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Abstract The paper is devoted to simply supported beams subjected to non-uniformly distributed loads.
Shapes of bisymmetrical cross sections of the beams are expressed by special functions. The analytical model
of the beams is formulated with consideration of the shear effect. A nonlinear hypothesis of deformation of a
planar cross section of beams is assumed. The bending moment and the shear transverse force are formulated.
Moreover, numerical-FEM models of the beams are developed. Deflections are calculated with the use of two
methods for an exemplary beam family. The results of the studies are presented in tables.
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1 Introduction

The problem of the shear effect occurring in homogeneous beams was described by Timoshenko in 1921.
This effect has been considered in studies of the structures in further decades, until to-day. Wang et al. [17]
presented a review of the theories that arose in the twentieth century with a view to explain the behaviour of
the beams and plates with consideration of the shear effect. The works dealing with this subject have been
supported only on the classical Euler–Bernoulli/Kirchhoff approach. Nevertheless, in deep beams and thick
plates the effect of transverse shear strains is so meaningful, that the classical way gives no correct results.
The authors proposed the shear deformation theories providing more accurate solutions.

Schardt [13] presented a general theory of thin-walled beam with open cross sections. The problem was
solved with the use of deformation functions describing the bending, torsion and distortion of the beams.
The differential equations derived based on the second-order generalized beam theory provided satisfactory
solutions considering the coupling effects between various mode- and load cases.

