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Abstract In this paper, the free vibration of laminated composited cylindrical shells with two kinds of non-
continuous supported boundary condition are investigated. The artificial springs are used to simulate the
arcs supported and points supported boundary condition. The equations of motion are derived by using the
Chebyshev polynomials and the Lagrange equation, andDonnell’s shell theory is employed in this process. The
accuracy of the present method compared with that of literature, and convergence analysis is carried out at the
same time. Then, the influences of spring stiffness, the number of supported point, and the lamination schemes
of non-continuous supported laminated composite cylindrical shells on frequency parameter are studied. The
results show that the method can accurately deal with the free vibration of laminated shells with arbitrary
non-continuous boundary and arbitrary lamination schemes.

Keywords Non-continuous supported boundary condition · Laminated composite · Cylindrical shell · Free
vibration

Nomenclature

Ai j The stretching stiffness coefficients
Bi j The coupling stiffness coefficients
C Damping matrix
Di j The bending stiffness coefficients
E1, E2 Young’s modulus in the principal directions
G12 Moduli of rigidity
H Thickness of the shell
K,Kspr Stiffness matrix, spring stiffness matrix
L Length of the shell
M Mass matrix
Mx ,Mθ ,Mxθ The moments of the in-plane stresses
N The number of terms for circumferential wave
Nx ,Nθ ,Nxθ The force of the in-plane stresses
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N A The number of supported points
NS The number of supported arcs
NT The number of terms for Chebyshev polynomials
Q Plane stress–strain matrix
Q Transformation stiffness matrix
R Radius of the shell
T Kinetic energy
T ∗
m (ξ) The admissible displacement functions

Uε,Uspr Strain energy, potential energy
Ū, V̄, W̄ The mode vector satisfying a boundary condition
am, bm, cm The unknown corresponding coefficients
ku, kv, kw, kθ Stiffness of axial, circumferential, radial, rotational spring per unit arc length
k′
u, k′

v, k′
w, k′

θ Stiffness of axial, circumferential, radial, rotational spring
n The circumferential wave number
q The generalized coordinates
t Time
u, v, w Displacement in the x , θ , z directions
α The total length of supported arcs
β Angular orientation of fibers
εx , εθ , γxθ The strains of the shell
θ The constraint radian
θ1, θ2 The starting and ending radian of supported arcs
κx , κθ , κxθ The curvature of the shell
μ12, μ21 Poisson’s ratios
ξ The non-dimensional axial coordinate
ρ Mass density
σx, σy, τxy The stresses of the shell
ω The natural frequency
ω∗ The non-dimensional frequency

1 Introduction

Free vibration analysis of laminated composite cylindrical shells has been a topic of major interest to many
researchers due to the application in various branches of engineering, such as aerospace, petrochemical,
mechanical engineering, energy and other fields. The study of free vibration behavior of laminated cylindrical
shells has been carried out by many investigators. As a systematic summary of the study of shell structure
analysis methods, Leissa [1] introduced a number of theories and solution techniques for various boundary
conditions. Qatu made some review of research advances on the dynamic analysis of composite shells in
[2,3]. He presented that the research on the lamination material, sequence and fiber orientation is helpful for
engineers to design superior structures. In the past, many studies have been made on laminated cylindrical
shells with classical boundaries and elastic boundary conditions in literatures. Sun et al. [4] investigated the
free vibration of the hard-coating cantilever cylindrical shell. At present, the analysis of laminated cylindrical
shells focuses on the shells with continuous elastic boundary conditions. Jin et al. [5] studied the free vibration
of moderately thick laminated shells with arbitrary boundary conditions and lamination schemes by using a
new analytical method based on the first-order shear deformation theory. Jin et al. [6] presented a method of the
vibration analysis of laminated cylindrical shells with arbitrary boundaries and lamination schemes by using a
modified Fourier series. Xie et al. [7] investigated the free vibration of laminated cylindrical shell by using the
Haar wavelet method. Ye and Jin [8] studied the free vibrations of laminated deep open shells with arbitrary
boundary. Song et al. [9] analyzed the free vibrations of the symmetrically laminated composite cylindrical
shells with arbitrary boundaries by employing a set of artificial springs based on the Donnell’s shells theory,
orthogonal polynomials and Rayleigh-Ritz method. Later, Song et al. [10] investigated the free vibration of
rotating cross-ply shells by using the Donnell’s shell theory and Rayleigh-Ritz method. Brischetto et al. [11]
used the numerous methods to solve the shell vibration problems. Ma et al. [12] presented a unified method
for coupled cylindrical shell with general coupling conditions.
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In the past, the studying of vibration analysis of laminated cylindrical shellswith non-continuous boundaries
is rare. However, there may be more complicated boundary conditions in the actual project, such as, the shells
and plates are joined at a few points through the screw bolt, the spot weld or riveting. The research of
vibration analysis of laminated cylindrical shells with non-continuous boundaries is intensely indispensable
and meaningful. Kandasamy and Singh [13] presented numerical studies of the free vibration analysis of open
skewed circular cylindrical shells supported only on selected segments of the straight edges. Recently, Chen et
al. [14] investigated the free vibration of a cylindrical shell with non-uniform elastic boundary constraints by
using improved Fourier series method and Rayleigh–Ritz procedure. The points supported and arcs supported
boundaries were considered. Xie et al. [15] used the wave-based method (WBM) to investigate the free
and forced vibrations of points and arcs supported cylindrical shells. Tang [16] studied modeling and dynamic
analysis of bolted joined cylindrical shell. The bolted joined were considered as points supported. From papers,
the most of the existing researches of non-continuous boundary condition are limited to circular cylindrical
shells. The research of non-continuous boundary laminated cylindrical shells is rare. The study of this paper
is indispensable and meaningful.

