
Arch Appl Mech (2019) 89:2089–2102
https://doi.org/10.1007/s00419-019-01565-6

ORIGINAL

Jian Xue · Yuefang Wang

Free vibration analysis of a flat stiffened plate with side
crack through the Ritz method

Received: 4 December 2018 / Accepted: 18 May 2019 / Published online: 24 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract The free vibration of a flat plate with a side crack of Mode I fracture, reinforced by one stiffener
parallel to the edges of the plate, is studied in this paper. Based on the classical theories of plate and beam, the
plate and its stiffener are modeled separately and jointed by implementing the condition for compatibility of
displacement. To describe the singularity in stress at the tip of the crack and the discontinuity in displacement
across the crack, a set of functions are introduced and incorporated into the admissible functions of the
displacement. The effects of location, length and orientation of side cracks on the vibration frequencies and
mode shapes of the stiffened plate are demonstrated through the Ritz method with the special admissible
functions. The natural frequencies of the intact and cracked stiffened plates with different stiffener locations
are analyzed with two typical boundary conditions, i.e., SSSS and FSFS. The accuracy of the present solutions
is verified through a convergence test. The solutions are compared with the finite element results as well.
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1 Introduction

Stiffened plates have been extensively used in engineering practices to provide enhanced stiffness and stability
to structural systems with the extra advantage of light weight. The vibration of stiffened plates has been
investigated through various analytical and numerical techniques. Two types of models were adopted for
stiffened plates in the early literature as Mukherjee and Mukhopadhyay summarized in their review papers:
One is the orthotropic model with which the plate is treated as an equivalent orthotropic plate considering
the contribution of the stiffener [1], and the other is the grillage approximation with which the stiffener is
considered as a grid attached to the plate [2]. There are numerous researches that focus on bending, buckling
and vibration of flat plate [3–8]. Furthermore, different approaches have been proposed to model the behavior
of plates and, among others, the Ritz method has been successfully used, showing adequate accuracy and
computational efficiency [9]. Recently, a mixed modeling was proposed to create separately the models of
the plate and its stiffening beam. Afterward, a complete model is formed to incorporate the displacements of
the plate and the stiffener through the condition for compatibility of displacement. With this approach, the
vibration of stiffened plates can be analyzed numerically through the Ritz method [10,11], the finite difference
method [12], the finite element method [13–16], the differential quadrature method [17] and the meshless
method [18,19], among others.
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A stiffened structure may be ceaselessly subjected to large irregular load or cyclic load and finally lead to
fatigue damage. Cracks are one of the most common types of damage in these structures. The existence of a
crack in a stiffened plate can introduce a local flexibility and reduces the structural stiffness that may affect
the structural vibrational characteristics, such as natural frequencies, mode shapes and modal strain energy
[20,21], and can eventually lead to an unexpected failure of the structure. To understand the mechanism of
how the structural stiffness is weakened, the presence of crack in an intact stiffened plate must be taken into
consideration. Previous efforts have been made concerning how the damage caused by cracks affects the
vibration of panels. Qian et al. [22] devised a finite element model for vibration of cracked plates. M. Bachene
et al. [23] adopted the extended finite element method (X-FEM) to analyze vibrations of cracked plates. Chen
et al. [24] studied the nonlinear vibration of thin plate with an all-over breathing crack based on a piecewise
model.

Yuan and Dickinson [25] used the domain decomposition method to study the vibration of a thin, simply
supported rectangular plate with a side crack. The same method was adopted by Yuan and Young [26] in
their investigation of vibration of a completely free annular plate with side and internal cracks. A similar
method was used by Liew et al. for vibration of cracked rectangular plates [27]. The cracked domain in the
plate was divided into smaller subdomains to establish a discrete model with the appropriate shape functions
of displacement that satisfied the boundary conditions of displacement. The eigenvalues of vibration were
obtained considering free and simply supported boundary conditions for all edges. In the majority of these
approaches, the Ritz method was applied with admissible functions to express properly the displacement field
and the boundary conditions of the stiffened plate and the structural defection due to the cracks. Leissa and
Huang [28] proposed a set of modal functions of algebraic polynomial and corner functions as the admissible
functions for free vibration of a rectangular plate with a side crack. Huang [29,30] extended the method to
investigate the vibration of rectangular Mindlin plates and Reddy plates with functionally graded material.