Hutchinson [4] considered the effects of shear deformation and rotary inertia on dynamic response of
slender beams. These effects are modelled by the shear coefficients included in the Timoshenko beam theory.
The author derived new formulae for these coefficients in the cases of various beam cross sections. Song et
al. [16] dealt with analytical solutions of the static behaviour of an anisotropic composite I-beam subjected
to a force applied to its free end. They used the theory of composite thin-walled beams considering two main
coupling mechanisms. The authors demonstrated the effects of directional structure of the composite material
and the transverse shear on static response of the beam. The thin-walled open-profile composite beams have
been analysed by Jung and Lee [5]. The effects of elastic coupling, wall thickness, transverse shear andwarping
have been considered, using theReissner’s energy functional to find the beam force–displacement relations. The
static results of the composite I-beams have been validated based on finite element computation. Sapoutzakis
and Mokos [12] developed a model of a plate stiffened by parallel beams, including the shear effect. The
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model takes into consideration the second-order effects. The plate is analysed based on Reissner’s theory. The
problem of nonlinearly coupled plate and beams is solved with the use of iterative numerical methods. Several
numerical examples of significant practical meaning are presented in the paper. Reddy [11] used the Eringen’s
and von Kármán’s differential constitutive relationships of nonlinear strains in order to rewrite the theories
of classical and shear deformation of beams and plates. The author derived the equations of equilibrium and
developed a finite element model. The theoretical approach proposed in the paper enabled to obtain the finite
element results and evaluate the effect of the geometric nonlinearity on the bending of beams and plates. Shi
and Voyiadjis [14] presented a new beam theory using the sixth-order differential equilibrium equations with
a view to analyse the shear deformable beams. Three classical beam bending problems have been solved with
the use of the proposed theory, showing good agreement with the elasticity solutions, as opposed to the fourth-
order Timoshenko beam theory giving worse results. Blaauwendraad [2] evaluated accuracy and applicability
of the Haringx’s and Engesser’s theories for buckling prediction of structures. It turned out that the Engesser
hypothesis gives larger critical buckling load and better predicts the sandwich behaviour, than the Haringx
hypothesis. In conclusion, the Haringx’s approach should be avoided and, instead, the Engesser hypothesis
is recommended in examining the stability of the structural members. Kim [6] developed a shear deformable
beam element designed for analysis of thin-walled composite I-beams with doubly- and mono-symmetric
cross sections. The equations and force–displacement relationships are formulated based on the principle
of minimum total potential energy. The stiffness matrix of the element is formulated with consideration of
the force–displacement relations. Accuracy and the effectiveness of the new beam element is estimated with
the use of the ABAQUS shell elements and based on the solutions achieved by other researchers. Shi and
Wang [15] made attempts to improve the third-order shear deformation theories of isotropic plates. The authors
demonstrated that the proper displacement field should be consistent with the transverse shear strain energy,
apart from the conditions on plate surfaces. This condition imposed on the assumed displacement fields agrees
with Love’s criterion related to the strain energy, taking into account the transverse shear strain energy. The
paper indicates that the various displacement fields using simple third-order shear deformations are identical,
provided that consistence of the transverse shear strain energy is enforced. Rajagopal and Hodges [10] used
the variational asymptotic method (VAM) in order to develop a beam theory considering a cross section being
oblique to the beam reference line. Such a theory is more suitable for aeroelastic analysis of structures, enabling
to find the 3D elasticity solutions of solid, prismatic, and cylindrical beams made of homogeneous, isotropic
material. Greim et al. [3] proposed an original finite element suitable for modelling of the beams of more
complex geometry. The new degrees of freedom of the element allow to consider the unit deflection shape
at each node, thus enabling to avoid the use of volume elements that would be necessary to reflect the beam
behaviour. Transformation of the unknowns reduces the number of the degrees of freedom and allows to solve
the problem based on a 2D finite element mesh. Adámek [1] provided a discussion on possible application
of classical Timoshenko beam theory, supplemented by the shear coefficient, to the problems of three-layered
elastic beams of symmetrical structure. The research included three common types of the beams: a beam
composed of two thick and stiff faces joint with a thin soft core, a soft-core sandwich beam and a sandwich
beam with a core stiffer than the faces. It was demonstrated that the theory gives accurate results in the above
cases; however in case of the soft-core sandwiches, the results are questionable. Magnucki and Lewinski [7]
focused on an analytical model of an I-beam based on the sandwich beam theory, with consideration of the
shear effect. A nonlinear hypothesis of the deformation of the beam cross section allowed to determine the
beam displacements and strains. The principle of stationarity of the total potential energy served as a basis
for formulation of the governing differential equations of the beam. The analytical solution was positively
verified by FEM numerical computation. Magnucki et al. [8] dealt with the problem of the bending and free
vibration of porous beams, taking into account the shear effect. Mechanical properties of the beam varied
in the thickness direction, remaining symmetrical with respect to the neutral axis. Variability of the material
properties was controlled by a specific function allowing to model the homogeneous, nonlinear variable and
sandwich structures. The analytical results were verified by similar FEM models. Magnucki [9] considered
symmetrical simply supported sandwich beams and I-beams subjected to three-point bending or uniformly
distributed load. The principle of stationarity of the total potential energy allowed to formulate the differential
equations of the beam equilibrium. The system of the above-mentioned equations was solved for exemplary
beams taking into account the shear effect. The subject of the study are simply supported beams of length L
with bisymmetrical cross section carrying the non-uniformly distributed load (Fig. 1). The beam is situated in
the Cartesian coordinate system xyz.
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Fig. 1 Scheme of the beam with the non-uniformly distributed load

The intensity of the non-uniformly distributed load is formulated in the following form

q (x) = kF
2 tanh (kF/2)

1

cosh2
[
kF

(
ξ − 1

2

)]
F

L
, (1)

where kF—dimensionless parameter, ξ = x/L—dimensionless coordinate (0 ≤ ξ ≤ 1).
The total transverse load

F = L

1∫

0

q (ξ)dξ. (2)

The examples of various load distributions corresponding to selected kF values are shown in Fig. 4.
What distinguishes the present paper as compared to the works of other authors lies in generalization of

the beam load distribution, achieved by means of a function developed for this purpose. Moreover, the novelty
of the presented approach consists in formulation of an original analytical function allowing for free shaping
of the beam cross section.