Many comparisons of different theories were made by Lam [17], et al. Lam and Loy [17] made an analysis
of natural frequencies of rotating laminated cylindrical shells with Donnell’s, Flügge’s, Love’s and Sanders’
shell theories, namely. The results indicated that Donnell’s shell theory is accurate for shells with small
L/R ratios or when the circumferential wavenumber n is small, and Donnell’s theory is the most simplified.
Because the content of this study is a short shell, Donnell’s shells theory is used in this paper. The widely
used approximate functions in the axial direction are beam functions [17], Fourier series [18], orthogonal
polynomials [19], Chebyshev polynomials [8], wave functions [20] and so on.Qin et al. [21]made a comparison
study of free vibrations of cylindrical shells by three different sets of formulations, namely themodified Fourier
series, the Orthogonal polynomials, and the Chebyshev polynomials. The Chebyshev polynomials show higher
computational efficiency and convergence rate.

In this paper, the model of laminated composited cylindrical shells with points supported and arcs sup-
ported are established. The Donnell’s shells theory, Chebyshev polynomials and Lagrange equation are used
in the established process of the governing equation. Then, the influence of spring stiffness, the number of sup-
ported point, and the lamination schemes on the frequency parameter of non-continuous supported laminated
composite cylindrical shells are studied.

2 Theoretical formulations

2.1 Description of laminated cylindrical shells mode

Consider a laminated composite cylindrical shell with non-continuous elastic boundary conditions as shown
in Fig. 1a. The laminated cylindrical shell is assumed to have a length L , thickness H , radius R. The length
x is replaced by a dimensionless length ξ defined by ξ = x /L . x , θ and z are coordinates along the axial,
circumferential, and radial directions, respectively. The displacements of a point on the middle surface are
indicated byu,v and w, in the x , y, z directions. The angular orientation of fibers is defined by β in Fig. 1b.
The distance from the reference surface to the bottom of the pth layer is defined by h p.

A schematic diagram of laminated cylindrical shells with arcs supported boundary condition or points
supported boundary condition is illustrated in Fig. 1c, d, respectively. The boundary conditions of the shell are
represented by introducing three sets of translational spring and one set of rotational spring of each end of the
shell. For the laminated composite cylindrical shells with arcs supported boundary condition, the stiffness of
the spring per unit arc length at the two ends of the shell, x = 0 and x = L , are denoted by k0u, k

0
v, k

0
w, k0θ and

k1u, k
1
v, k

1
w, k1θ (N/m

2). θ1 is the location of starting radian and θ2 is the location of ending radian. For the points
supported laminated cylindrical shells, the stiffness restraining axial displacement, circumferential displace-
ment, radial displacement and rotations of supported points are denoted by k

′0
u , k

′0
v , k

′0
w, k

′0
θ and k

′1
u , k

′1
v , k

′1
w, k

′1
θ

(N/m). There are NA evenly distributed points at each end of the shell, and the location of first points are
expressed by θ1. Suppose 1000 points on the circumference are whole circumference constraints.

2.2 Expressions of laminated cylindrical shell’s energy

The kinetic energy T and the strain energy Uε of the laminated composite cylindrical shells can be calculated
as follow
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(a) (b)

(d)(c)

Fig. 1 Model of a laminated composite cylindrical shell with non-continuous elastic boundary conditions: a coordinate system
and geometry of the shell; b partial cross-sectional view of the shell; c The arcs supported shell; d The points supported shell

T = ρHL

2

∫ 2π

0

∫ 1

0
(u̇2 + v̇2 + ẇ2)Rdξdθ (1)

Uε = L

2

∫ 1

0

∫ 2π

0
εT [S]εRdθdξ (2)

where ρ is the density of the shell. The strain victor εT are defined as

εT = {
εx εθ γθx κx κθ χxθ

}
(3)

The strains of a point in pth layer of the shell are given by as follows

⎛
⎝ εx

εθ

γxθ

⎞
⎠ =

⎛
⎝ εx

εθ

γxθ

⎞
⎠

(0)

+ z

⎛
⎝κ x

κθ

κ xθ

⎞
⎠ (4)

where the subscript (0) denotes the middle surface of the different layer, h p ≤ z ≤ h p+1. The strain and the
curvature of the middle surface of the shell can be defined as

εx(0) = ∂u

L∂ξ
, εθ(0) = 1

R

∂v

∂θ
+ w

R
, γxθ(0) = 1

R

∂u

∂θ
+ ∂v

L∂ξ
,

κx = − ∂2w

L2∂ξ2
, κθ = 1

R2

∂v

∂θ
− 1

R2

∂2w

∂θ2
, κxθ = 1

RL

∂v

∂ξ
− 2

RL

∂2w

∂ξ∂θ
(5)



Sensitivity on the non-continuous supported laminated cylindrical shell 2249

The stress matrix S for laminated cylindrical shells are defined as follows

[S] =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66

⎤
⎥⎥⎥⎥⎥⎦

(6)

where Ai j , Bi j and Di j is the stretching, coupling, and bending stiffness matrices, respectively.

