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Abstract The performance of bimorph cantilever energy harvester subjected to horizontal and vertical exci-
tations is investigated. The energy harvester is simulated as an inextensible piezoelectric beam with the Euler–
Bernoulli assumptions. A horizontal base excitation along the axis of the beam is converted into the parametric
excitation. The governing equations include geometric, inertia and electromechanical coupling nonlinearities.
Using the Galerkin method, the electromechanical coupling Mathieu–Duffing equation is developed. Analyt-
ical solutions of the frequency response curves are presented by using the method of multiple scales. Some
analytical results are obtained, which reveal the influence of different parameters such as the damping, load
resistance and excitation amplitude on the output power of the energy harvester. In the case of parametric exci-
tation, the effect of mechanical damping and load resistance on the initiation excitation threshold is studied.
In the case of combination of parametric and direct excitations, the dynamic characteristics and performance
of the nonlinear piezoelectric energy harvesters are studied. Our studies revealed that the bending deformation
generated by direct excitation pushes the system out of axial deformation and overcomes the limitation of
initial threshold of parametric excitation system. The combination of parametric and direct excitations, which
compensates and complements each other, can be served as a better solution which enhances performance of
energy harvesters.

Keywords Piezoelectric energy harvester · Electromechanical coupling Mathieu equation · Parametric
resonance · Nonlinear dynamic characteristics · Method of multiple scales

Nomenclature

A Complex-valued function
a Response amplitude
b Width of beam
c Damping coefficient
c̄ Non-dimensional damping coefficient
Cp Capacitance of the piezoelectric layers
d31 Piezoelectric strain coefficient
hb Thickness of the beam
J Jacobian matrix
L Length of the piezo-beam
mt Mass per unit length of the beam
P Output power
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RL Electrical load resistance
t (τ ) Time (τ = ω0t)
ts Thickness of the substrate layer
tp Thickness of each piezoelectric layer
u Horizontal direction displacement of piezo-beam relative to o′x ′y′
v Vertical direction displacement of piezo-beam relative to o′x ′y′
v̄ Dimensionless vertical displacement
V Output voltage
V̄ Dimensionless output voltage
wx The horizontal direction displacement of the base relative to oxy
wy The vertical direction displacement of the base relative to oxy
w̄ Dimensionless vertical displacement
Yp Young’s modulus of the piezoelectric layer
Ys Young’s modulus of the substrate layer
oxy Inertial coordinates
o′x ′y′ Base-fixed coordinates
s, ξ Coordinate along neutral axis
cc The complex conjugate of the preceding term
ρp Density of the piezoelectric layer
ρs Density of the substrate layer
εT33 Permittivity at constant stress
εS33 Permittivity at constant strain
Y I Bending stiffness of the piezo-beam
α Electromechanical coupling coefficient
�x Parametric excited frequency
�y Direct excited frequency
ϕn(s̄) Eigenfunction of clamped-free beam
β̄n Frequency parameter of cantilever beam
ωn Natural frequency of the nth mode
δx Non-dimensional parametric excited amplitude
δy Non-dimensional direct excited amplitude
ψ Horizontal excited phase angle
ε Small perturbation parameter
σ Detuning parameter

1 Introduction

Vibration energy harvesting provides a promising approach for a self-power source of portable devices or
wireless sensor network system. The electromechanical coupling theory of piezoelectric composite beam has
been developed [1,2]. Some reviews of piezoelectric energy harvesting system have recently been published
[3–9]. Most of the researchers have focused on using a linear model of vibration energy harvesters [10–20].
In the case of the resonance frequency, the linear model of the harvester will maximize the output power for a
given excitation frequency spectrum. Once the excitation frequency drifts away from the harvester’s resonance
frequency, the harvesting energy drops significantly and results in the energy harvesting process inefficient.
Meanwhile, the linear model is not suitable for vibration sources which are with time-varying frequency or
distributed over a wide frequency range because of the narrow frequency bandwidth of the linear resonators.
To overcome this shortcoming, various nonlinear energy harvesters have recently been proposed to achieve
harvesting energy over a broad frequency band.

