-uniform foam distribution 2 (foam-II). For the uniform foam
distribution (foam-III), the pore size is constant. The material properties of metal foam core are expressed by
using Eqs. (1)–(3) [64–66].
foam-I:

⎧
⎪⎨

⎪⎩

E(z) = E1

[
1 − ϑ0 cos

(
π z
hc

)]

ρ(z) = ρ1

[
1 − ϑm cos

(
π z
hc

)] (1)
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Fig. 1 Metal foam core sandwich beam

Fig. 2 Beam cross section

foam-II: ⎧
⎪⎨

⎪⎩

E(z) = E1

{
1 − ϑ∗

0

[
1 − cos

(
π z
hc

)]}

ρ(z) = ρ1

{
1 − ϑ∗

m

[
1 − cos

(
π z
hc

)]} (2)

foam-III: {
E = E1ϕ
ρ = ρ1ϕ

∗ (3)

where E(z) and ρ(z) are Young’s modulus and mass density of the metal foam core, respectively; E1 and ρ1
are the maximum values of Young’s modulus and mass density of the metal foam core, respectively, which
are equal to those values of pure steel; ϑ0, ϑ∗

0 and ϕ are foam coefficients for foam-I, foam-II and foam-III,
respectively; ϑm, ϑ∗

m and ϕ∗ are corresponding coefficients of mass density.
For open-cell metal foams, we have [64,67,68]

E(z)

E1
=

(
ρ(z)

ρ1

)2

. (4)
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Table 1 Foam coefficients for different foam distributions

ϑ0 ϑ∗
0 ϕ

0.1 0.1738 0.9361
0.2 0.3442 0.8716
0.3 0.5103 0.8064
0.4 0.6708 0.7404
0.5 0.8231 0.6733
0.6 0.9612 0.6047

The relationships between foam coefficients and mass density coefficients are expressed as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − ϑm cos
(

π z
hc

)
=

√

1 − ϑ0 cos
(

π z
hc

)
foam-I

1 − ϑ∗
m

[
1 − cos

(
π z
hc

)]
=

√

1 − ϑ∗
0

[
1 − cos

(
π z
hc

)]
foam-II

ϕ∗ = √
ϕ foam-III

. (5)

Without the loss of generality, the masses of beams with different metal foam core are considered to be
equal to each other, so we have

∫ hc/2

0

√

1 − ϑ0 cos

(
π z

hc

)

dz =
∫ hc/2

0

√

1 − ϑ∗
0

[

1 − cos

(
π z

hc

)]

dz =
∫ hc/2

0

√
ϕ dz. (6)

which is utilized to determine ϑ∗
0 and ϕ with a given value of ϑ0. These values are shown in Table 1. It is noted

that ϑ∗
0 increases with ϑ0 and is close to the upper limit (0.9612) when ϑ0 = 0.6. Hence, in the following

numerical calculations, ϑ0 ∈ [0, 0.6] is adopted.

2.2 Governing equations

According to the Timoshenko beam theory, the displacement components of an arbitrary point in the beam
can be described by [69] ⎧

⎨

⎩

ux (x, z, t) = u(x, t) + zψ(x, t)
uy(x, z, t) = 0
uz(x, z, t) = w(x, t)

(7)

in which ux , uy and uz are x-, y- and z- components of the displacement vector, respectively; u and w are
axial and transverse displacements of a point on the mid-plane of the beam, respectively; ψ is rotation of the
cross section of the beam; and t is time.

