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Abstract The main objective of the present paper is to study the temperature and thermal stress analysis of a
functionally graded rectangular plate with temperature-dependent thermophysical characteristics of materials
under convective heating. The nonlinear heat conduction equation is reduced to linear form using Kirchhoff’s
variable transformation. Analytic solution of the heat conduction equation is obtained in the transform domain
by developing an integral transform technique for convective-type boundary conditions. Goodier’s displace-
ment function and Boussinesq harmonic functions are used to obtain the displacement profile and its associated
thermal stresses. Amathematical model is prepared for functionally graded ceramic–metal-basedmaterial. The
results are illustrated numerically and depicted graphically for both thermosensitive and nonthermosensitive
functionally graded plate. During this study, one observed that notable variations are seen in the temperature
and stress profile, due to the variation in the material parameters.

Keywords Uncoupled thermoelasticity · Rectangular plate · Thermal stresses · FGM · Thermosensitive

1 Introduction

Functionally graded materials (FGMs) refer to the composite materials where the compositions or the
microstructures are locally varied so that a certain variation of the local material properties is achieved.
Determination of compositional gradient and the process of making an FGM are dependent on its intended
use. There are two main types of FGMs, i.e., continuous-graded materials and discontinuous-graded materi-
als. In the simplest FGMs, two different material ingredients change gradually from one to the other. In the
second type, the material ingredients change in a discontinuous way such as the stepwise gradation. Since the
concept developed in aeronautics field in 1984, FGMs are also a concern in the other fields such as industrial
materials, optoelectronics, biomaterials, and energymaterials. FGMs offer great promise in applications where
the operating conditions are severe. Potential applications include those structural and engineering uses that
require combinations of incompatible functions such as refractoriness or hardness with toughness or chemical
inertness with toughness. In the design and operation of these structural components, the numerical analysis
of the temperature distribution and temperature-induced stresses performed an outline of mathematical mod-
els that do not take into consideration the current temperature dependences of the thermal and mechanical
characteristics of layers and do not meet the necessities of latest engineering system. Hence, the analysis of
thermosensitivity is essential for the identification of the thermally stressed state of cylindrical structures made
from functionally graded materials.

Noda [1] described the current state of thermoelastic problems in materials with temperature-dependent
properties for analytical treatments. Popovych [2] derived a method for the solution of stationary problems for
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the heat conductivity of thermoelastic bodies. Lizarev [3] obtained an exact solution of the problem of dis-
placements and stresses in a polar-orthotropic annular plate of variable thickness. Popovych andMakhorkin [4]
illustrated themethods of constructing analytic numerical solutions of nonsteady heat-conduction problems for
thermosensitive bodies under convective heat transfer. Awaji et al. [5] presented a numerical technique for ana-
lyzing one-dimensional transient temperature and stress distributions in a functionally graded ceramic–metal-
based materials (FGMs). Tanigawa et al. [6] obtained solution for thermoelastic problems in nonhomogeneous
solids. Kushnir and Popovych [7] obtained the solutions for the cases of load-free circular washer, infinite
plate with circular hole, circular disk, and infinite plate, by reducing the problem of thermoelasticity for a thin
thermosensitive plate placed in a central symmetric temperature field by perturbation method to a recurrent
sequence of boundary-value problems for differential equations with constant coefficients. Popovych et al. [8]
constructed solution of the nonstationary problem of heat conduction for a thermosensitive hollow sphere in
the process of convective–radiant heat exchange. Kushnir and Popovych [9] briefly analyzed heat conduction
problems of different solids with thermally sensitive material properties under complex heat exchange. Lamba
et al. [10] studied the thermoelastic behavior of a hollow cylinder under heating and cooling process. Hadi
et al. [11] investigated the bending of rectangular plate made of FGM by using three-dimensional elasticity
theory. Popovych [12] examined the thermoelastic state of thermally sensitive solids under convective heat
transfer. Manthena et al. [13] studied the effects of stress resultants and plane stress, plane strain fields of a FG
rectangular plate with temperature-dependent material properties.