For the problem of stability of cracked stiffened plates Dang and Kapania [31] analyzed buckling of a
cracked, stiffened panel via the Ritz method adopting locally distributed trigonometric series as the admissible
function of displacement. Milazzo and Oliveri [32] presented a PB-2 Rayleigh–Ritz variational approach to
determine the post-buckling behavior of cracked composite plates. Cracks were modeled using the subdomain
decomposition of the plate displacement coupled with penalty techniques to augment the variational statement
with the needed continuity conditions along the connected subdomains edges. Their study was extended to the
buckling and post-buckling analyses of stiffened composite panels [33].

The objective of this paper is to investigate the free vibration of a reinforced plate considering the effect
of stiffener location and key parameters of a side crack. Based on the classical theories of plate and beam,
the strain energy and kinetic energy for a flat plate and a stiffener are expressed separately and are combined
through implementing the compatibility conditions for displacements of the plate and the stiffener. The modal
displacement is approximated with two sets of functions: one is the orthogonal polynomials for the intact
stiffened plate, and the other is the corner function to describe the singularity in stress at the crack tip as well
as the discontinuity in displacement and slope across the crack. Natural frequencies and modes are obtained
from the eigenvalue problem derived through the Ritz method considering two typical boundary conditions.
The first condition is simply supported on all edges (SSSS), and the second condition is two simply supported
edges and two free edges (FSFS). The accuracy and performance in convergence of the present approach are
tested with example. The results are compared with finite element solutions.

2 Problem formulation

2.1 The cracked stiffened plate

Consider a flat, square plate with the geometry and dimension shown in Fig. 1. The plate is reinforced by a
horizontally or a vertically placed stiffener. A side crack is considered to start from an arbitrary position on the
edge x = a. It is assumed that the plate and the stiffeners are both damaged by the same through-the-thickness
crack of Mode I that may penetrate the stiffener as it propagates along the dashed line.

Based on the classical theory of plate, the strain energy and kinetic energy in the modal space for the plate
are
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Fig. 1 Geometry and dimensions of a cracked, stiffened flat plate

Tp = −ω2ρh

2

∫ ∫
Ω

W 2dxdy, (1)

respectively, where W = W (x, y) is the transverse modal displacement in the mid-plane of the plate. D =
Eh3/12 (1 − υ)2 is the flexural rigidity; E is Young’s modulus; υ is Poisson ratio; ω is the natural frequency;
h is the thickness of the plate, ρ is the mass density of material. The stiffener is modeled as a beam for its
cross-sectional dimensions are usually small compared to its length. It is also assumed that the stiffener is
firmly attached to the middle surface of the plate, and the elastic strain in the z-direction is negligible following
the classic theory of beam.

The compatibility condition for the displacements is used to integrate the plate and the stiffener into a
single structural system. For instance, the displacement of the vertical stiffener is expressed as a function of
the plate displacementW (x = xs, y), where xs denotes the location of stiffener in the x direction. In this case,
the strain and kinetic energy of the stiffener are dependent only on the y coordinate. The potential energy and
kinetic energy of the vertical stiffener in the modal space can be obtained

Usy = 1

2
E I

∫ l

0

[
∂2

∂y2
W (xs, y)

]2
dy,

Tsy = −1

2
ω2ρbshs

∫ l

0
W 2 (xs, y) dy, (2)

where E I = Ebsh3s/12 is the bending stiffness; bs and hs are the width and thickness of the stiffener,
respectively. In a similar fashion, the strain energy and the kinetic energy of all of the horizontal stiffeners are
expressed as

Usx = 1

2
E I

∫ l

0

[
∂2

∂x2
W (x, ys)

]2
dy,

Tsx = −1

2
ω2ρbshs

∫ l

0
W 2 (x, ys) dy. (3)

The total energy of the stiffened plate in free vibration is

� = Up +Usy +Usx + Tp + Tsy + Tsx . (4)

Substitution of Eqs. (1) through (3) into Eq. (4) leads to

� = D
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+ E I

2
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2

[∫ ∫
Ω
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∫ l

0
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∫ l

0
W 2 (x, ys) bshsdx

]
. (5)

Two typical boundary conditions are considered in the present study: SSSS with which all of the four edges
are simply supported and FSFS with which two opposite edges are simply supported and the rest two are free.