From Eq. (7), the normal strain εxx and shear strain γxz are obtained as

εxx = z
∂ψ

∂x
+ ∂u

∂x
, γxz = ψ + ∂w

∂x
. (8)

The normal stress σxx and shear stress τxz are expressed as [70]

σxx = Eεxx , τxz = E

2(1 + ν)
γxz (9)

where ν is Poisson’s ratio. It is assumed that metal foam core has the same Poisson’s ratio as steel.
The first variation of the strain energy Us is written as

δUs =
∫ L

0

∫

A
(σxxδεxx + τxzδγxz) dAdx

=
∫ L

0

[

Nx

(

δ
∂u

∂x

)

+ Mx

(

δ
∂ψ

∂x

)

+ Qx

(

δ
∂w

∂x
+ δψ

)]

dx

(10)
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where A is the area of cross section of the beam; Nx is the axial force, Mx is the bending moment and Qx is
the transverse shear force. These stress resultants are defined by

Nx = A11
∂u

∂x
+ B11

∂ψ

∂x
, Mx = B11

∂u

∂x
+ D11

∂ψ

∂x
, Qx = KsA55

(
∂w

∂x
+ ψ

)

(11)

in which Ks = 5/6 is the shear correction factor and

A11 =
∫ ht/2

hc/2
E1bdz +

∫ hc/2

−hc/2
E(z)bdz +

∫ −hc/2

−ht/2
E1bdz

B11 =
∫ ht/2

hc/2
E1bzdz +

∫ hc/2

−hc/2
E(z)bzdz +

∫ −hc/2

−ht/2
E1bzdz

D11 =
∫ ht/2

hc/2
E1bz

2dz +
∫ hc/2

−hc/2
E(z)bz2dz +

∫ −hc/2

−ht/2
E1bz

2dz

A55 = 1

2(1 + ν)

(∫ ht/2

hc/2
E1bdz +

∫ hc/2

−hc/2
E(z)bdz +

∫ −hc/2

−ht/2
E1bdz

)

.

(12)

The first variation of additional strain energy from the elastic foundation is expressed as [55]

δUad =
∫ L

0

(

Kwwδw + Kp
∂w

∂x

∂δw

∂x

)

dx . (13)

The kinetic energy of the beam can be written as

K =
∫ L

0

∫

A

1

2
ρ

[(
∂ux
∂t

)2

+
(

∂uy

∂t

)2

+
(

∂uz
∂t

)2
]

dAdx . (14)

The first variation of the kinetic energy is given by

δK =
∫ L

0

[

I0

(
∂u

∂t

∂δu

∂t
+ ∂w

∂t

∂δw

∂t

)

+ I1

(
∂ψ

∂t

∂δu

∂t
+ ∂u

∂t

∂δψ

∂t

)

+ I2
∂ψ

∂t

∂δψ

∂t

]

dx (15)

where

I0 =
∫ ht/2

hc/2
ρ1bdz +

∫ hc/2

−hc/2
ρ(z)bdz +

∫ −hc/2

−ht/2
ρ1bdz

I1 =
∫ ht/2

hc/2
ρ1bzdz +

∫ hc/2

−hc/2
ρ(z)bzdz +

∫ −hc/2

−ht/2
ρ1bzdz

I2 =
∫ ht/2

hc/2
ρ1bz

2dz +
∫ hc/2

−hc/2
ρ(z)bz2dz +

∫ −hc/2

−ht/2
ρ1bz

2dz.

Based on Hamilton’s principle, one obtains [71]
∫ t2

t1
δ (Us +Uad − K )dt = 0. (16)

Applying Eqs. (10), (13) and (15) in Eq. (16), the following governing equations are obtained:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Nx
∂x = I0

∂2u
∂t2

+ I1
∂2ψ

∂t2

∂Qx
∂x − Kww + Kp

∂2w
∂x2

= I0
∂2w
∂t2

∂Mx
∂x − Qx = I2

∂2ψ

∂t2
+ I1

∂2u
∂t2

. (17)
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Let us introduce the following dimensionless quantities:

X = x

L
, η = L

ht
,

{
Ū , W̄

} = {u, w}
ht

, A00 = E1A, I00 = ρ1A

{a11, a55, b11, d11} =
{
A11

A00
,
A55

A00
,

B11

A00ht
,

D11

A00h2t

}

,
{
Ī0, Ī1, Ī2

} =
{
I0
I00

,
I1

I00ht
,

I2
I00h2t

}

K̄w = KwL4

A00h2t
, K̄p = KpL2

A00h2t
, τ = t

L

√
A00

I00
, ωn = ΩnL

√
I00
A00

(18)

in which Ωn and ωn (n = 1, 2, 3 . . .) are dimensional and non-dimensional natural frequencies, respectively.
By using Eq. (18) in Eq. (17), the dimensionless governing equations are stated as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a11
∂2Ū
∂X2 + b11