Ai j =
P∑

p=1

Q
p
i j (h p+1 − h p)

Bi j = 1

2

P∑
p=1

Q
p
i j (h

2
p+1 − h2p)

Di j = 1

3

P∑
p=1

Q
p
i j (h

3
p+1 − h3p) (7)

where p is the pth layer of the shell and P is the amount of the lamina. In addition, all the Bi j terms become
zero for cylindrical shells laminated symmetrically concerning their middle surfaces. Q is the transformation
stiffness matrix, and it can be defined as follows

Q̄11 = Q11 cos
4 β + 2(Q12 + 2Q66) sin

2 β cos2 β + Q22 sin
4 β

Q̄12 = (Q11 + Q22 − 4Q66) sin
2 β cos2 β + Q12(sin

4 β + cos4 β)

Q̄22 = Q11 sin
4 β + 2(Q12 + 2Q66) sin

2 β cos2 β + Q22 cos
4 β

Q̄16 = (Q11 − Q12 − 2Q66) sin β cos3 β + (Q12 − Q22 + 2Q66) sin
3 β cosβ

Q̄26 = (Q11 − Q12 − 2Q66) sin
3 β cosβ + (Q12 − Q22 + 2Q66) sin β cos3 β

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66) sin
2 β cos2 β + Q66(sin

4 β + cos4 β) (8)

where the plane stress–strain matrix Q can be defined as follows

Q11 = E11

1 − μ12μ21
, Q12 = μ12E11

1 − μ12μ21
, Q22 = E22

1 − μ12μ21
, Q66 = G12 (9)

where E1 and E2 are Young’s moduli in the principal directions. μ12 and μ21 are the corresponding Poisson’s
ratios, and the relationship between them can be calculated by using E11μ21 = E22μ21. G12 is moduli of
rigidity.

2.3 The potential energy of the boundary springs

The points supported and arcs supported shell are shown in Fig. 1c, d. Artificial spring implemented at two
ends of the shell are used to simulate arbitrary boundary conditions. The potential energy Usprings introduced
by the elastic spring can be calculated as follows

(1) The potential energy U arcs
springs stored by the boundary spring of arcs supported laminated shells is given

by

U arcs
springs = 1

2

∫ θ2

θ1

{
k0u[u(0, θ, t)]2 + k0v [v(0, θ, t)]2

+ k0w[w(0, θ, t)]2 + k0θ

[
∂w(0, θ, t)

L∂ξ

]2}
Rdθ
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+ 1

2

∫ θ2

θ1

{
k1u[u(1, θ, t)]2 + k1v[v(1, θ, t)]2 + k1w[w(1, θ, t)]2

+ k1θ

[
∂w(1, θ, t)

L∂ξ

]2}
Rdθ (10a)

Here θ1 and θ2 are the starting and ending radian, k0u,s , k0v,s , k
0
w,s , k

0
θ,s and k

1
u,s , k

1
v,s , k

1
w,s , k

1
θ,s are the stiffness

of the spring per unit arc length of four groups of boundary spring at xs = 0 and xs = L , respectively.
(2) The potential energy U points

springs stored by the boundary spring of points supported laminated shells is
given by

U points
springs = 1

2

NA∑
α=1

{
k′0
u,α[u(0, θα, t)]2 + k′0

v,α[v(0, θα, t)]2 + k′0
w,α[w(0, θα, t)]2

+ k′0
θ,α

[
∂w(0, θα, t)

L∂ξ

]2}

+ 1

2

NA∑
α=1

{
k′1
u,α[u(1, θα, t)]2 + k′1

v,α[v(1, θα, t)]2 + k′1
w,α[w(1, θα, t)]2

+ k′1
θ,α

[
∂w(1, θα, t)

L∂ξ

]2}
(10b)

where NA is the number of restrained points (In the paper, N A ≤ 1000). (xα, θα) is used to represent the
coordinates of the sth point. k′0

u,α , k
′0
v,α , k

′0
w,α and k′0

θ,α are the stiffness of four groups of boundary spring at

the αth point at xα = 0. Similarly, k′1
u,α , k

′1
v,α , k

′1
w,α and k′1

θ,α denote the stiffness of corresponding boundary
spring.

2.4 Admissible displacement functions

According to Qin’s study [21], the modified Fourier series, the Orthogonal polynomials, and the Chebyshev
polynomials show excellent accuracy, and the convergence rate and the computational efficiency of the Orthog-
onal polynomials and Chebyshev polynomials are higher, but the Chebyshev polynomials show the highest
computational efficiency. Finally, the Chebyshev polynomials are used as admissible displacement functions
in this paper.

The admissible displacement functions of the laminated composite cylindrical can be expressed as
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u (ξ, θ, t) =
N∑

n=1

NT∑
m=0

amT ∗
m (ξ) (cos nθ + sin nθ)e− jωt = Ū

T
qu

v (ξ, θ, t) =
N∑

n=1

NT∑
m=0

bmT ∗
m (ξ) (sin nθ + cos nθ)e− jωt = V̄

T
qv

w (ξ, θ, t) =
N∑

n=1

NT∑
m=0

cmT ∗
m (ξ) (cos nθ + sin nθ)e− jωt = W̄

T
qw

(11)

where am , bm and cm are the unknown corresponding coefficients.T ∗
m (ξ) are appropriate admissible displace-

ment functions,NT is the number of terms in calculation. ω is the natural frequency of the shell. qu, qv and qw

are generalized coordinates.n is the circumferential wave number. Ū , V̄ and W̄ are mode vector satisfying a
boundary condition as the following expressions

Ū
T = [

T ∗
m (ξ) cos θ T ∗

m (ξ) sin θ · · · T ∗
m (ξ) cos nθ T ∗

m (ξ) sin nθ · · · T ∗
m (ξ) cos Nθ T ∗

m (ξ) sin Nθ
]

V̄
T = [

T ∗
m (ξ) sin θ T ∗

m (ξ) cos θ · · · T ∗
m (ξ) sin nθ T ∗

m (ξ) cos nθ · · · T ∗
m (ξ) sin Nθ T ∗

m (ξ) cos Nθ
]

W̄
T = [

T ∗
m (ξ) cos θ T ∗

m (ξ) sin θ · · · T ∗
m (ξ) cos nθ T ∗

m (ξ) sin nθ · · · T ∗
m (ξ) cos Nθ T ∗

m (ξ) sin Nθ
]
(12)
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T ∗
m (ξ) is aChebyshev polynomial of displacement components, T ∗

m (ξ) = Tm (2ξ − 1), Tm (·) is theChebyshev
polynomials of the first kind, of which the recurrence expressions are given by

T0 (ξ) = 1, T1 (ξ) = ξ, Tm+1 (ξ) = 2ξTm (ξ) − Tm−1 (ξ) , (m ≥ 2) (13)

In the process of constructing Chebyshev polynomials, the polynomials are defined in the interval [−1, 1],
while ξ ∈ [0, 1], and the transformation of coordinates from ξ to 2ξ− 1 is necessary.