2.2 Modal problem of the cracked stiffened plate

The Ritz method is applied to obtain the vibration characteristics of the cracked stiffened plate. The key
step is to create a field of displacement considering the existence of crack in the stiffened plate and the
prescribed boundary conditions. For the free vibration of the stiffened plate, the modal displacement function
is approximated through

W (x, y) = Wp(x, y) + Wc(x, y), (6)

where Wp(x, y) stands for a series of complete, orthogonal polynomials with an infinite number of terms
included. In this study, Wp(x, y) is selected as

Wp(x, y) =
I∑

i=1

J∑
j=1

Ai j Xi (x)Y j (y), (7)

where Xi (x) and Y j (y) are orthogonal polynomials that satisfy boundary conditions, both generated through
the Gram–Schmidt orthogonalization [34].

For intact plates the smooth function of Wp (x, y) is able to converge to the true displacement field when
both I and J approach infinity. For a cracked stiffened plate the singularity in stress at the tip of the crack as
well as the discontinuity in displacement and rotation across the crack should be taken into account. In the
present study, a supplemental polynomialWc (x, y) is adopted to describe the effect of the crack, which reads

Wc(x, y) = g(x, y)Wc(r, θ), (8)

where g(x, y) is attached to ensure that the base functions satisfy the essential boundary conditions of the
plate. To satisfy the SSSS boundary condition g(x, y) = x(x − a)y(y − b) is used for the out-of-plane
displacement in Eq. (8). For the FSFS condition one may choose g(x, y) = y(y − b). Wc(r, θ) is called
corner function which was developed from the asymptotic solutions by Huang and Chang [18] for describing
the aforementioned singularity and discontinuity due to the crack, and can be expressed as

Wc(r, θ) =
(
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Bnlr
(2n−1)/2cos

2l + 1

2
θ +

N2∑
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n∑
l=0
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(2n−1)/2sin

2l + 1

2
θ

)
, (9)

where Bnl and Cnl are undetermined coefficients. In the polar coordinate system, (r, θ) originates at the tip of
the crack (see Fig. 2) with the assumption of −π ≤ θ ≤ π . The stiffened plate can be partitioned into four
subzones and the stiffener is considered broken into two parts once the crack grows long enough to reach it, as
shown in Fig. 2. The plate is divided by the extension of the crack and the dashed lines parallel to the y axis.
Let the length of the crack be d , the originating position of the crack be c. Assume (x0, y0) is the Cartesian
coordinates of P , α is the orientation angle of the crack. One has

r =
√

(x − x0)2 + (y − y0)2, (10)

θ = arctan
y − y0
x − x0

− α for subzones I and II,

θ = arctan
y − y0
x − x0

+ π − α for subzone III, (11)

θ = arctan
y − y0
x − x0

− π − α for subzone IV, (11)
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Fig. 2 Partition of the side-cracked stiffened plate

where x0 = a − d cosα, y0 = c − d cosα.
In the Cartesian coordinate system, the crack and its extension can be expressed through the function

y = c − a tanα + x tanα. (12)

The intersection of the vertical stiffener and the crack extension line is (xs, yc = c− a tanα + xs tanα). In the
case of x0 ≥ xs , the crack does not reach the vertical stiffener, i.e., the stiffener is located at subzones I and II.
The expression of θ in the displacement function of the stiffener can be written as

θ = arctan
y − y0
xs − x0

− α 0 ≤ y ≤ b. (13)

Then, the crack function of displacement function for the vertical stiffener can be expressed as
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(14)

As x0 ≥ xs , the vertical stiffener is penetrated by the crack, which means the stiffener is located at subzones
III and IV. The expression of θ in the displacement function of the stiffener is a piecewise function in the y
direction

θ =
⎧⎨
⎩
arctan y−y0

x−x0
− π − α, 0 ≤ y ≤ yc |x=xs

arctan y−y0
x−x0

+ π − α, yc |x=xs≤ y ≤ b
(15)