Some researchers have investigated the nonlinear hysteretic behaviors such as the hardening or softening
hysteresis. The nonlinear hysteretic behaviors can be deliberately invoked to broaden the frequency range of the
harvesters. Mahmoodi and Jalili [21] analytically studied and experimentally verified the vibration response of
the piezoelectric cantilevered beamwhich considered the inextensible condition, geometrical nonlinearities and
the electromechanical coupling. Triplett and Quinn [22] studied the effects of the electromechanical coupling
nonlinearities on the performance of vibration-based energy harvester by using the lumped-parameter nonlinear
model and the perturbation analysis. The performance of the corresponding energy harvesting system was
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compared with the linear energy harvesting systems. Cottone et al. [23], Ferrari et al. [24] and Stanton et al.
[25] derived an analytical model of cantilevered piezoelectric beam coupled to permanent magnets to create a
bistable system and studied the spectral response of the bistable harvesting system under stochastic excitation.
The study showed that the bistable energy harvesting system can provide better performances compared to
the linear one in terms of the energy extracted from a generic wide spectrum vibration. Stanton et al. [26],
Abdelkefi et al. [27] and Leadenham and Erturk [28] proposed and experimentally validated a nonlinear
distributed parameters model of cantilevered piezoelectric beam which included piezoelectric nonlinearities.
Panyam et al. [29] used the method of multiple scales to construct analytical solutions of bistable vibration
energy harvesters and investigated the amplitude and stability of the intrawell and interwell dynamics of the
harvester under harmonic excitations. Vijayan et al. [30] developed a vibration impacting system for converting
low frequency response to high frequencies to explore the effect of frequency up-conversion on the output power
of the harvester. Daqaq et al. [31] highlighted the role of nonlinearities in the transduction of energy harvesters
under different types of excitations, which focused on the use of nonlinearity to improve the performance
of vibratory harvesters. Pasharavesh et al. [32,33] proposed a nonlinear mathematical model of cantilever
and doubly clamped piezoelectric energy harvesters by variational approach. Firoozy et al. [34] studied the
nonlinear dynamic behavior of a unimorph piezoelectric cantilever energy harvester with and without a tip
mass subjected to a harmonic excitation. Gafforelli et al. [35,36] reported a comprehensive modeling and
experimental verification of a bridge-shaped nonlinear energy harvester. Yang and Towfighian [37] presented
a hybrid nonlinear energy harvester which combined bistability and internal resonance effects to broaden the
frequency bandwidth of energy harvesters.Wang et al. [38] investigated the response of nonlinear piezoelectric
energy harvester by harmonic balance and the method of multiple scales and compared the relative accuracy
of the two methods. Zhu et al. [39] developed a novel tristable energy harvester with two external magnets to
improve the efficiency of harvesting vibration energy.

The parametric resonance can significantly enhance the performance of the energy harvester and raise the
interest of many researchers. Daqaq et al. [40] investigated a cantilever piezoelectric energy harvester under
parametric excitation. In their study, a nonlinear lumped-parameter model was proposed to describe the first-
mode dynamics of the harvester. Jia et al. [41–44] proposed a novel design and working mechanism in order
to reduce the initiation threshold and overcome the shortcomings of the parametric resonance. The results
showed the parametric resonance could serve to widen the operational frequency bandwidth and enhance
the energy harvesting. Abdelkefi et al. [45] derived a global nonlinear distributed-parameter model of para-
metrically excited piezoelectric cantilevered harvester. The proposed model accounted for geometric, inertia,
piezoelectric and fluid drag nonlinearities. Bitar et al. [46] presented a discrete model for the collective dynam-
ics of periodic nonlinear oscillators under simultaneous parametric and direct excitations, which was suitable
for several physical applications. Chiba et al. [47] investigated the dynamic stability of a vertically standing
cantilever beam under simultaneous horizontal and vertical excitations. Mam et al. [48] presented a nonlinear
distributed-parameter model of the piezoelectric energy harvester under direct and parametric excitation, in
which geometric and piezoelectric nonlinearities were considered. Based on the proposed model, some critical
issues related to the energy harvester are investigated. But they did not study the performance of the energy
harvester under combination of parametric and direct excitations. Considering geometrical nonlinearity, Fang
et al. [49] investigated the performance of cantilever piezoelectric energy harvester under parametric and direct
excitations. In their study, the harmonic balance method was used to find analytical expressions of the fre-
quency response curves. But the stability of the solutions and the effect of the load resistance on the initiation
threshold were not investigated.

Le andYi [50–53] demonstrated that the rigorous first-order approximate 2-D theory of thin smart sandwich
shells can be derived from the exact 3-D piezoelectricity theory by the variational asymptotic method. An
error estimation of the approximate 2-D and 1-D equations has been obtained [52,53]. When the length of
the beam is much larger than the thickness, the Euler–Bernoulli assumptions can be applied to sandwich
piezoelectric beam. In this paper, the nonlinear dynamic performance of parametrically and directly excited
cantilevered piezoelectric energy harvester is investigated. Based on that the authors proposed the governing
partial differential equations [49], analytical expressions of the vertical displacement and output voltage are
obtained by the method of multiple scales. Some critical issues related to energy harvesting are investigated,
such as the influences of the damping, load resistance and excitation amplitude on the performance of the energy
harvester. Meanwhile, improving the performance of the energy harvester is studied by the combination of
parametric and direct excitations.
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Fig. 1 Model of cantilevered piezoelectric beam for energy harvesting

2 Mathematical model of energy harvesting system

A uniform bimorph piezoelectric cantilever beam under its base horizontal and vertical excitations is shown
in Fig. 1.