∂2ψ

∂X2 = Ī0
∂2Ū
∂τ 2

+ Ī1
∂2ψ

∂τ 2

η2Ksa55
(

∂2W̄
∂X2 + η

∂ψ
∂X

)
− K̄wW̄ + K̄p

∂2W̄
∂X2 = η2 Ī0

∂2W̄
∂τ 2

b11
∂2Ū
∂X2 + d11

∂2ψ

∂X2 − Ksa55η
(

∂W̄
∂X + ηψ

)
=

(
Ī1

∂2Ū
∂τ 2

+ Ī2
∂2ψ

∂τ 2

)

(19)

and the dimensionless boundary conditions are written as
Clamped (C):

W̄ = Ū = ψ = 0. (20)

Hinged (H):

W̄ = Ū = b11
∂Ū

∂X
+ d11

∂ψ

∂X
= 0. (21)

3 Chebyshev collocation method

In the Chebyshev collocation method (CCM), the Chebyshev interpolation grid points in the interval [−1, 1]
are constructed by using Gauss–Chebyshev–Lobatto collocation grid points, which are written as [72]

x j = cos

(
jπ

N

)

, j = 0, 1, 2, 3, . . . , N . (22)

Then, the (N + 1) × (N + 1) Chebyshev differentiation matrix D1 can be constructed by using the
Chebyshev collocation points. Herein, Lagrange polynomials of degree N are interpolated at each Chebyshev
point. Differentiating the polynomials, and then evaluating the result at the collocation points, all elements in
the matrix are obtained as

(D1)00 = 2N2+1
6 , (D1)NN = − 2N2+1

6
(D1) j j = − x j

2
(
1−x2j

) , j = 1, 2, 3, . . . , N − 1

(D1)i j = ci (−1)i+ j

c j(xi−x j)
, i �= j, i, j = 0, 1, 2, . . . , N

(23)

where

ci =
{
2, i = 0 or N
1, otherwise . (24)

The second-order differentiation matrix is defined as D2 = (D1)
2 and so on for the higher-order differen-

tiation matrices.
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4 Application of CCM

In order to apply the CCM, firstly, we change the range of the independent variables in Eqs. (19)–(21) from
X ∈ [0, 1] to ξ = (2X − 1) ∈ [−1, 1].

The displacement functions of the sandwich beam for harmonic vibration are written as:
⎧
⎨

⎩

Ū (X, τ ) = U (X)eiωnτ

W̄ (X, τ ) = W (X)eiωnτ

ψ(X, τ ) = φ(X)eiωnτ

(25)

in which i = √−1. By applying Eq. (25) in Eqs. (19)–(21) and using the range of the independent variables
ξ , the governing equations are written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4a11 ∂2U
∂ξ2

+ 4b11
∂2φ

∂ξ2
= − (

Ī0ω2
nU + Ī1ω2

nφ
)

η2Ksa55
(
4 ∂2W

∂ξ2
+ 2η ∂φ

∂ξ

)
− K̄wW + 4K̄p

∂2W
∂ξ2

= − Ī0η2ω2
nW

4b11 ∂2U
∂ξ2

+ 4d11
∂2φ

∂ξ2
− Ksa55η

(
2 ∂W

∂ξ
+ ηφ

)
= − (

Ī1ω2
nU + Ī2ω2

nφ
)

(26)

and the boundary conditions are stated as
Clamped (C):

W = U = φ = 0. (27)

Hinged (H):

W = U = 2b11
∂U

∂ξ
+ 2d11

∂φ

∂ξ
= 0. (28)

Then, based on the Chebyshev differentiation matrix, the left-hand sides of Eq. (26) are expressed as