Thus, the crack function of displacement function for the vertical stiffener in the range of 0 ≤ y ≤ yc |x=xs is
in the form of
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As yc |x=xs≤ y ≤ b, the crack function of the vertical stiffener can be expressed as
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The undetermined coefficients Ai j , Bnl and Cnl in Eqs. (7) and (9) are assembled into vector q =(
q1, q2, . . . , qN̄

)T for convenience of presentation, where N̄ = I J + N (N + 3). The displacement func-
tion W (x, y) can be expressed as
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For simplicity of notation, N1 and N2 in Eq. (18) are set equal to N . Following the Ritz method, functional �
is minimized with respect to each qL , yielding

∂�

∂qL
= 0. (19)

which leads to the eigenvalue problem

Kq = ω2Mq. (20)

where the stiffness and mass matrices can be assembled using
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Table 1 Convergence of non-dimensional frequency ωa2
√

ρh/D for a simply supported square stiffened plate

Order of frequency No of corner function N I × J ABAQUS Relative difference (%)

8 × 8 9 × 9 10 × 10

1 0 23.51 23.50 23.50 23.43 −0.30
3 23.16 23.15 23.15
4 23.13 23.12 23.11
5 23.12 23.11 23.10
6 23.11 23.08 23.04 23.16 0.52

2 0 49.35 49.35 49.35 49.72 0.75
3 45.88 45.86 45.83
4 45.69 45.61 45.55
5 45.63 45.56 45.48
6 45.57 45.51 45.43 46.91 3.20

3 0 69.41 69.26 69.19 68.40 −1.15
3 66.60 66.56 66.45
4 66.40 66.37 66.20
5 66.27 66.20 66.13
6 66.12 66.06 65.97 66.41 0.66

4 0 78.95 78.95 78.95 79.86 1.14
3 74.01 73.94 73.93
4 73.86 73.81 73.76
5 73.80 73.74 73.69
6 73.74 73.72 73.69 74.90 1.62

5 0 95.44 95.38 95.37 95.19 −0.19
3 87.50 87.45 87.41
4 87.29 87.26 87.23
5 87.23 87.20 87.09
6 87.10 87.07 87.06 89.05 2.23

3 Convergence study

The natural vibration of a square plate reinforced by a horizontal stiffener is analyzed to verify the accuracy of
the present approach. The boundary condition of the plate is simply-supported for all four edges. The location
of the stiffener relative to the plate is ys = 0.5b. The ratios of the stiffener dimensions to the plate thickness
are hs/h = 5 and bs/h = 1, respectively . There is a side crack that is originated at c = 0.4b with the length
d = 0.4a. The angle between the crack and the horizontal edges of the plate is α = 15◦. The dimensions of
the plate a × b × h = 0.5 × 0.5 × 0.005 m, and the cross section of the stiffener is hs × bs = 0.025 × 0.005
m. The material properties are E = 210 GPa, ρ = 7.83 × 103 kg/m3 and υ = 0.3.

The natural frequencies are determined using Eq. (20) and are transferred to non-dimensional quantities
through being multiplied with a2

√
ρh/D. In Table 1, these frequencies were obtained using 8, 9 and 10

orthogonal polynomials in both x and y-directions in Eq. (7). For the corner function in Eq. (9), four choices
of N are presented in the summation of Wc (r, θ), where N = 0 represents the case of an intact plate free of
crack. From Table 1, it can be observed that the frequencies of all orders obtained with only Wp in Eq. (6)
converged to the corresponding solution of the intact plate, while those obtained with the full set of Wp and
Wc tended to converge to the exact solutions with increasing number of terms of polynomials. The results are
also compared with the shell finite element model using commercial software ABAQUS, where 42,000 shell
elements of type S4R were used to discretize the stiffener and the plate. It can be seen that the finite element
results are in good agreement with the solutions from the present approach. The maximum relative difference
of frequencies in all cases is 3.2%. The vibration modes of intact plate and cracked plate are also presented
and consistent with the results obtained by ABAQUS, as shown in Fig. 3.