2.5 Energy expressions and the solution procedure

Substituting Eq. (11) into Eqs. (1), (2) and (10), can obtain the kinetic energy, the strain energy, and the potential
energy. T , Uε and Uspring are written as

T = 1

2
q̇Tu M

uu q̇u + 1

2
q̇Tv M

vv q̇v + 1

2
q̇TwMww q̇w (14)

Uε = 1

2
qTu K

uuqu + 1

2
qTu K

uvqv + 1

2
qTu K

uwqw + 1

2
qTv K vvqv + 1

2
qTv K vwqw + 1

2
qTwKwwqw (15)

Uspr = 1

2
qTu K

uu
sprqu + 1

2
qTv K vv

sprqv + 1

2
qTwKww

spr qw (16)

where Muu , Mv and Mww are the modal mass matrix of laminated cylindrical shells, which are given in
“AppendixA”.Kuu ,Kuv ,Kuw,Kvv ,Kvw andKww are themodal stiffnessmatrix, which are given in “Appendix
B”. Kuu

spr, K
vv
spr and Kww

spr are the modal spring stiffness matrix, which are given in “Appendix C”.
The Lagrange equation of the vibration system can be given

d

dt

(
∂T

∂ q̇

)
− ∂T

∂q
+ ∂

(
Uε +Uspring

)
∂q

= 0 (17)

where q is the vector of generalized coordinates.
The kinetic energy and strain energy are brought into the Lagrange equation to obtain the differential

equations of motion of laminated cylindrical shells

Mq̈ + (
K spr + K

)
q = 0 (18)

where M, K and Kspr are the generalized mass matrix, stiffness matrix, spring stiffness matrix vector.

M =
⎡
⎣ Muu

Mvv

Mww

⎤
⎦ , K =

⎡
⎣ K uu 1

2 K
uv 1

2 K
uw

1
2 K

uv K vv 1
2 K

vw

1
2 K

uw 1
2 K

vw Kww

⎤
⎦ , K spr =

⎡
⎣ K uu

spr
K vv

spr
Kww

spr

⎤
⎦ (19)

The non-dimensional frequency parameters ω∗ is used, of which the expression is denoted by

ω∗ = ωR
√

ρ/E2 (20)

3 Validation and comparison

To illustrate the convergence and the accuracy of the current solution, some numerical results are provided in
this part compared with the results of classic literature.

The boundary of laminated composite cylindrical shells with non-continuous elastic boundary conditions
can be considered as a continuous whole-circle distribution if the length of supported arcs α = ∑ (

θs − θ ′
s

)
is 2π or the number of supported points NA is 1000. A three-layered, cross-ply [0◦/90◦/0◦] cylindrical shell
is used as an example by Lam [17]. The layer thickness and material parameters of the laminated composite
cylindrical shells are listed in Tables 1 and 2.
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Table 1 Properties of laminated cylindrical shells

Material properties Layer thickness

E22 = 7.6GPa
E11/E22 = 2.5 Inner layer thickness H/3
G12 = 4.1GPa Middle layer thickness H/3
μ12 = 0.26 Outer layer thickness H/3
ρ = 1643 kg/m3

Table 2 Corresponding stiffness for different types of classical boundaries [9,14]

Boundary condition The stiffness per unit arc length of the artificial
springs of arcs supported (N/m2(N/rad2))

The stiffness of the artificial springs of
points supported (N/m (N/rad))

Free (F) ku = kv = kw = kθ = 0 k′
u = k′

v = k′
w = k′

θ = 0
Simply supported (S) ku = kθ = 0, kv = kw = 1012 k′

u = k′
θ = 0, k′

v = k′
w = 109

Clamped (C) ku = kv = kw = kθ = 1012 k′
u = k′

v = k′
w = k′

θ = 109

Table 3 Frequency parameters ω∗ = ωR
√

ρ/E2 for a three-layer, cross-ply [0◦/90◦/0◦] cylindrical shell with S–S and C–C
boundary condition: (H/R = 0.002, NT=8)

Boundary condition L/R n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

S–S 1 Arcs 1.061278 0.804046 0.598324 0.450139 0.345250 0.270751
Points 1.061278 0.804046 0.598324 0.450138 0.345248 0.270748
Ref. [17] 1.061285 0.804058 0.598340 0.450163 0.345288 0.270814

5 Arcs 0.248633 0.107202 0.055086 0.033790 0.025793 0.025876
Points 0.248634 0.107203 0.055086 0.033790 0.025793 0.025876
Ref. [17] 0.248635 0.107214 0.055140 0.033591 0.026129 0.026362

C–C 1 Arcs 1.062250 0.813825 0.629735 0.501192 0.409572 0.342179
Points 1.062250 0.813825 0.629735 0.501192 0.409572 0.342179
Ref. [6] 1.062242 0.813717 0.629498 0.500846 0.409156 0.341724

5 Arcs 0.304315 0.168338 0.100154 0.064945 0.046466 0.038279
Points 0.304315 0.168338 0.100154 0.064945 0.046466 0.038279
Ref. [6] 0.303609 0.167527 0.099667 0.064699 0.046345 0.038222

3.1 The accuracy of the current solution

The non-dimensional frequency parameters ω∗ for the same shell with S–S and C–C boundary conditions are
given in Table 3. The comparisons are presented for the length–radius ratios L/R = 1, 5 and radius–thickness
ratio H/R = 0.002, respectively. It can be observed that the present method has a small error between the
studies [6,17] dealing with free vibration of laminated cylindrical shells with classical boundary condition. The
accuracy of the present mode is high, and it can be generalized to the calculation of the natural characteristics
of the laminated cylindrical shells under any condition of spring stiffness.