The beam consists of one substrate and two piezoelectric layers, in which L is the length, b is the width,
hb = ts + 2tp is the thickness of the beam, ts is the thickness of the substrate layer and tp is the thickness of
each piezoelectric layer. RL is the load resistance. The piezoelectric layers and substrate layer are perfectly
bonded to each other by two in-plane electrode layers of negligible thickness connected to the load resistance.
The continuous electrode pairs covering the top and the bottom faces of the piezoelectric layers are assumed to
be perfectly conductive so that a single electric potential difference can be defined across them. Therefore, the
instantaneous electric fields induced in the piezoelectric layers are assumed to be uniform throughout the length
of the beam [12]. The beam is treated as the Euler–Bernoulli model, in which shear deformation and rotatory
motion are neglected. Setting the oxy coordinate as the inertia coordinate, the fixed-end displacements of the
beam are wx (t) and wy(t) in the horizontal direction and vertical direction, respectively. The o′x ′y′coordinate
is set at the fixed end of the beam. s is the coordinate along the middle plane of the beam. u(s, t) and v(s, t) are
the displacements of the beam relative to the o′x ′y′coordinate system. u(s, t) is in the x ′ direction and v(s, t)
in the y′ direction. The beam is assumed to be inextensible.

Based on the Euler–Bernoulli beam theory and the generalized Hamilton principle, and taking up to the
cubic order of v, the governing differential equations of motion can be obtained as follows [49]:

mt [v + wy],t t + cv,t + Y I
(
v′′′′ + v′2v′′′′ + 4v′v′′v′′′ + v′′3)

+ [
v′′(L − s) − v′]mtwx,t t + 1

2
mt

[
v′

∫ s

0

(
v′2)

,t t ds − v′′
∫ L

s

∫ ξ

0

(
v′2)

,t t dsdξ

]

−αV

{
(1 + 1

2
v′2)

[
dδ(s)

ds
− dδ(s − L)

ds

]
+ v′′v′ [δ (s) − δ (s − L)]

}
= 0 (1)

α

∫ L

0

[
v′′

(
1 + 1

2
v′2

)]

,t
ds + CpV,t + V

RL
= 0 (2)

where δ(s) is the Dirac delta function prime (′) indicates the derivative with respect to the arc length, s. mt =
2ρptpb + ρstsb, ρp and ρs are the density of the piezoelectric and substrate layers, respectively. Y I = Ys Is +
2
3Ypb

(
3h2tp + 3ht2p + t3p

)
, Ys Is is the bending stiffness of the substrate layer, h = ts/2. α = Ypbd31

(
h + tp

2

)
,

C̄p = bεS33
2tp

,Cp = C̄pL . α is related to the electromechanical coupling coefficient. Cp is the capacitance of
the piezoelectric layers. The above equations are a nonlinear distributed-parameter model of the cantilever
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piezoelectric harvester under parametric and direct excitations. The horizontal excitation has been converted
into the parametric excitation.

Introducing the dimensionless parameters shown in Eq. (3), the governing equations (1) and (2) can be
rewritten as Eqs. (4) and (5) in the dimensionless form.

s̄ = s/L , ξ̄ = ξ/L , v̄ = v/L , w̄x = wx/L , w̄y = wy/L

ω0 =
√
Y I/mt L4, τ = ω0t, c̄ = c/(mtω0), ωy = �y/ω0, ωx = �x/ω0

V = ω0L
√
mt/C̄pV̄ , α = ω0L

2
√
mtC̄pᾱ (3)

¨̄v + c̄ ˙̄v + v̄′′′′ + v̄′2v̄′′′′ + 4v̄′v̄′′v̄′′′ + v̄′′3

+ [
v̄′′ (1 − s̄) − v̄′] ¨̄wx + v̄′

∫ s̄

0

( ˙̄v′ ˙̄v′ + v̄′ ¨̄v′) ds̄−v̄′′
∫ 1

s̄

(∫ ξ̄

0
( ˙̄v′ ˙̄v′ + v̄′ ¨̄v′)ds̄

)

dξ̄

−ᾱV̄

{(
1 + 1

2
v̄′2

)[
dδ(s̄)

ds̄
− dδ(s̄ − 1)

ds̄

]
+ v̄′′v̄′ [δ(s̄) − δ(s̄ − 1)]

}
= − ¨̄wy (4)

˙̄V + μV̄ + ᾱ

∫ 1

0

[
˙̄v′′ + 1

2
v̄′2 ˙̄v′′ + v̄′′v̄′ ˙̄v′

]
ds̄ = 0 (5)

where �x and �y are the parametric and direct excited frequencies, respectively. v̄ is dimensionless vertical
displacement and V̄ dimensionless voltage. μ = 1

RLω0Cp
, (·) indicates the derivative with respect to the time

variable, τ .