EM1 = 4b11([0 0 1] ⊗ D2) + 4a11([1 0 0] ⊗ D2)

EM2 = η2Ksa55[4([0 1 0] ⊗ D2) + 2η([0 0 1] ⊗ D1)]
− K̄w([0 1 0] ⊗ I1) + 4K̄p([0 1 0] ⊗ D2)

EM3 = 4d11([0 0 1] ⊗ D2) + 4b11([1 0 0] ⊗ D2)

− Ksa55η[η([0 0 1] ⊗ I1) + 2([0 1 0] ⊗ D1)]

(29)

in which ⊗ is the Kronecker product; I1 is identity matrix of size (N + 1) × (N + 1); and D2 = (D1)
2 is

the second-order differentiation matrix. The size of EM1, EM2 and EM3 is (N + 1) × 3(N + 1), where
N is the number of Chebyshev points. By stacking these matrices together, the global matrix EM of size
3(N + 1) × 3(N + 1) is achieved:

EM · δ =
⎡

⎣
EM1
EM2
EM3

⎤

⎦ · δ (30)

where δ represents the transpose displacement vector in the form of

δ = [
U1 U2 . . .UN+1 W1 W2 . . .WN+1 φ1 φ2 . . . φN+1

]T
. (31)

Therefore, Eq. (26) can be expressed as
⎡

⎣
EM1
EM2
EM3

⎤

⎦ · δ = −ω2
n

⎡

⎣
Ī0I1 0 Ī1I1
0 Ī0η2I1 0

Ī1I1 0 Ī2I1

⎤

⎦ · δ. (32)

Based on the CCM, the boundary conditions of the beam at both ends are listed in Table 2.
The displacements of the beam at the left end are defined as U1, W1 and φ1, and those at the right end are

UN+1, WN+1 and φN+1. Hence, the displacement vector in Eq. (31) is reworded as

δ̄ = [
U1 W1 φ1 UN+1 WN+1 φN+1 U2 U3 . . .UN W2 W3 . . .WN φ2 φ3 . . . φN

]T
. (33)
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Table 2 Boundary condition (B.C.) matrices

B.C. Left edge Right edge

C–C
([1 0 0] ⊗ [1 0 . . . 0]) · δ = 0
([0 1 0] ⊗ [1 0 . . . 0]) · δ = 0
([0 0 1] ⊗ [1 0 . . . 0]) · δ = 0

([1 0 0] ⊗ [0 0 . . . 1]) · δ = 0
([0 1 0] ⊗ [0 0 . . . 1]) · δ = 0
([0 0 1] ⊗ [0 0 . . . 1]) · δ = 0

C–H
([1 0 0] ⊗ [1 0 . . . 0]) · δ = 0
([0 1 0] ⊗ [1 0 . . . 0]) · δ = 0
([0 0 1] ⊗ [1 0 . . . 0]) · δ = 0

([1 0 0] ⊗ [0 0 . . . 1]) · δ = 0
([0 1 0] ⊗ [0 0 . . . 1]) · δ = 0
2d11 ([0 0 1] ⊗ [D1 (N + 1, :)]) · δ

+2b11 ([1 0 0] ⊗ [D1 (N + 1, :)]) · δ = 0

H–H

([1 0 0] ⊗ [1 0 . . . 0]) · δ = 0
([0 1 0] ⊗ [1 0 . . . 0]) · δ = 0
2b11 ([1 0 0] ⊗ [D1 (1, :)]) · δ

+2d11 ([0 0 1] ⊗ [D1 (1, :)]) · δ = 0

([1 0 0] ⊗ [0 0 . . . 1]) · δ = 0
([0 1 0] ⊗ [0 0 . . . 1]) · δ = 0
2d11 ([0 0 1] ⊗ [D1 (N + 1, :)]) · δ

+2b11 ([1 0 0] ⊗ [D1 (N + 1, :)]) · δ = 0

Table 3 Comparison of dimensionless fundamental natural frequencies of FGM beam under different boundary conditions
(L/ht = 10)