3.2 Convergence of the current solution

The convergence of the frequency parameters of laminated cylindrical shells is discussed. The geometric
parameters of laminated cylindrical shells are as below: cross-ply [0◦/90◦/0◦], length–radius ratios L/R = 1,
radius–thickness ratio H/R = 0.002 and circumferential wave number N = 6,m = 1. Five types of boundary
conditions, that is, S–S, F–F, C–C, C–F, and C–S, are considered. For generality and convenience, the relative
tolerance of the frequency is defined

∣∣ω∗
NT − ω∗

exact

∣∣
ω∗exact × 100% (21)

where ω∗
NT is the non-dimensional frequency parameters with respect to NT terms of admission functions.

ω∗
exact is the favorable result of the frequency. As the number of terms NT of admissible functions increases,
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Fig. 2 Variation of relative tolerance of the non-dimensional frequency parameters with respect to the number of terms of
admission functions (NT): a arcs supported boundary conditions; b point supported boundary conditions (m = 1, N = 6)

the frequency parameter calculated in this paper is close to the exact result. The accuracy of the frequency
parameters is not affected after NT is a larger number. Therefore, the frequency parameter of 25 terms of
admissible functions is taken as the exact value in this section.

It can be observed from Fig. 2 that the relative tolerances decrease gradually with increase in the number
of polynomials NT at first, then decrease slightly. The relative tolerance with 8 truncation terms are closed
to 0%. The number of polynomial terms NT is chosen as 8 for simplified calculation, which means that the
present method has excellent convergence.

4 Results and discussion

The convergence and the accuracy of the current solution have been verified by Sect. 3. Free vibration analysis
of laminated cylindrical shells with arcs supported and points supported boundary condition are investigated in
this section. The geometric parameters of laminated cylindrical shells are select in this section, as below: cross-
ply [0◦/90◦/0◦], length–radius ratios L/R = 1, radius–thickness ratio H/R = 0.005, the circumferentialwave
number n=1–6.

4.1 Shell with arcs supported boundary condition

For the form of welding that may occur in actual engineering, the arcs supported boundary condition is used
for simulation. It is indispensable to study the natural frequency of arcs supported laminated cylindrical shell.
The effects of the stiffness of the spring per unit arc length, lamination schemes combined elastic boundaries
arcs on frequency parameters for laminated cylindrical shells with arcs supported boundary condition were
studied.

4.1.1 The range of supported arcs

The effects of the range of constraint arcs on the frequency parameters and mode shapes of arcs supported
laminated shells are analyzed in Figs. 3, 4, and 5, inwhich the shell is whole-circle clamped supported boundary
condition in one edge while the other edge restrained by changing clamped supported arcs. The first three-order
frequency parameters of the laminated shell with an increasing range of supported arcs are plotted in Fig. 3.
It can be seen from the figure that the natural frequency of the laminated shell increases as the supported arcs
range increases when the range is less than π , and the frequency remain unchanged after the range is greater
than π . The boundary converges to the uniformly constrained clamped support boundary. The variation of the
mode shape of the laminated cylindrical shell under different constraint range are plotted in Figs. 4 and 5.
When the constraint range is small, the vibration amplitude of the shell is only small in the constraint region.
When the constraint range is larger than π , the entire circumference of the boundary has a small amplitude
of vibration. It can be seen from Fig. 5b that the shell has only a small amplitude in the constraint region,
resulting in a small overall constraint amplitude.
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Fig. 3 Effect of the range of supported arcs on the frequency parameter

Fig. 4 Comparison of 3Dmodes shapes for arcs supported shell with different constrained range: a α = 0; bα = π/5; c α = 2π/5;
d α = 3π/5; e α = 4π/5; f α = π; g α = 6π/5; h α = 2π

Fig. 5 Comparison of constraint end modes shapes for the arcs supported end with different constrained range: a relative free
end maximum amplitude; b actual amplitude

As seen the phenomenon from Figs. 3, 4 and 5, we can explain from Eqs. (10a). With the increase in
the supported arcs range, the integral range in the formula increases and the integrand is positive. So, the
boundary stiffness is closer to the whole circumference constraint stiffness. When the constraint range is large,
the constraint on the boundary can be approximated as a whole circumference constraint, so the frequency
remains almost unchanged and the amplitude of the mode is almost zero.
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Fig. 6 Variation of the frequency parameters with respect to elastic supports: k0u = k0v = k0w = k0θ = 1012 a α = 2π ; b α = π ; c
α = π /2

4.1.2 Spring stiffness

In the past studies, most of the research directions focused on the influence of single spring stiffness on
the natural frequency of laminated shell, but less on the influence of multiple spring combinations on the
natural frequency. In Fig. 6, the frequency parameters of laminated cylindrical shells with combined elastic
boundary conditions are calculated. The boundary in one edge is clamped supports of whole circumference
(k1u = k1v = k1w = k1θ = 1012N/m2(N/rad2)) while the other edge restrained by two sets of changing stiffness
arcs supported spring k0i = 100 ∼ 1012N/m2(N/rad2), k0j = 100 ∼ 1012N/m2(N/rad2) (i, j = u, θ and v,w),

and other direction stiffness is 0N/m2(N/rad2). In Fig. 6a, with increase in the stiffness of axial, circumferential,
radial, and rotational directions, the frequency parameters remain unchanged first, then increase rapidly, and
finally remain unchanged. And the value of one direction stiffness affects the influence of spring stiffness on
the frequency parameter in the other direction. When kw is less than 104, as kv increases from 100 to 1012,
the frequency parameter increases from 0.13 to 0.33. However, when kw is greater than 104, the effect of kv
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Fig. 7 Comparison of 3D modes shapes for arcs supported shell with different spring stiffness (with the arcs radian from 0 to
π /2): a kw = 105, b kw = 106, c kw = 107, d kw = 108