2 Analytical model and calculations

The bisymmetrical cross section of depth h and maximum width b of the considered beams is shown in Fig. 2.
The width of the cross section symmetrically varies in the depth direction as follows

b (y) = b fb (η) , (3)

where fb (η) = β0 + (1 − β0)
(
6η2 − 32η6

)kc—dimensionless function, β0 = b0
b —parameter,

η = y
h—dimensionless coordinate (− 1

2 ≤ η ≤ 1
2 ), kc—exponent (real number).

Values of the parameter β0 and kc exponent are decisive for the shape of the cross section (Fig. 2) and are
assumed for selected exemplary beam cross sections.

A planar cross section (a straight normal line) before the bending is deformed into a curve after bending
of the beam (Fig. 3).

Based on the above scheme, the hypothesis of the displacement in the x-direction is formulated in the
following form

u (x, y) = −h

[
η
dv

dx
− fd (η)ψ (x)

]
, (4)

where fd (η) = 1
1−β

[
1 − β

(
3η − 4η3

)ks
] (

3η − 4η3
)
, ψ (x) = u1(x)

h —dimensionless functions,

β = 1
1+ks

—parameter, ks—even exponent (ks = 2, 4, . . .), v(x)—deflection.

The ks value is calculated based on maximization of the shear effect of the bent beam (14).
This polynomial hypothesis is similar to the trigonometric hypothesis presented byMagnucki et al. [8] and

Magnucki [9].
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Fig. 2 Scheme of a bisymmetrical cross section of the beams

The strains

εx (x, y) = ∂u

∂x
= −h

[
η
d2v

dx2
− fd (η)

dψ

dx

]
, γxy (x, y) = ∂u

∂y
+ dv

dx
= d fd

dη
ψ (x) , (5)

where
d fd
dη

= 3

1 − β

[
1 − (

3η − 4η3
)ks] (

1 − 4η2
)
.

Taking into account the Hooke’s law, the bending moment and transverse shear force take the following form

Mb (x) = E
∫

A

yεx (x, y) dA, T (x) = E

2 (1 + ν)

∫

A

γxy (x, y)dA. (6)

Substitution of the expressions (5) into these equations and simple transformation provide

J̃z
d2v

dx2
− Cvψ

dψ

dx
= −Mb (x)

Ebh3
, (7)

ψ (x) = 2
1 + ν

Cψ

T (x)

Ebh
, (8)

where J̃z =
1/2∫

−1/2
η2 fb (η)dη—dimensionless inertiamoment of the cross section,Cvψ =

1/2∫

−1/2
η fb (η) fd (η) dη,

Cψ =
1/2∫

−1/2
fb (η)

d fd
dη dη—dimensionless coefficients.
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Fig. 3 Scheme of the deformed planar cross section after bending of the beam

Taking into account the intensity of the non-uniformly distributed load (1) and the basic relations for beams
q (x) = dT /dx , T (x) = dMb/dx , the transverse shear force and bending moment read:

T (x) = − 1

2 tanh (kF/2)
tanh

[
kF

(
ξ − 1

2

)]
F, (9)

Mb (x) = 1

2kF tanh (kF/2)
ln

cosh (kF/2)

cosh
[
kF

(
ξ − 1

2

)] FL . (10)

Equation (7), after integration and substitution of the expression (8), takes the following form

J̃z
dv

dx
= C1 + 2 (1 + ν)

Cvψ

Cψ

T (x)

Ebh
− 1

Ebh3

∫
Mb (x)dx . (11)

The condition dv/dx |L/2 = 0 provides the following expression for the integration constant C1

C1 = J1
2kF tanh (kF/2)

Fλ2

Ebh
, (12)

where J1 =
1/2∫

0
ln cosh(kF/2)

cosh
[
kF

(
ξ− 1

2

)]dξ, λ = L
h—relative length of the beam.