4 Modal analyses for the cracked stiffened plate

In this section, the natural frequencies and modes of the previously presented plate are analyzed with various
settings of stiffener and side crack. Aside from the SSSS boundary, one more condition is added, i.e., two
simply supported opposite edges and two free edges (FSFS). Table 2 gives the first five non-dimensional
natural frequencies of the intact SSSS plate reinforced with a vertical stiffener placed at various locations.
It can be observed that the first three frequencies increase as the stiffener is placed closer and closer to the
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Mode nostiffened
plate

Method
1 2 3 4 5

Theory

intact

Abaqus

Theory

Cracked

Abaqus

Fig. 3 Modes of intact and cracked stiffened plate under SSSS boundary condition

Table 2 Non-dimensional frequency ωa2
√

ρh/D for a SSSS stiffened plate with a vertical stiffener

Location of stiffener xs/a Order of frequency

1 2 3 4 5

0.725 21.93 49.15 57.30 95.00 97.77
0.675 22.47 49.18 59.71 94.23 98.66
0.625 22.94 49.24 62.52 89.90 98.17
0.575 23.29 49.30 65.67 84.21 96.69
0.525 23.48 49.34 68.61 79.72 95.52
0.5 23.51 49.34 69.19 78.95 95.35

center line xs = 0.5a. The change in frequencies of orders 4 and 5 is different. Table 3 presents the first
five frequencies of the plate reinforced by one stiffener with a side crack of various lengths, orientations and
originations to examine how these key parameters affect the vibration of the plate. Only one stiffener, either
horizontal or vertical, is considered hereafter.

As expected, an increasing length of crack reduces the natural frequency of each order due to the decreasing
flexural stiffness of the plate. For the stiffened plate (reinforced by a horizontal or vertical stiffener) with a
short crack of d = 0.1a and various orientations, the first five frequencies are slightly reduced by less than
1% compared with those of the intact plate. By contrast, a larger horizontal crack with d = 0.5a will lead to
reductions in the first- and second-order frequencies by more than 3.6% and 14%, respectively, for the plate
reinforced by a vertical stiffener.

The fundamental frequency increases with an increasing orientation angle of the crack. The variations in
higher-order frequencies caused by the crack are more complicated.

For a center placed vertical stiffener, i.e., xs = 0.5a, a crack with a length ratio d/a = 0.5 will just
penetrate the stiffener in the plate. The first and the third frequencies are drastically reduced by 22.8% and
26.8%, respectively, as shown in Table 4. With the increasing crack length, the second frequency of the plate
changes little. It should be noted that the stiffener and the plate are cracked together when the crack reaches
the stiffener.
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Table 3 Non-dimensional frequency ωa2
√

ρh/D of a SSSS stiffened plate with a side crack

Stiffener c/b α d/a Order of frequency

1 2 3 4 5

Horizontal 0.4 0◦ 0 23.51 49.34 69.19 78.95 95.35
0.1 23.48 49.25 68.99 78.61 95.22

ys = 0.5b 0.2 23.44 49.15 68.76 78.29 94.95
0.3 23.30 48.59 67.96 76.72 93.24
0.4 23.03 46.83 65.42 74.11 87.97
0.5 22.63 42.88 61.19 72.36 82.61

15◦ 0.1 23.49 49.26 69.00 78.68 95.26
0.2 23.44 49.15 68.76 78.29 94.95
0.3 23.34 47.87 67.71 76.11 93.85
0.4 23.11 45.55 66.20 73.76 87.23
0.5 22.73 42.22 62.02 70.40 80.37

30◦ 0.1 23.53 49.27 69.07 78.71 95.38
0.2 23.47 48.85 68.44 77.43 94.93
0.3 23.42 48.21 67.79 76.31 93.28
0.4 23.31 46.35 65.85 73.79 85.02
0.5 23.13 44.29 62.82 68.39 77.16

Vertical 0.5 0◦ 0.1 23.49 49.16 69.16 78.86 94.61
0.2 23.41 48.67 68.92 78.51 93.85

xs = 0.5a 0.3 23.21 48.20 67.58 76.50 94.07
0.4 22.89 48.02 60.57 73.57 93.89
0.5 18.13 48.03 50.64 71.69 92.31

15◦ 0.1 23.49 49.18 69.08 78.73 94.68
0.2 23.41 48.70 68.82 78.37 93.81
0.3 23.25 48.19 67.40 76.52 93.79
0.4 22.96 47.76 61.62 73.85 93.62
0.5 22.25 47.63 53.64 71.95 92.91