3 Approximate analytical solutions

To obtain analytical solutions of the nonlinear governing equations (4) and (5), the Galerkin method and the
method of multiple scales are used.

3.1 Reduced-order model

Using the Galerkin method and assuming the excitation frequency is very close to the nth modal frequency,
we focused on the n-th vibration mode of the beam and neglected the interactions with other modes. The
transverse displacement v̄(s̄, τ ) is decomposed into the products of generalized time-dependent displacement
amplitude w̄n(τ ) and orthogonal mode shape function φn(s̄) as

v̄(s̄, τ ) = w̄n (τ ) φn (s̄) (6)

where φn(s̄) is the linear normalized mode shape functions of the Euler–Bernoulli beam with fixed-free
boundary conditions, which can be expressed as:

φn (s̄) = cosh β̄ns̄ − cos β̄ns̄ + cos β̄n + cosh β̄n

sin β̄n + sinh β̄n

(
sin β̄ns̄ − sinh β̄ns̄

)
(7)

where β̄2
n = ω̄n , ω̄n = ωn/ω0, ωn is the n-th eigenfrequency of free bending vibration of the cantilever beam,

β̄n are the roots of the following frequency equation.

cosh β̄n cos β̄n + 1 = 0 (8)

Substituting Eq. (6) into Eqs. (4) and (5), multiplying Eq. (4) by φn(s̄), and subsequently integrating over
the length of the beam, we yield a set of nonlinear ordinary differential equations of motion.

¨̄wn + 2c̃ ˙̄wn + (
ω̄2
n + 2σ̄n ¨̄wx

)
w̄n + βnw̄

3
n + κn

( ˙̄w2
n + w̄n ¨̄wn

)
w̄n − ᾱ

(
ζn + γnw̄

2
n

)
V̄ = −λ̄n ¨̄wy (9)

˙̄V + μV̄ + ᾱ
(
ηn + χnw̄

2
n

) ˙̄wn = 0 (10)
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where the coefficients are defined in Eq. (A1) (see “Appendix A”). We can prove ηn = ζn, χn = γn (see
Eq. (A2) in “Appendix A”). The term βnw̄

3
n describes cubic geometric nonlinearity, κn( ˙̄w2

n + w̄n ¨̄wn)w̄n is
inertia nonlinearity. 2σ̄n ¨̄wx and λ̄n ¨̄wy are the parametric and direct excitations, respectively. Equation (9) is the
electromechanical couplingMathieu–Duffing equations with geometric and inertia nonlinearities as well as the
external force and voltage terms, which describes the nonlinear dynamical equation of cantilever piezoelectric
beam of a single mode approximation under parametric and direct excitations. The electromechanical terms
of Eq. (9) are proportional to voltage and the square of the displacement amplitude. The electromechanical
terms of Eq. (10) are proportional to the velocity and the square of the displacement amplitude. Equations (9)
and (10) are similar to the equations of the lumped-parameter nonlinear model presented by Daqaq et al. [40],
but different from them. The electromechanical coupling terms of Eqs. (9) and (10) include nonlinearity.

3.2 The method of multiple scales

The method of multiple scales [54,55] will be used to obtain the frequency response curves of the nonlinear
piezoelectric energy harvester. For an analytical solution of the present problem, harmonic excitations are
assumed as the following form:

¨̄wx (t) = δx cosωxτ ¨̄wy (t) = δy cos
(
ωyτ + ψ

)
(11)

where δx and δy are the non-dimensional amplitudes, respectively. ψ is the phase angle.
Using Eq. (11) and introducing a small perturbation parameter ε, Eqs. (9) and (10) are rewritten in the

following form:

¨̄wn + 2ĉε ˙̄wn +
(
ω̄2
n + 2δ̂xnε cosωxτ

)
w̄n + β̂nεw̄

3
n + κ̂nε

( ˙̄w2
n + w̄n ¨̄wn

)
w̄n

−ᾱε
(
ζ̂n + γ̂nw̄

2
n

)
V̄ + δ̂ynε cos(ωyτ + ψ) = 0 (12)

˙̄V + μV̄ + ᾱ
(
ηn + χnw̄

2
n

) ˙̄wn = 0 (13)

where c̃ = εĉ, σ̄nδx = εδ̂xn, βn = εβ̂n, κn = εκ̂n, ζn = εζ̂n, γn = εγ̂n, λ̄nδy = εδ̂yn .
In the present analysis, assuming that the first bending modal of the beam should be the dominant mode

of the system, only one modal (n = 1) is retained and others are neglected. In what follows, the subscript
n of Eqs. (12) and (13) will be omitted. In order to achieve parametric resonance, it has been shown that
the horizontal excitation frequency ωx needs to be approximately twice the vertical excitation frequency ωy .
Introducing the non-dimensional excitation frequency, ω̄, ωx and ωy should be expressed as ωx = 2ω̄ and
ωy = ω̄ [40,41].