B.C. Source n = 0 n = 0.5 n = 1 n = 2 n = 5

C–C Ref. [73] 1.1664 0.9992 0.9056 0.8255 0.7782
Present 1.1664 0.9992 0.9056 0.8255 0.7782

C–H Ref. [73] 0.8248 0.7082 0.6456 0.5931 0.5599
Present 0.8248 0.7082 0.6456 0.5931 0.5599

H–H Ref. [73] 0.5394 0.4733 0.4449 0.4215 0.3952
Present 0.5394 0.4733 0.4449 0.4215 0.3952

n: power-law index

By introducing Eq. (33) in Eq. (32), the algebraic system takes the form of
[
Sbb Sbg
Sgb Sgg

]{
δ̄b
δ̄g

}

= ω2
n

[
0 0
0 Mgg

]{
δ̄b
δ̄g

}

(34)

where the subscripts “g” and “b” refer to the points used for writing the collocation analog of governing
equations and boundary conditions, respectively. Sbb is a matrix of size 6 × 6; Sbg is a matrix of size 6 ×
[3(N+1)−6];Sgb is amatrix of size [3(N+1)−6]×6; andSgg is amatrix of size [3(N+1)−6]×[3(N+1)−6].
Mgg is the dimensionless inertia matrix related to the right-hand side of Eq. (32), and has the same size as Sgg.
This matrix is written as

Mgg = −
⎡

⎣
Ī0I 0 Ī1I
0 Ī0η2I 0
Ī1I 0 Ī2I

⎤

⎦ (35)

where I is identity matrix of size (N − 1) × (N − 1). The first component in Eq. (34) is

δ̄b = −S−1
bb Sbgδ̄g (36)

and the second component is
Sgbδ̄b + Sggδ̄g = ω2

nMggδ̄g (37)

From the above formulations, the algebraic eigenvalue equations for free vibration of the MFCS beam are
expressed as (

SgbS
−1
bb Sbg − Sgg + ω2

nMgg

)
δ̄g = 0. (38)

5 Results and discussion

Due to the inexistence of vibration research ofMFCS beams, we consider an FGM beam to validate the present
analysis. The material parameters used are as follows: (Aluminum: Em = 70GPa, ρm = 2702 kg/m3, νm =
0.3;Alumina: Ec = 380GPa,ρc = 3960 kg/m3, νc = 0.3). The dimensionless fundamental natural frequencies
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Table 4 Comparison of dimensionless fundamental natural frequencies of metal foam beam under different boundary conditions
(ϑ0 = 0.5)

B.C. L/ht Porosity distribution 1 Porosity distribution 2

Present Ritz method [2] ANSYS [2] Present Ritz method [2] ANSYS [2]

H–H 10 0.2798 0.2798 0.2778 0.2599 0.2599 0.2549
20 0.1422 0.1422 0.1419 0.1318 0.1318 0.1296
50 0.0571 0.0571 0.0571 0.0529 0.0529 0.0521

C–C 10 0.5947 0.5944 0.6101 0.5476 0.5475 0.5600
20 0.3167 0.3166 0.3176 0.2888 0.2888 0.2941
50 0.1291 0.1291 0.1289 0.1174 0.1174 0.1183

C–H 10 0.4243 0.4242 0.4227 0.3899 0.3898 0.3905
20 0.2203 0.2203 0.2201 0.2013 0.2013 0.2015
50 0.0891 0.0891 0.0891 0.0813 0.0813 0.0813

Table 5 Comparison of dimensionless fundamental frequencies of metal foam beam (C–C, L/ht = 20)

ϑ0 = 0 ϑ0 = 0.2 ϑ0 = 0.4 ϑ0 = 0.6

Ref. [74] 0.3167 0.3144 0.3132 0.3142
Present 0.3173 0.3158 0.3153 0.3168

Table 6 Convergence of dimensionless fundamental natural frequency ω1 of MFCS beam (ϑ0 = 0.5, L = 10ht , Kw = 108,
Kp = 106, hc/hl = 6)