Integration of Eq. (11) gives

J̃zv (x) = C2 + C1x + 2 (1 + ν)
Cvψ

Cψ

Mb (x)

Ebh
− 1

Ebh3

∫ ∫
Mb (x)dx2. (13)
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Fig. 4 Scheme of the non-uniformly distributed load, the expression (1)

Fig. 5 Cross sections of the beam family

The condition v (0) = 0 zeroes the integration constant C2 (C2 = 0). Therefore, the maximum relative
deflection of the beam reads

ṽ
(Analyt)
max = v (L/2)

L
= ṽ

0(Analyt)
max

F

Ebh
, (14)

where ṽ
0(Analyt)
max = Cv0

{
1 + Cvs

λ2

}
λ2

J̃z
—dimensionless coefficient of the maximum deflection,

Cv0 = J1−2J2
4kF tanh(kF/2)—deflection coefficient, J2 =

1/2∫

0

∫
ln cosh(kF/2)

cosh
[
kF

(
ξ− 1

2

)]dξ2,

Cvs = 4 1+ν
J1−2J2

ln [cosh (kF/2)]

{
max
ks

[
Cvψ

Cψ

]}
—shear coefficient.

Exemplary calculations of the dimensionless coefficient of maximum deflection ṽ
0(Analyt)
max , the deflection

coefficient Cv0 and the shear coefficient Cvs are carried out for a beam family with selected bisymmetrical
cross sections. The following data are assumed: the main dimensions of the cross sections h = 100mm,
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b = 50mm, the material constants E = 200GPa, ν = 0.3 and the values of dimensionless parameter of the
non-uniformly distributed load kF = 1, 3, 5. The patterns of the distributed load are shown in Fig. 4.

The minimum value of the relative length λ = 8 is assumed. In case of smaller λ values, the structure
cannot be considered as a beam and becomes a 3D problem of the elasticity theory.

The shapes of the cross sections are shown in Fig. 5.

Example 1 The shape of the cross section CS-1 (Fig. 5) corresponds to the values of the parameter β0 = 0.5
and exponent kc = 1. The results of the calculations are specified in Tables 1, 2 and 3.

The exponent of the function (4) after maximization amounts to ks = 2.

The values of the deflection and shear coefficients: Cv0 = 0.013472, Cvs = 4.0679.
The values of the deflection and shear coefficients: Cv0 = 0.015873, Cvs = 4.1849.
The values of the deflection and shear coefficients: Cv0 = 0.017940, Cvs = 4.3210.

Example 2 The shape of the cross section CS-2 (Fig. 5) corresponds to the values of the parameter β0 = 0.2
and exponent kc = 5. The results of the calculations are specified in Tables 4, 5 and 6.

Table 1 Values of dimensionless coefficient of the maximum deflection for kF = 1 (1)

λ 8 12 16 20

ṽ
0(Analyt)
max 12.698 27.622 48.515 75.378

Table 2 Values of dimensionless coefficient of the maximum deflection for kF = 3 (1)

λ 8 12 16 20

ṽ
0(Analyt)
max 14.985 32.567 57.182 88.830

Table 3 Values of dimensionless coefficient of the maximum deflection for kF = 5 (1)

λ 8 12 16 20

ṽ
0(Analyt)
max 16.971 36.843 64.663 100.433

Table 4 Values of dimensionless coefficient of the maximum deflection for kF = 1 (1)

λ 8 12 16 20

ṽ
0(Analyt)
max 20.899 44.589 77.755 120.397

Table 5 Values of dimensionless coefficient of the maximum deflection for kF = 3 (1)

λ 8 12 16 20

ṽ
0(Analyt)
max 24.678 52.597 91.671 141.908

Table 6 Values of dimensionless coefficient of the maximum deflection for kF = 5 (1)

λ 8 12 16 20

ṽ
0(Analyt)
max 27.989 59.534 103.696 160.477
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Maximization of the function (4) gives the exponent ks = 2.