Table 4 Non-dimensional frequency ωa2
√

ρh/D of a FSFS stiffened plate with side cracks

α Crack length Order of frequency

d/a 1 2 3 4 5

0◦ 0 13.17 16.14 37.73 46.74 46.84
0.1 12.97 15.88 37.64 44.38 46.79
0.2 12.54 15.57 37.58 36.35 46.77
0.3 12.02 15.38 37.50 27.09 46.77
0.4 11.60 15.31 37.28 20.87 46.76

15◦ 0.1 12.96 15.86 37.62 44.38 46.79
0.2 12.49 15.53 37.62 36.52 46.77
0.3 11.96 15.33 37.55 27.47 46.77
0.4 11.53 15.25 37.42 21.20 46.75

The first five frequencies for a FSFS stiffened plate reinforced by a vertical stiffener at xs = 0.5a are
presented inTable 4 considering a crackwith various lengths andorientations.Among them the fourth frequency
is reduced up to 55% in the case of d/a = 0.4 and α = 0◦, 15◦ compared with that of the intact plate. The fifth
frequency appears to be the least sensitive to the crack length with less than 0.5% reduction when the crack
length is raised to d/b = 0.5. It can be drawn from the above analysis that the frequencies of the stiffened plate
are affected both by the length and orientation of the crack. It is also observed that the natural frequencies of a
FSFS stiffened plate are more likely affected by the crack length than those of a SSSS stiffened plate (Table 3),
except for the third frequency.

The effects of crack configuration and stiffener distributions on the first-order frequency of SSSS stiffened
plate are investigated as well. With a fixed length of the crack d = 0.4a, the fundamental frequency of the
plate reinforced by a vertical stiffener is presented in Fig. 4 with different settings of crack origination and
orientation. Based on the results, the fundamental frequency is closely related to the crack orientation angle
α. It is also observed that the closer the crack tip is to the center line y = b/2, the smaller the fundamental
frequency will be. For the horizontal crack with the orientation of α = 0◦, the curve of the fundamental
frequency with various c/b is symmetrical to the center line y = b/2, due to the symmetry in both structural
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Fig. 4 Non-dimensional fundamental frequency ωa2
√

ρh/D of the stiffened plate (vertical stiffener at xs = 0.5a) with various
locations and orientations of crack d = 0.4

Fig. 5 Non-dimensional first-order natural frequencies ωa2
√

ρh/D of stiffened plates with various lengths of crack and stiffener
locations

geometry and boundary conditions. The flexural rigidity of the plate will be reduced to the maximum extent
as the structure is torn by the crack along y = b/2. In Fig. 4, the variations of the fundamental frequency for
two symmetrical orientations α = 15◦ and −15◦ show a mirror-like symmetry with respect to c/b = 0.5. It
is also worth pointing out that the minimum values of the fundamental frequency with α = 15◦ and −15◦ are
both smaller compared with that value with α = 0◦ given the same length of crack.

Next, the fundamental frequency of the plate reinforced by a vertical stiffener is presented in Fig. 5 with
various lengths of a horizontal crack that starts at c = 0.5b. For such a damaged plate, the fundamental
frequency decreases mildly with the growing crack and then drops drastically as soon as the crack breaks the
stiffener. In all situations the biggest reduction in frequency happens when the stiffener is placed the closest
to the origin of the crack, i.e., xs = 0.675a. With xs = 0.675a, the stiffener breaks once the crack grows
up to the threshold value, which is 0.325a. For a very long, penetrating crack (d = 0.5a), the fundamental
frequencies with different locations of stiffener are very close, the influence of the location of the stiffener on
the frequency of the cracked stiffened plate will be almost negligible as the crack breaks the stiffener in the
middle, as shown in Fig. 5.

Figure 6 presents the influences of the crack location c on the fundamental frequencywith different locations
of the stiffener. The length and orientation angle of the crack are d = 0.5a and α = 0◦, respectively. The
fundamental frequency decreases as the starting position of the crack is moved further from the upper and
lower edges of the plate. The greatest reduction in the fundamental frequency occurs when the crack grows
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Fig. 6 Non-dimensional first-order natural frequencies ωa2
√

ρh/D of stiffened plates with various locations of crack origination
and stiffener

Mode No.Boundary 
conditions 1 2 3 4

SSSS

FSFS

Fig. 7 Three-dimensional views for first four modes of cracked stiffened plate with crack parameters (d/a = 0.5, α = 15◦,
c = 0.5b, xs = 0.5a)

from the center line of the plate, i.e., y = b/2. Again, the location of the stiffener plays a role as the lowest
frequency always comes along with xs = 0.675a for each single choice of d = 0.5a.