Foam distribution B.C. N = 5 N = 6 N = 7 N = 8 N = 9

foam-I C–C 0.6508 0.6421 0.6422 0.6423 0.6423
C–H 0.4719 0.4736 0.4738 0.4737 0.4737
H–H 0.3363 0.3388 0.3388 0.3387 0.3387

foam-II C–C 0.6089 0.6002 0.6003 0.6003 0.6003
C–H 0.4414 0.4430 0.4433 0.4432 0.4432
H–H 0.3171 0.3194 0.3194 0.3193 0.3193

foam-III C–C 0.6332 0.6245 0.6246 0.6246 0.6246
C–H 0.4592 0.4608 0.4611 0.4610 0.4610
H–H 0.3283 0.3308 0.3307 0.3307 0.3307

Table 7 The first three dimensionless natural frequencies ofMFCS beam (ϑ0 = 0.5, L = 10ht , Kw = 108, Kp = 106, hc/hl = 6)

Foam distribution Mode C–C C–H H–H

foam-I First 0.6423 0.4737 0.3387
Second 1.5741 1.3405 1.1110
Third 2.8002 2.5487 2.2896

foam-II First 0.6003 0.4432 0.3193
Second 1.4804 1.2532 1.0331
Third 2.6578 2.4040 2.1462

foam-III First 0.6246 0.4610 0.3307
Second 1.5336 1.3034 1.0784
Third 2.7360 2.4853 2.2286

(
ω1 = Ω1L

√
ρm/Em

)
from the present analysis are compared with those given by Wattanasakulpong and

Chaikittiratana [73], as shown in Table 3. The comparison result depicts very good agreement between them.
To further examine the validity of the present analysis, another two comparison studies are conducted on

metal foam beams with different boundary conditions, as shown in Tables 4 and 5. In Table 4, the following
material parameters are used: Young’s modulus E1 = 200GPa, Poisson’s ratio ν = 1/3 andmass density ρ1 =
7850 kg/m3. In Table 5, the followingmaterial parameters are used: Young’smodulus E1 = 130GPa, Poisson’s
ratio ν = 0.34 and mass density ρ1 = 8960 kg/m3. The dimensionless natural fundamental frequencies

ω1 = Ω1L
√

ρ1
(
1 − ν2

)
/E1 are calculated and compared with the available results. It can be observed that
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Table 8 The dimensionless fundamental natural frequency ω1 of MFCS beam for different foundation parameters (ϑ0 = 0.5,
L = 10ht , hc/hl = 6)

Foam distribution B.C. (Kw, Kp)

(0, 0) (108, 0) (108, 106)

foam-I C–C 0.6169 0.6397 0.6423
C–H 0.4388 0.4703 0.4737
H–H 0.2885 0.3345 0.3387

foam-II C–C 0.5730 0.5975 0.6003
C–H 0.4056 0.4395 0.4432
H–H 0.2656 0.3149 0.3193

foam-III C–C 0.5985 0.6219 0.6246
C–H 0.4250 0.4575 0.4610
H–H 0.2791 0.3264 0.3307

(a) (b)

(c)

Fig. 3 Dimensionless fundamental natural frequency versus slenderness ratio (kw = 0, kp = 0, ϑ0 = 0.5, hc/hl = 6): a C–C, b
C–H, c H–H

the present results agree well with those given by Chen et al. [2] and Kitipornchai et al. [74], which bespeaks
the validity of the present analysis.

In what follows, theMFCS beam shown in Fig. 1 will be dealt with. If not specified, the following geometry
and material parameters are used: b = 0.2m, ht = 0.1m, E1 = 200GPa, ρ1 = 7850kg/m3, ν = 0.33. The
dimensionless natural frequency is introduced as:

ωn = ΩnL

√
I00
A00

(n = 1, 2, 3 . . .) .
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(a) (b)

(c)

Fig. 4 Dimensionless fundamental natural frequency versus foam coefficient ϑ0 (L/ht = 10, kw = 0, kp = 0, hc/hl = 6): a
C–C, b C–H, c H–H

Table 6 shows the convergence of dimensionless fundamental natural frequencies of MFCS beams with
different boundary conditions and different foam distributions. It is seen that the method has very high rate
of convergence; when N = 9, the natural frequencies for different boundary conditions and different foam
distributions converge. Therefore, the number of Chebyshev points, namely, N = 9, is adopted in the following
calculations.