Fig. 8 Comparison of constraint end modes shapes for the arcs supported end with different spring stiffness: a relative free end
maximum amplitude; b actual amplitude

on the frequency parameters becomes smaller. Especially when kw is greater than 107, as kv increases from
100 to 1012, the frequency parameter increases from 0.28 to 0.33. In different directions, the degree of mutual
influence of stiffness in the two directions is different. For example, when kw is greater than 109, the frequency
parameter remains unchanged as kw increases. Figure 6b, c respectively, calculate the constraint range α as
π and π /2, and it can be seen that the effect of the stiffness change on the natural frequency is similar to
Fig. 6a. Therefore, when the influence of spring stiffness on the natural frequency are analyzed, the stiffness
in multiple directions should be considered at the same time. When the constraint range is small, the curve
becomes nonsmooth and the range of sensitive intervals becomes larger, and this should be avoided in the
project.

The stiffness has an important effect on mode shapes. The mode shapes of π /2 laminated cylindrical
shell with different stiffness spring arcs supports are shown in Figs. 7 and 8. One end of the spring is clamped
support of the whole circumference, and the other end is elastic support (kw = 105 ∼ 108N/m2, other direction
stiffness is 0N/m2). When kw < 105N/m2, the boundary approximates the free boundary, and the constrained
spring has small influence on the vibration mode; when the value of spring stiffness is in the sensitive interval,
as the spring stiffness increases, the vibration amplitude in the constraint range gradually decreases; when the
spring stiffness is greater than 108N/m2, the restraining area is a clamped support and the vibration amplitude
is close to zero. It is proved that the boundary spring has a great influence on the vibration amplitude of the
shell.

As seen the phenomenon from Figs. 6, 7 and 8, we can explain from Eqs. (10a) and (18). With the increase
in the spring stiffness k in the potential energy of the boundary spring (Eq. (10a)), the spring stiffness matrix
increase in Eq. (18). The boundary is close to the free boundary condition at the beginning of the stiffness being
increased from 100 to 1012, therefore, the frequency change slightly. Within the sensitive range, the spring
stiffness matrix increases rapidly with increase in stiffness. The boundary can seem as the clamped boundary
condition when the stiffness’s value is greater than the sensitive interval, and the frequency parameters of the
laminated cylindrical shells remain unchanged.

4.1.3 Lamination schemes

Compared with the previous study [6,22] focusing on the free vibration of the laminated shell with the
determining boundary and lamination schemes, this paper discusses the free vibration of a three-layer arc
supported laminated cylindrical shell with the continuously varying spring stiffness and lamination schemes.
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Fig. 9 Influence of the boundary condition stiffness and lamination schemes for a three-layered, cross-ply [0, θ , 0] shell with
clamped boundary conditions in one edge while the other edge only restrained by elastic spring: (α = π)a ku ; b kv ; c kw; d kθ

The effect of spring stiffness and lamination schemes on frequency parameters of the laminated cylindrical
shell are a discussion in Fig. 9. To verify with Sect. 4.1.2, α is selected as π . The boundary in one edge is
clamped supports of whole circumference (k1u = k1v = k1w = k1θ = 1012N/m2(N/rad2)) while the other edge
of the arcs radian from 0 to π /2 restrained by one set of changing stiffness arcs supported spring k0i = 100 ∼
1012N/m2(N/rad2) (i = u, θ , v,w), and other direction stiffness is 0 N/m2(N/rad2). The angular orientation
β of fibers of the middle layer continuously change from 0 to π , and the angular orientation of inner layer
and outer layer keep unchanged. In Fig. 9a–d, when the spring stiffness is small, as the angular orientation of
fibers of the middle layer increases from 0 to π , the frequency parameter decreases first, reaches a minimum
at θ = π /2, and then increases again. When the spring stiffness is greater than the sensitive interval, as the
angular orientation increases from 0 to π /2, the frequency parameter first increases, and then decreases again,
reaches a minimum at θ = π /2. There is the same tendency compared with the layup angle from 0 to π /2
with the layup angle from π to π /2. The angle θ at which the frequency reaches the maximum are π /6, 2π /9,
π /3 and π /18, respectively. Therefore, the spring stiffness in different directions has different effects on the
frequency parameters of laminated shells with different laminated angles. In engineering design, the required
natural frequency can be obtained by adjusting the boundary spring stiffness and the layup angle.

As seen the phenomenon from Fig. 9, we can explain from Eq. (8). When the angular orientation of fibers
β of the middle layer change from 0 to π , the transformation stiffness matrix Q̄ is the sine and cosine about
β , and they show a cyclical change.