Using themethod ofmultiple scales, approximate analytical solutions of Eqs. (12) and (13) can be obtained.
The time dependence is expanded into multiple time scales in the form [54,55]

Tn = εnτ for n = 0, 1, 2, . . . (14)

where ε is a perturbation parameter. T0 and T1 are the time scales. T0 = τ and T1 = ετ .
The time derivative can be expressed as the following form [54,55]:

d

dτ
= D0 + εD1 + · · · ,

d2

dτ 2
= D2

0 + 2εD0D1 + · · · (15)

where Dn = ∂/∂Tn . w̄(τ ) and V̄ (τ ) can be expanded by order of ε as follows:

w̄(τ, ε) = w̄0(T0, T1) + εw̄1(T0, T1) + · · ·
V̄ (τ, ε) = V̄0(T0, T1) + εV̄1(T0, T1) + · · · (16)

To express the nearness of the excitation frequency to the first modal frequency of the harvester, we introduce
a detuning parameter σ .

ωy = ω̄ + εσ

ωx = 2ω̄ + 2εσ (17)
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where σ quantitatively describes the nearness of the resonance frequency ω̄ [54,55]. Substituting Eqs. (14)–
(17) into Eqs. (12) and (13), and truncating at order ε and separating the terms of different orders of ε, the
following equations are obtained.

ε0 :
D2
0w̄0 + ω̄2w̄0 = 0 (18)

D0V̄0 + μV̄0 = −ᾱ(η + χw̄2
0)D0w̄0 (19)

ε1 :
D2
0w̄1 + ω̄2w̄1 = −2D0D1w̄0 − 2ĉD0w̄0 − 2δ̂x w̄0 cos(2ω̄τ + 2εστ) − β̂w̄3

0

−κ̂(w̄0(D0w̄0)
2 + w̄2

0D
2
0w̄0) + ᾱ(ζ̂ + γ̂ w̄2

0)V̄0 − δ̂y cos(ω̄τ + εστ + ψ) (20)

D0V̄1 + μV̄1 = −ᾱ(η + χw̄2
0)(D0w̄1 + D1w̄0) − D1V̄0 − 2ᾱχw̄1w̄0D0w̄0 (21)

The solutions of Eqs. (18) and (19) can be obtained as follows.

w̄0 = A(T1) exp(i�ωT0) + cc (22)

V̄0 = − ᾱ(η + χ AĀ)iω̄A

iω̄ + μ
exp(iω̄T0) − ᾱχ iω̄A3

3iω̄ + μ
exp(3iω̄T0) + cc (23)

where cc is the complex conjugate of the preceding term and A(T1) is a complex-valued function that will be
determined by imposing the solvability condition at the next level of approximation. Substituting Eqs. (22)
and (23) into Eqs. (20) and (21), the solvability condition is derived by disregarding higher harmonics and
setting secular terms, which have the coefficient exp(iω̄nT0), to zero [54,55]. Assuming ψ = 0, the following
equation is obtained.

−2iω̄D1A − 2ĉiω̄A − 3β̂A2 Ā + 2A2 Āω̄2κ̂

−ᾱ2ζ̂
(η + χ AĀ)iω̄A

iω̄ + μ
− ᾱ2γ̂

(η + χ AĀ)iω̄2A2 Ā

iω̄ + μ
− ᾱ2γ̂

χ iω̄A3 Ā2

3iω̄ + μ

−δ̂x Ā exp(i2σT1) − δ̂y
1

2
exp(iσT1) = 0 (24)

To find the solution of Eq. (24), the complex-valued function A is expressed in the polar form [54,55]:

A = 1

2
a exp(iθ) (25)

where a and θ are the function with respect to T1. Substituting Eq. (25) into Eq. (24), and separating the real
and imaginary parts, the following equations can be obtained.

ȧ = −c1a − c2a
3 − c3a

5 − c4 sin(σT1 − θ) − c8a sin[2(σT1 − θ)] (26)

−aθ̇ = −c5a − c6a
3 − c7a

5 − c4 cos(σT1 − θ) − c8a cos[2(σT1 − θ)] (27)

Introducing ϕ = σT1 − θ , we obtain.