In the above analysis, the changes in frequencies of stiffened plate are not sensitive to small crack, as
the crack length d/a ≤ 0.4. However, the effect of crack length, location and orientation can be specifically
reflected on the vibration modes of the stiffened plate. In Fig. 7, the three-dimensional views of the first four
modes of the cracked stiffened plate are shown. The discontinuities in the displacement and its slope across
the crack can be seen in each mode of the cracked plate under the boundary conditions of SSSS and FSFS.
Figure 8 depicts the first five modes of the intact stiffened plate along with the cracked stiffened plate with
side cracks at two different locations (c = 0.25b and 0.5b) and orientations (α = 0◦ and 15◦). Compared
with the modes of the intact stiffened plate, the contour lines in the modes of the cracked stiffened plates are
discontinuous or redistributed due to the existence of the cracks, especially for the high-order modes. In the
previous frequency analysis, the third-order natural frequency of cracked SSSS stiffened plate with vertical
stiffener have a significant reduction when the crack length d reaches 0.4a and the crack location c is 0.5b, as
shown in Table 3. Corresponding to the decrease in natural frequency, the third-order mode changed greatly by
the crack is completely different from the mode of intact plate, which can be seen in Fig. 8. Figure 9 presents
the modes of FSFS stiffened plate with a side crack of various lengths and orientation. Compare to the intact
plate, the fourth modes are changed dramatically by the crack with length d ≥ 0.2a, which corresponds to the
greatly reduced of fourth frequency as shown in Table 4.
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Mode no
Stiffener c/b

1 2 3 4 5

0 0

0.4
horizontal

0.4

0 0
vertical

0.5

0.25

0.5

Fig. 8 Modes of intact stiffened plates and cracked stiffened plates with crack length d/a = 0.4 under SSSS boundary condition

5 Conclusions

In this paper, the free vibration of a cracked stiffened cracked plate is investigated through the Ritz method
considering a displacement field expressed by a set of orthogonal polynomials and crack functions. The
plate and its stiffener are modeled separately and jointed by implementing the condition for compatibility of
displacement. With the present method, one can establish the model with a stiffened plate reinforced by a
stiffener at an arbitrary location and can appropriately describe the behavior of stress singularity at the tip of
the crack as well as the discontinuity in both displacement and slope across the crack. With the advantages of
the method, the coupling effect of the crack parameters (i.e., the length, location and orientation of the crack)
and stiffening locations on the natural frequency can be investigated. Furthermore, the situation of a fractured
stiffener by the crack can be analyzed. The changes in natural frequencies with the crack’s length and locations
before and after the stiffener breaks can be obtained, which has not been published for stiffened plates with
a side crack. The solutions of natural frequencies and modes agree well with those obtained with the finite
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Mode noStiffener d/a
1 2 3 4 5

0 0

0.2
vertical

0.4

0.5

Fig. 9 Modes of intact stiffened plates and cracked stiffened plates with crack location c/b = 0.5 under FSFS boundary condition

element software ABAQUS. Two typical boundary conditions, namely SSSS and FSFS, are considered. The
results from this paper are summarized as follows:

1. As the crack length increases, the stiffness of the plate decreases, and all the frequencies of the stiffened
plate decrease. The effects of crack location and orientation depend on the modes of stiffened plate under
the constraints of boundary conditions.

2. The fundamental frequency decreases mildly with the increase in crack length and then drops drastically
as soon as the crack breaks the stiffener. The effect of the location of the stiffener on the frequency of the
cracked stiffened plate will be almost negligible as the crack breaks the stiffener in the middle.

3. Compared to the influence of crack on natural frequency, themodes of crack stiffened plate can better reflect
the specific location and orientation of crack. The boundary condition of the stiffened plate determines the
configuration of the mode, and the mode determines the influence of the crack location and orientation on
the vibration characteristics of the plate.
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