4.2 Shell with points supported boundary condition

The study on the natural frequency of point supported laminated shells provide theoretical reference for bolting
in engineering. Then, the effects of the number of supported points, spring stiffness, and lamination schemes
combined elastic boundaries on frequency parameters and mode shape of laminated cylindrical shells with
points supported boundary condition were studied.
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Fig. 10 Effect of the number of supported points on the frequency parameter

Fig. 11 Comparison of modes shapes for points supported shell: a NA=1; b NA=2; c NA=3; d NA=4; e NA=5; f NA=6; g
NA=7; h NA=8

Fig. 12 Comparison of modes shapes for the points supported end: a relative free end maximum amplitude; b actual amplitude

4.2.1 Number of supported points

The effects of the number of constraint points on the frequency parameters andmode shapes of points supported
laminated shells are analyzed in Figs. 10, 11, and 12, in which the shell is whole-circle clamped supported
boundary condition in one edge while the other edge restrained by changing supported points. The first three-
order frequency parameters of the laminated shell with changing number of supported points are plotted in
Fig. 10. It can be seen from the figure that the natural frequency of the laminated shell increases as the number
of point increases when the number of points is less than 13. When the number of points is greater than 13,
the frequency parameter of the laminated shell remains stable as the number of point increases, that is, as the
number of point increases, the boundary converges to the uniformly constrained fixed support boundary. The
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Fig. 13 Variation of the frequency parameters with respect to elastic supports: k0u = k0v = k0w = k0θ = 1012 a NA=1000; b
NA=16; c NA=8

Fig. 14 Comparison of 3D modes shapes for points supported shell with different spring stiffness (NA=8): a kw = 104, b
kw = 105, ckw = 106, d kw = 107

variation of the mode shape of the laminated cylindrical shell under different constraint points are plotted in
Figs. 11 and 12. It can be seen that when the number of constraint points is small, the mode shape of the
laminated shell only has an amplitude of 0 at the constraint point. When the number of points is increased to
more than 6, the laminated shell has a little amplitude of vibration over the entire circumference. Through the
above analysis, it can be considered that when the number of constraint points is large than 13, the boundary
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Fig. 15 Comparison of constraint end modes shapes for the points supported end with different spring stiffness: a relative free
end maximum amplitude; b actual amplitude

is approximately a clamped support for the entire circumference. As seen the phenomenon from Figs. 10,
11 and 12, we can explain from Eq. (10b). With increase in the number of points, the U points

spring is increasing
and gradually approaching the value of the whole circumference constraint. When NA is large enough, the
frequency will converge to the uniformly clamp supported condition.

4.2.2 Spring stiffness

The laminated cylindrical shells with clamped supported in one edge (k
′1
u = k

′1
v = k

′1
w = k

′1
θ =

109 N/m(N/rad)) while the other edge restrained by two sets of changing stiffness spring is discussed in
Figs. 13, 14, and 15. In this section, NA is selected as 1000 16 and 8 for having a clear distinction. In the
figure, as the spring stiffness increases, the natural frequency first remains unchanged, rapidly increases in the
sensitive interval, and finally remains unchanged. Take Fig. 13a as an example, when the radial spring stiffness
k′

w is less than 100, the natural frequency of the laminated shell increases from 0.12 to 0.32 with increase in
the circumferential spring stiffness; when the radial spring stiffness k′

w is more than 105, it increases from
0.28 to 0.32. It can be seen clearly that the effect of spring stiffness on the natural frequency in one direction is
affected by the spring stiffness values in other directions. In Figs. 13b, c, the natural frequencies of NA=64 and
16 are studied, respectively. The sensitivity interval is also different under the number of different constraint
points. In Fig. 13c, when the radial stiffness increases to 106, the first-order natural frequency has a mutation.
From Figs. 14 and 15, when the stiffness increases from 106 to 107, the circumferential wavenumber of the
first-order frequency changes from 6 to 4, causing a sudden change in frequency. The effect of stiffness on
frequency parameters of the points supported shells are consistent with those effect indicated from Fig. 3. The
reason for the appearance of Fig. 13 is the same as Fig. 6, which is not discussion.

4.2.3 Lamination schemes

In practical engineering, the cross-ply angle is an extremely important design parameter, so it is indispensable
to study the influence of the cross-ply angle on the natural frequency of the laminated shell. The effect of
the lamination schemes and spring stiffness on the natural frequency of the points supported laminated shell
is analyzed in Fig. 16. To verify with Sect. 4.2.2, NA is selected as 16. A three-layered cross-ply [0, θ , 0]
(θ = 0 ∼ π) laminated shell with whole cycle clamped supported in one edge (k

′1
u = k

′1
v = k

′1
w = k

′1
θ =

109 N/m(N/rad)) while the other edge restrained by one set of changing stiffness spring (k′0
i = 10−3 ∼

109N/m(N/rad) (i = u, v, w, θ)) is discussed. In Figs. 16a–d, when the spring stiffness is small, as the middle
layer angle increases from 0 to π , the frequency parameter decreases first and then increases, and the minimum
value is obtained at π /2. And the curve is symmetric about π /2.When the spring stiffness is large, as the middle
layer angle increases from 0 to π /2, the laminated shell frequency parameter increases first, and the maximum
value is obtained around π /6, 2π /9, π /3 and π /18, respectively, then decrease, taking the minimum at π /2;
when the ply angle increases from π to π /2, the frequency parameter change also increases first and then
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Fig. 16 Influence of the boundary condition stiffness and lamination schemes for a three-layered, cross-ply [0, θ , 0] shell with
clamped boundary conditions in one edge, while the other edge only restrained by elastic spring (NA=16)

decreases, and the maximum value is obtained at 5π /6, 7π /9, 2π /3 and 17π /18, respectively. According to
the above analysis, the ply angle has a greater influence on the frequency parameters. Therefore, the required
frequency parameters can be obtained by changing the layup angle of the middle layer during the engineering
design process. The reason for this phenomenon is similar to Fig. 9 and will not be discussed here.

5 Conclusions

In this paper, the models of laminated composite cylindrical shells with non-continuous elastic boundary
conditions are established and the natural character are investigated. By comparing the calculation results
with the classic literature, the convergence and accuracy of the model are verified. In results and discussion,
the effects of some parameters on free vibrations of non-continuous supported shells are studied and the
conclusions are as follows.