ȧ = −c1a − c2a
3 − c3a

5 − c4 sin ϕ − c8a sin 2ϕ (28)

aϕ̇ = σa − c5a − c6a
3 − c7a

5 − c4 cosϕ − c8a cos 2ϕ (29)

where the coefficients, ci (i = 1, 2, . . . , 8), are defined in “Appendix B”.
The steady-state solution of Eqs. (28) and (29) can be found by setting ȧ = 0 and ϕ̇ = 0. The equations of

the steady-state solution can be rewritten as

c1a + c2a
3 + c3a

5 + c4 sin ϕ + c8a sin 2ϕ = 0 (30)

σ = c5 + c6a
2 + c7a

4 + c4 cosϕ

a
+ c8 cos 2ϕ (31)

For Eqs. (30) and (31), there are multi-valued solutions, and not all solutions approximate a realizable
response of the actual physical system [54]. Those solutions, which are unstable, do not describe a possible
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response. The results are obtained by first specifying a value for ϕ, solving for a from Eq. (30) and then σ is
obtained from Eq. (31). The values of ϕ are specified systematically in rather small increments from −π to
π [54]. Depending on the excitation amplitude and frequency, there exist positive real-valued solutions. The
stability of the solution can be determined by assessing the eigenvalues of the associated Jacobian matrix.
Upon consideration of the zeroth-order perturbation to the displacement and voltage, the higher harmonics
of Eq. (23) is neglected. The steady-state solutions of the displacement and voltage can be expressed as the
following form.

w̄ = a cos(ωyτ − φ) (32)

V̄ = ω̄ᾱ
[
4η + χa2

]

4
√

ω̄2 + μ2
a cos(ωyτ − φ + θ1) (33)

θ1 = tan−1
(μ

ω̄

)
(34)

The steady-state solutions of output power can be expressed as the following form.

P = mω2
0L

3

CpRL
V̄ 2 (35)

3.3 Stability of the non-trivial solutions

The stability of the non-trivial solutions at a given fixed point (a0, ϕ0) can be found by introducing a time-
dependent disturbance (δa(t), δϕ(t)) on the fixed point, that is,

a = a0 + δa(t), ϕ = ϕ0 + δϕ(t) (36)

Substituting Eq. (36) into Eqs. (28) and (29), linearizing in the disturbance, and determining the eigenvalues
of the Jacobian matrix of the linearized equations, the Jacobian matrix can be expressed as:

J =
[
k11 k12
k21 k22

]
(37)

where

k11 = −c1 − 3c2a
2
0 − 5c3a

4
0 − c8 sin 2ϕ0

k12 = −c4 cosϕ0 − 2c8a0 cos 2ϕ0

k21 = −2c6a0 − 4c7a
3
0 + c4

1

a20
cosϕ0

k22 = c4
1

a0
sin ϕ0 + 2c8 sin 2ϕ0 (38)

Using Eq. (37), the characteristic equation of the Jacobian matrix can be written as

λ2 − (k11 + k22)λ + k11k22 − k12k21 = 0 (39)

Using the Routh–Hurwitz criterion, the steady-state solutions are locally asymptotically stable if and only if

(k11 + k22) < 0, k11k22 − k12k21 > 0 (40)

4 Results and discussion

In the previous section, analytical solutions of the cantilever piezoelectric energy harvester have been presented
under parametric and direct excitations. In this section, the frequency response curves of the energy harvesting
system will be given and discussed in detail. The geometric and material properties are as follows:
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mt = 96 g/m, b = 20mm, L = 50mm, tp = 0.2mm, ts = 0.2mm, Yp = 61GPa

Ys = 20GPa, d31 = −320 × 10−12 C/N, εT33 = 3.98 × 10−8 F/m, εS33 = εT33 − d231Yp (41)

Using n = 1, the influences of several different parameters on the performance of the harvester are investigated.
These parameters are excitation amplitudes δx and δy , mechanical damping coefficient c̄, and load resistance
parameter RL. The base excitation is considered as harmonic excitation. Small perturbation parameter is taken
as ε = 0.01. Using the geometric and material coefficients defined in Eq. (41), all parameters of Eqs. (9) and
(10) are as follows:

σ̄ = −0.7854, β = 40.4407, κ = 4.5968, ζ = 2.7530, γ = 10.4326, λ̄ = 0.7830

ᾱ = −0.4119, ω̄ = 3.5160, ω0 = 188.9150, Cp = 8.3884 × 10−8 (42)

where η = ζ, χ = γ which have been proved in “Appendix A”. In all analytical results, solid lines represent
stable solutions and dashed lines represent unstable solutions.

4.1 Parametric Excitation

We investigate the characteristics of the amplitude frequency response curves under parametric excitation.
Figures 2, 3, 4 and 5 show the amplitude frequency response curves of the steady-state displacement and output
voltage for different load resistances and different excited amplitudes. For parametric excitation (δy = 0),
Figs. 2, 3, 4 and 5 show that electrical energy can only be harvested within a certain range of excitation
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Fig. 2 The amplitude–frequency response curves for different excited amplitudes (short-circuit): a deflection; b output voltage

16 17 18 19 20 21 22
0.00

0.05

0.10

0.15

0.20

x

x

x

x

a
y RL=500k c

w

16 17 18 19 20 21 22
0.00

0.05

0.10

0.15

0.20

0.25

x

x

x

x

b y RL=500k c

v

Fig. 3 The amplitude–frequency response curves for different excited amplitudes (open-circuit): a deflection; b output voltage