The values of the deflection and shear coefficients: Cv0 = 0.013472, Cvs = 6.5732.
The values of the deflection and shear coefficients: Cv0 = 0.015873, Cvs = 6.7623.
The values of the deflection and shear coefficients: Cv0 = 0.017940, Cvs = 6.9822.

Example 3 The shape of the cross section CS-3 (Fig. 5) corresponds to the values of the parameter β0 = 0.09
and exponent kc = 8. The results of the calculations are specified in Tables 7, 8 and 9.

The exponent of the function (4) after maximization is equal to ks = 2.

The values of the deflection and shear coefficient: Cv0 = 0.013472, Cvs = 10.5561.
The values of the deflection and shear coefficients: Cv0 = 0.015873, Cvs = 10.8597.
The values of the deflection and shear coefficients: Cv0 = 0.017940, Cvs = 11.2129.
The value of the dimensionless parameter kF is decisive for the shape of the load distribution (1). This

function describes the loads from uniformly distributed (kF → 0, then Cv0 = 5/384) to concentrated force—
three-point bending (kF → ∞, then Cv0 = 1/48). The diagram of the deflection coefficient Cv0 (kF ) being a
function of the dimensionless parameter kF is shown in Fig. 6.

Table 7 Values of dimensionless coefficient of the maximum deflection for kF = 1 (1)

λ 8 12 16 20

ṽ
0(Analyt)
max 29.213 60.559 104.444 160.867

Table 8 Values of dimensionless coefficient of the maximum deflection for kF = 3 (1)

λ 8 12 16 20

ṽ
0(Analyt)
max 34.557 71.487 123.188 189.662

Table 9 Values of dimensionless coefficient of the maximum deflection for kF = 5 (1)

λ 8 12 16 20

ṽ
0(Analyt)
max 39.242 80.981 139.416 214.547

Fig. 6 Diagram of the deflection coefficient Cv0 (kF )
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Fig. 7 Model of the exemplary beam and a part of its finite element mesh

3 Numerical-FEM models and calculations

The above results have been verified by numerical calculation performed with the use of finite element method.
For purposes of the calculation, the dimensions h = 100mm and b = 50mm of the beam cross section have
been assumed. Due to the symmetry, the FEM model included a quarter of the whole beam, i.e. a half of its
length and width. In consequence, appropriate boundary conditions have been imposed.

The model and mesh of the exemplary beam is shown in Fig. 7. The origin of the coordinate system is
located in the beam middle. The longitudinal middle plane of the beam coincides with xy-plane and, as a
result, the z-displacements are blocked on it. Similarly, the x-displacements are blocked on the yz-plane, being
a central vertical plane of the beam symmetry. The beam end plane, located at L/2 distance from the origin of
the coordinate system, is supported and, therefore, the y-displacements are blocked on it. The load q is applied
to the upper surface of the beam.

Example of a part of the FEM mesh used for the computation is shown in Fig. 7. It is composed of 3D
tetrahedral finite elements with four Jacobian points. The element dimensions vary according to the particular
features of the beam cross-sectional shape.

In case of the shortest beam (λ = 8), the mesh is composed of nearly 424,000 nodes and 280,000 elements.

4 Comparative analysis of deflections of the beams

The tables below provide comparison of the analytical ṽ
0(Analyt)
max and FEM numerical ṽ

0(FEM)
max results for

subsequent beam cases.
The results for the cross section CS-1 (kc = 1 and β0 = 0.5) are shown in Tables 10, 11 and 12.
The differences between analytical and numerical results are below 1% in this case.
Tables 13, 14 and 15 include the results for the cross section CS-2 (kc = 5, β0 = 0.2).
Here the differences between analytical and numerical results do not exceed 1.3%.
In case of kc = 8 and β0 = 0.09 corresponding to the CS-3 cross section, the results are presented in

Tables 16, 17 and 18.
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Table 10 Comparison of maximum dimensionless deflections for kF = 1