(1) With the increase in spring stiffness, the frequency remains unchanged at first, then increasing rapidly in
sensitive interval finally almost keep a constant. The constant and sensitive interval also change with the
change of the constraint range.

(2) Compared with rotational spring stiffness, the change of spring stiffness in axial, radial and circumferential
directions have a more significant effect on natural frequency. When the stiffness in two directions is
considered, the effect on frequency will affect each other.

(3) As the constraint range increases, the shell boundary approximates the entire circumference constraint.
(4) The natural frequency changes periodically with the change of the lamination schemes of the middle layer.

When β is π /2, the frequency is the smallest.
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Appendix A. Expressions for the mass matrix M

Muu = ρHLR
∫ 1

0

∫ 2π

0
[ŪŪ

T ] dθdξ Equation Chapter 2 Section 1 (A.1)

Mvv = ρHLR
∫ 1

0

∫ 2π

0
[V̄ V̄

T ] dθdξ (A.2)

Mww = ρHLR
∫ 1

0

∫ 2π

0
[W̄ W̄

T ] dθdξ (A.3)

Appendix B. Expressions of the stiffness matrix K

K u = L

R

∫ 1

0

∫ 2π

0

(
A66

∂Ū
∂θ

∂Ū
T

∂θ
+ R2A11

L2

∂Ū
∂ξ

∂Ū
T

∂ξ
+ 2RA16

L

∂Ū
∂ξ

∂Ū
T

∂θ

)
dθdξ (B.4)

K uv = L

R

∫ 1

0

∫ 2π

0

(
2RA12

L

∂Ū
∂ξ

∂ V̄
T

∂θ
+ 2RA66

L

∂Ū
∂θ

∂ V̄
T

∂ξ

+2R2A16

L2

∂Ū
∂ξ

∂ V̄
T

∂ξ
+ 2A26

∂Ū
∂θ

∂ V̄
T

∂θ

)
dθdξ (B.5)

K uw = L

R

∫ 1

0

∫ 2π

0

(
2RA12

L

∂Ū
∂ξ

W̄
T + 2A26

∂Ū
∂θ

W̄
T
)
dθdξ (B.6)

K vv = L

R

∫ 1

0

∫ 2π

0

{(
A22 + D22

R2

)
∂ V̄
∂θ

∂ V̄
T

∂θ
+

(
R2A66

L2 + RD66

L2

)
∂ V̄
∂ξ

∂ V̄
T

∂ξ

+
(
2RA26

L
+ 2D26

LR

)
∂ V̄
∂ξ

∂ V̄
T

∂θ

}
dθdξ (B.7)

K vw = L

R

∫ 1

0

∫ 2π

0

⎛
⎜⎜⎜⎝
2A22

∂ V̄
∂θ

W̄
T − 2D22

R2
∂ V̄
∂θ

∂2W̄
T

∂θ2
− 4RD66

L2
∂ V̄
∂ξ

∂2W̄
T

∂ξ∂θ
− 2D12

L2
∂ V̄
∂θ

∂2W̄
T

∂ξ2

+ 2RA26
L

∂ V̄
∂ξ

W̄
T − 2RD16

L3
∂ V̄
∂ξ

∂2W̄
T

∂ξ2
− 2D26

RL
∂ V̄
∂ξ

∂2W̄
T

∂θ2

− 4D26
RL

∂ V̄
∂θ

∂2W̄
T

∂ξ∂θ

⎞
⎟⎟⎟⎠ dθdξ (B.8)

Kww = L

R

∫ 1

0

∫ 2π

0

⎛
⎝ D22

R2
∂2W̄
∂θ2

∂2W̄
T

∂θ2
+ A22W̄ W̄

T + 4RD66
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T
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+ R2D11
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T
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T
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+ 4RD16
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Appendix C. Expressions of the spring stiffness matrix Kspr

(a) The spring stiffness matrix Kspr of the arcs supported boundary condition

K uu
spr =

∫ θ2

θ1

(
k0uŪ (0) Ū

T
(0) + k1uŪ (1) Ū

T
(1)

)
Rdθ (C.10)
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K vv
spr =

∫ θ2

θ1

(
k0v V̄ (0) V̄

T
(0) + k1v V̄ (1) V̄

T
(1)

)
Rdθ (C.11)

Kww
spr =

∫ θ2

θ1

(
k0wW̄ (0) W̄

T
(0) + k0θ

L2

∂W̄ (0)

∂ξ

∂W̄
T

(0)

∂ξ
+ k1wW̄ (1) W̄

T
(1) + k1θ

L2

∂W̄ (1)

∂ξ

∂W̄ (1)T

∂ξ

)

Rdθ (C.12)

(b) The spring stiffness matrix Kspr of the points supported boundary condition

K uu
spr =

NA∑
p=1

(
k′o
u,pŪ

(
0, θp

)
Ū

T (
0, θp

) + k′1
u,pŪ

(
0, θp

)
Ū

T (
0, θp

))
(C.13)

K vv
spr =

NA∑
p=1

(
k′0

v,p V̄
(
0, θp

)
V̄

T (
0, θp

) + k′1
v,p V̄

(
1, θp

)
V̄

T (
1, θp

))
(C.14)

Kww
spr =

NA∑
p=1

⎛
⎝ k′0

w,pW̄
(
0, θp

)
W̄

T (
0, θp

)

+ k′0
θ,s

L2
∂W̄(0,θp)

∂ξ

∂W̄(0,θp)
T

∂ξ
+ k′1

w,pW̄
(
1, θp

)
W̄

T (
1, θp

) + k′1
θ,p

L2
∂W̄(1,θp)

∂ξ

∂W̄(1,θp)
T

∂ξ

⎞
⎠ (C.15)
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