2156 G. Xia et al.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.07

0.14

0.21

0.28

RL=450

RL=475

RL=500

RL=525

RL=535

a x y c
w

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.000

0.002

0.004

0.006

0.008

0.010

RL=450

RL=475

RL=500

RL=525

RL=535

b x y c

v
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Fig. 5 The amplitude–frequency response curves for different load resistances (open-circuit): a deflection; b output voltage

frequencies where the non-trivial solutions exist. Outside of this range, only the trivial solution (w̄ = 0) exists
and no electrical energy can be harvested. Meanwhile, our studies show that the frequency response curves
have both the open-circuit and the short-circuit resonant region. Figure 2 (the short circuit) and Fig. 3 (the
open circuit) show that the ranges of excited frequencies, where the non-trivial solutions exist, are distinct
for different excited amplitudes, δx . Figure 4 (the short circuit) and Fig. 5 (the open circuit) show that the
ranges of excited frequencies, where the non-trivial solutions exist, are distinct for different load resistances.
Figures 2, 3, 4 and 5 also show that the frequency response curves have the hardening characteristics. It has
a merit of increasing operating frequency range. In the case of the short circuit, Fig. 4 shows that as the load
resistance increases, the output voltage decreases. In the case of the open circuit, Fig. 5 shows that as the
load resistance increases, the output voltage increases and the frequency of peak voltage shifts toward larger
values of the excited frequency. Our results are consistent with the conclusion of the theoretical analysis and
the experimental verification presented by Daqaq et al. [40].

Figures 6, 7 and 8 show the amplitude response curves of the displacement and output voltage with
the variation of the frequency detuning parameter σ and the excitation amplitude δx . Figure 6 shows that
parametric resonances exist only when the excitation amplitude exceeds a certain threshold value. When the
excited amplitude δx exceeds the initiation threshold forσ = 0.0, a rapid amplitude growth is obtained. Figure 7
shows the amplitude response curves of σ = 1.2. When δx < δx A, only the trivial solution exists. Increasing
δx beyond point A, two stable solutions and one unstable solution coexist. The amplitude response curves have
multi-value solutions, resulting in a subcritical instability. Because the nonlinearity is the hardening type, the
subcritical instability exists only when the frequency detuning parameter σ is positive. Figure 8 shows that
when the frequency detuning parameter σ is negative, the initiation threshold highly increases and multi-value
solution does not exist.
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In the follows, we will study the effect of the load resistance and damping on the initiation threshold under
parametric excitation. Figures 9 and 10 show the effect of different damping on the initial threshold in the case
of the fixed load resistance. With the damping increasing, the initiation threshold highly increases. Figures 11
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Fig. 10 Variation of deflection and voltage with excited amplitude for different damping (open-circuit): a deflection; b voltage

and 12 show the effect of different load resistances on the initial threshold for the fixed damping coefficient
c̄ = 0.01. Figure 11 (the short circuit) shows that the initiation threshold increases with the increase in load
resistance. Figure 12 (the open circuit) shows that the initiation threshold decreases with the increase in load
resistance.

Parametric resonance converges to a zero steady-state response below the initiation threshold. With exci-
tation amplitudes increasing beyond this threshold barrier, it is able to ultimately obtain higher response
amplitude. Figures 9, 10, 11 and 12 show that this initiation threshold is relatively larger values, whereas the
ambient vibration available for energy harvester is usually very small. Accordingly, this initiation threshold
must be minimized in order to use the advantages of parametric resonance in practical application.

In the case of parametric excitation, why is there an initial threshold for parametric resonance? A reason-
able explanation of this behavior can be obtained from the state of the beam deformation. In this paper, the
horizontal base excitation along the axis of the beam is converted into the parametric excitation. For parametric
excitation, the vertical base excitation is equal to zero. The beam is only subjected to horizontal base excitation.
When parametric excited amplitude δx is very small, the beam is subjected to axial inertia force, the bending
deformation of the beam is equal to zero, and hence no electrical energy is harvested. When parametric excited
amplitude δx exceeds a critical value, the beam occurs the elastic buckling and the bending deformation in
the axial inertia force. The beam bending deformation increases rapidly with parametric excited amplitude
increasing and the harvesting power can be raised dramatically.

Buckling is a phenomenon that is generally avoided through special design modifications, but some new
applications consider such behavior to be favorable. Recent studies of buckling and postbuckling have tried to
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transform this effect from a negative into a positive. Hu and Burgueño [56] indicated that the buckling can be
applied to energy harvesting system and explained why the buckling responses have certain advantages in the
design of energy harvesters. In practical application, the bending deformation of the beam, which is caused by
the buckling, should be constrained in a certain range to prevent the damage of the beam.