λ 8 12 16 20

ṽ
0(Analyt)
max 12.698 27.622 48.515 75.378

ṽ
0(FEM)
max 12.583 27.510 48.398 75.250
% 0.9 0.4 0.2 0.2

Table 11 Comparison of maximum dimensionless deflections for kF = 3

λ 8 12 16 20

ṽ
0(Analyt)
max 14.985 32.567 57.182 88.830

ṽ
0(FEM)
max 14.845 32.427 57.047 88.688
% 0.9 0.4 0.2 0.2

Table 12 Comparison of maximum dimensionless deflections for kF = 5

λ 8 12 16 20

ṽ
0(Analyt)
max 16.971 36.843 64.663 100.433

ṽ
0(FEM)
max 16.813 36.677 64.500 100.250
% 0.9 0.5 0.3 0.2

Table 13 Comparison of maximum dimensionless deflections for kF = 1

λ 8 12 16 20

ṽ
0(Analyt)
max 20.899 44.589 77.755 120.397

ṽ
0(FEM)
max 20.625 44.323 77.484 120.125
% 1.3 0.6 0.3 0.2

Table 14 Comparison of maximum dimensionless deflections for kF = 3

λ 8 12 16 20

ṽ
0(Analyt)
max 24.678 52.597 91.671 141.908

ṽ
0(FEM)
max 24.359 52.271 91.328 141.563
% 1.3 0.6 0.4 0.2

Table 15 Comparison of maximum dimensionless deflections for kF = 5

λ 8 12 16 20

ṽ
0(Analyt)
max 27.989 59.534 103.696 160.477

ṽ
0(FEM)
max 27.641 59.146 103.281 160.063
% 1.3 0.7 0.4 0.3

Table 16 Comparison of maximum dimensionless deflections for kF = 1

λ 8 12 16 20

ṽ
0(Analyt)
max 29.213 60.559 104.444 160.867

ṽ
0(FEM)
max 28.703 59.583 103.906 160.313
% 1.8 1.6 0.5 0.3
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Table 17 Comparison of maximum dimensionless deflections for kF = 3

λ 8 12 16 20

ṽ
0(Analyt)
max 34.557 71.487 123.188 189.662

ṽ
0(FEM)
max 33.984 70.792 122.500 189.000
% 1.7 1.0 0.6 0.4

Table 18 Comparison of maximum dimensionless deflections for kF = 5

λ 8 12 16 20

ṽ
0(Analyt)
max 39.242 80.981 139.416 214.547

ṽ
0(FEM)
max 38.672 80.198 138.594 213.750
% 1.5 1.0 0.6 0.4

This case is distinguished by the largest discrepancy between both series of the results, nevertheless, not
exceeding 1.8%.

Good agreement between the analytical and FEM results confirms accurateness of the presented approach.
The assumed hypothesis of deformation of the beam cross section may be acknowledged to be successful.

The above tables allow to conclude that compliance of both series of the results is very good.

5 Final remarks

The proposed approach to solving the problem of bending of the beams involves formulation of two original
functions. One of them (1) allows to adjust characteristics of the load applied to the beam. According to the
integer kF value, the load varies from uniform load intensity (kF = 0) to the force concentrated in the beam
middle (three-point bending for kF → ∞). The area under the loading force chart remains unchanged, which
guarantees that total force is equal for any kF value.

The other function (3) controls the shape of the beam cross section. The cross section may take various
shapes according to β0 and kc values. These shapes change from rectangular profile up to typical I-beam. The
value of the shear coefficient Cvs increases for more slender shapes of the cross section, taking the highest
level for an I-beam.

Such a unified approach enables to consider the whole families of the beams subjected to various load
cases using the same formulae. The influence of the shear effect on the deflection of the bent beam decreases
with growing beam length (14).

The FEM (SolidWorks) models have been developed with a view to check advisability of the proposed
approach. Its correctness was satisfactorily verified and confirmed by the FEM computation.
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