Table 7 illuminates the first three dimensionless natural frequencies of MFCS beams with various foam
distributions and boundary conditions. It is noted that the foam-I beam has the highest natural frequency, while
the foam-II beam has the lowest natural frequency among different types of foam distribution. This indicates
that the foam-I provides the largest structural stiffness, while the foam-II leads to the smallest structural
stiffness. In addition, the natural frequency of C–C sandwich beam is the highest while that of H–H sandwich
beam is the lowest. This can be expected because C–C edges provide higher level of constraint, while H–H
edges provide relatively moderate level of constraint.

Table 8 gives the dimensionless fundamental natural frequencies of the MFCS beam with different foun-
dation parameters. When Kw = 0 and Kp = 0, it means that the Winkler–Pasternak foundation vanishes.
The table shows that when the Winkler foundation exists, the natural frequency of the MFCS beam increases.
Moreover, the addition of the Pasternak foundation results in the higher natural frequency of the MFCS beam.
This phenomenon shows that the Winkler–Pasternak foundation makes the MFCS beam stiffer.

Figure 3 shows the dimensionless fundamental natural frequency versus slenderness ratio for different
boundary conditions and foamdistributions. It canbe seen that the dimensionless fundamental natural frequency
decreases with increasing slenderness ratio. Additionally, when the slenderness ratio is small, the descent rate
of natural frequency is rapid. With the further rise in slenderness ratio, the natural frequency changes less and
less significantly.
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(a) (b)

(c)

Fig. 5 Dimensionless fundamental natural frequency versus core-to-face ratio hc/hl (ϑ0 = 0.5, L = 10ht , Kw = 108, Kp = 106):
a C–C, b C–H, c H–H

Figure 4 gives the dimensionless fundamental natural frequency versus foam coefficient for different
boundary conditions and foam distributions. It is seen that different foam distributions show different variation
tendency with foam coefficient.With the increase in foam coefficient, the natural frequency of the foam-I beam
keeps rising while that of the foam-II beam keeps falling. As for the foam-III beam, the natural frequency
changes slightly with the foam coefficient.

Figure 5 shows the dimensionless fundamental natural frequency versus core-to-face ratio hc/hl for various
foam distributions and boundary conditions. It can be seen that the natural frequency increases initially and
then decreases with the core-to-face ratio for various boundary conditions. In addition, the frequency difference
of MFCS beams with different foam distributions becomes more and more obvious with the increase in core-
to-face ratio. This indicates that foam distribution will play more important effect on vibration characteristics
of MFCS beams when the core-to-face ratio is high.

6 Conclusions

In this paper, the Chebyshev collocation method is applied to study free vibration of sandwich beams with
metal foam core. The model is proposed in the framework of the Timoshenko beam theory. Three types of
foam distribution are taken into account. The governing equations and boundary conditions are obtained using
Hamilton’s principle. The study shows:

(i) The Chebyshev collocation method has very high rate of convergence and achieves high precision within
the range allowed by the effective number of bits of computers for free vibration of MFCS beams.

(ii) Among different foam distributions, foam-I provides the largest stiffness, while foam-II leads to the
smallest stiffness of MFCS beams.
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(iii) With the rise in core-to-face ratio, natural frequencies ofMFCSbeams increase initially and then decrease,
and foam distribution plays more and more important effect on the vibration characteristics.

(iv) For the foam-I sandwich beam, the natural frequency increases with the foam coefficient. For the foam-II
beam, however, the natural frequency decreases with the foam coefficient. As to the foam-III beam, the
natural frequency is not sensitive to the foam coefficient.

(v) The Winkler–Pasternak elastic foundation makes the MFCS beam stiffer and leads to the higher natural
frequency.
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