To further study the characteristics of parametric excitation, we plot variation of the output voltage and
power with the load resistance for a given excited frequency in two cases of short circuit and open circuit.
In the case of the short circuit, Fig. 13 clearly shows that as the load resistance increases, the output voltage
and output power increase initially and reach a maximum at an optimal load resistance, then decreases again
as the load resistance increases beyond the optimal value. In the case of the open circuit, Fig. 14 shows that
the output voltage continues to increase and trends to stable as load resistance increases, and variation of the
output power has the same trend of the short-circuit condition. In the open-circuit condition, our conclusion is
consistent with Daqaq et al. [40]. For the short-circuit condition, Daqaq et al. [40] have not given the related
results.

4.2 Combination of parametric and direct excitations

In this section, we will demonstrate that the frequency response curves of combination of parametric and
direct excitations have the special dynamic characteristics compared with parametric excitation. Figures 15,
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16, 17 and 18 show the frequency response curves under combination of parametric and direct excitations for
different δx , δy and RL. Figures 15 and 16 show the frequency response curves of the displacement and output
power for different parameters δx when δy = 0.0055, 0.00275, RL = 500k� and c̄ = 0.01. Figures 17 and 18
show the frequency response curves of the displacement and output power for different parameters δx when
δy = 0.0055, 0.00275, RL = 500� and c̄ = 0.01. Figures 15, 16, 17 and 18 show that although parameter δx
is below the initiation threshold, the displacement and output power increase with the parameter δx increasing.
This is because the direct excitation (δy �= 0) pushes the system out of axial stable equilibrium and results in
an initial nonzero bending deformation. Figures 15 and 17 also show that when the excited amplitude is small,
there do not exist the hardening behavior, multi-value solutions and unstable solution. Figures 16 and 18 show
that when the excited amplitude is larger, there exit the hardening behavior, multi-value solutions and unstable
solution. The operating bandwidths of the energy harvester are widened.

Figures 15, 16, 17 and 18 demonstrate that a nonzero initial displacement to push the system out of axial
deformation can overcome the limitation of initiation threshold for parametric excited system. The advantages
of parametric resonance can be fully played. Therefore, the combination of direct and parametric excitations,
which compensates and complements each other, can be used as an ideal solution for improving the performance
of the vibration energy harvester.

In order to further investigate the characteristics of combination of parametric and direct excitations, we
plot variation of the output voltage and power with the load resistance for a given excited frequency. Figures 19
and 20 show that in the two cases of the short circuit and the open circuit, the output voltage continues to
increase and trends to stable as the load resistance increasing, and the output power increases initially, exhibits
a maximum at an optimal load resistance and drops again beyond the optimal value. Figures 21 and 22 show the
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Fig. 17 The amplitude–frequency response curves for different δx (short-circuit, δy = 0.00275): a deflection; b voltage

varying curves of output voltage and power with the load resistance increasing in the two cases of short-circuit
and open-circuit conditions. We observe that for the different parametric excited amplitudes, the amplitudes
of output voltage and power increase significantly with the increase in the amplitude of parametric excitation
and there is an optimal load resistance for output power.
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5 Conclusions

The nonlinear performance of parametrically and directly excited energy harvesters, which includes geometric,
inertia and electromechanical coupling nonlinearities, is studied. Using the Galerkin method, the electrome-
chanical couplingMathieu–Duffing equations are developed. Based on themethod ofmultiple scales, analytical
expressions of the frequency response curves are presented when the first bending mode of the beam plays a
dominant role. Some analytical results are obtained, which reveal the influence of different parameters, such
as the damping, load resistance and excited amplitude, on the performance of the energy harvesters.

For parametric excitation, the mechanical damping and the load resistance affect the initiation threshold of
parametric excited energy harvesting system. With the damping increasing, the initiation threshold increases.
In the case of the short circuit, the initiation threshold increases with the increase in load resistance. In the case
of the open circuit, the initiation threshold decreases with the increase in load resistance.

We discover that for parametric excitation and combination of parametric and direct excitations, with the
increase in load resistance, output power increases initially, exhibits a maximum at an optimal load resistance
and drops again beyond the optimal value.

Our studies also demonstrate that the bending deformation generated by direct excitation pushes the system
out of axial deformation and overcomes the limitation of initial threshold of parametric excitation system. In
the case of combination of parametric and direct excitations, the amplitudes of output voltage and power
increase significantly with the increase in the parametric excited amplitude. Therefore, the combination of
parametric and direct excitations to compensate and complement each other can be served as a better solution
that enhances performance of energy harvesters.
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Appendix A

The coefficients defined in Eqs. (9) and (10) are given as:
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Appendix B

The coefficients defined in Eqs. (26)–(31) are as following:

c1 = ĉ + ᾱ2 ζ̂ ημ

2(μ2 + ω̄2)
, c2 = ᾱ2 χζ̂μ

8(ω̄2 + μ2)
+ ᾱ2 ημγ̂
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