Ganczarski and Szubartowski [14] demonstrated the plane stress state of FGM thick plate under thermal
loading. Manthena et al. [15] determined the temperature distribution, displacement, and thermal stresses
of a rectangular plate with nonhomogeneous material properties by assuming the properties to vary in y
coordinate by simple power law.Mahapatra et al. [16] discussed the geometrically nonlinear thermomechanical
transverse deflection responses of the functionally graded curved structure under the influence of nonlinear
thermal field. Eisenberger and Elishakoff [17] presented a general methodology for solving buckling problems
for inhomogeneous columns. Kumar et al. [18] considered a thick circular plate with axisymmetric heat
supply and determined displacement components, stresses, conductive temperature, and temperature change.
Nikolić [19] studied the free vibrations of the nonuniform axially functionally graded cantilever beam with
a tip body. Rizov [20] studied delamination fracture in multilayered functionally graded, split cantilever
beams by taking into account the nonlinear behavior of the material. Manthena and Kedar [21] discussed the
thermal stresses of thermosensitive functionally graded thick hollow cylinder under unsteady distribution of
temperature.Manthena et al. [22,23] obtained the temperature profile and thermoelastic profile of a rectangular
plate due to nonhomogeneous material properties.

In this paper, the plane stress and plane strain field behavior of a functionally graded thermosensitive
rectangular plate occupying the space defined by 0 ≤ x ≤ a, 0 ≤ y ≤ b has been studied. All the material
properties except density are assumed to be isotropic and temperature and spatial variable dependent. The
transient heat conduction equation is solved by integral transformmethod. For theoretical treatment, all physical
and mechanical quantities are taken as dimensional, whereas for numerical computations, nondimensional
parameters have been considered.

2 Statement of the problem

2.1 Heat conduction equation

The unsteady state heat conduction equation with initial and boundary conditions in a rectangular plate is given
by

∂

∂x

(
k(x, T )

∂T

∂x

)
+ ∂

∂y

(
k(x, T )

∂T

∂y

)
= ρC(x, T )

∂T

∂t
(1)

T = T0, at t = 0

k(x, T ) ∂T
∂x − ε1(T − T0) = f (y, t), at x = 0

k(x, T ) ∂T
∂x + ε2(T − T0) = f (y, t), at x = a

k(x, T ) ∂T
∂y − ε1(T − T0) = 0, at y = 0

k(x, T ) ∂T
∂y + ε2(T − T0) = 0, at y = b

(2)
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where k(x, T ) and C(x, T ) are, respectively, thermal conductivity and calorific capacity of the material and
ρ is the density which is a constant. T0 is the temperature of the surrounding medium, and ε1, ε2 are the heat
transfer coefficients.

2.2 Thermoelastic equations

Let ux and uy be the displacement components in the in-plane directions of x and y. The strain–displacement
components, equilibrium equations of the forces and stress–strain components disregarding the body forces
are given by [6]

εxx = ∂ux
∂x

, εyy = ∂uy

∂y
, εxy = 1

2

(
∂ux
∂y

+ ∂uy

∂x

)
(3)

∂σxx

∂x
+ ∂σyx

∂y
= 0,

∂σxy

∂x
+ ∂σyy

∂y
= 0 (4)

σxx = 2

1 − ν(x, T )
G(x, T )[εxx + ν(x, T )εyy − (1 + ν(x, T ))α(x, T )T ],

σyy = 2
1−ν(x,T )

G(x, T )[ν(x, T )εxx + εyy − (1 + ν(x, T ))α(x, T )T ],
σxy = 2G(x, T )εxy

plane stress field (5)

σxx = 2
1−2ν(x,T )

G(x, T )[(1 − ν(x, T ))εxx + ν(x, T )εyy

−(1 + ν(x, T ))α(x, T )T ],
σyy = 2

1−2ν(x,T )
G(x, T )[ν(x, T )εxx + (1 − ν(x, T ))εyy

−(1 + ν(x, T ))α(x, T )T ],
σxy = 2G(x, T )εxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

plane strain field (6)

where G(x, T ), α(x, T ), ν(x, T ) are the shear modulus of elasticity, coefficient of linear thermal expansion
and Poisson’s ratio, respectively.

2.3 Plane stress field

Using Eqs. (3) and (5) in (4), the displacement equations of equilibrium in x and y directions are obtained as

2G(x, T )

1 − ν(x, T )

[
∂2ux
∂x2
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∂2uy
∂x∂y + ∂uy
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2.4 Plane strain field

Similarly, the equilibrium equations in terms of displacement components are obtained by using Eqs. (3) and
(6) into (4) as

2G(x, T )

1 − 2ν(x, T )

[
∂
∂x

[
(1 − ν(x, T )) ∂ux

∂x

]
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∂ux
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The solution of Eqs. (7) and (8) without body forces can be expressed by the Goodier’s thermoelastic
displacement potential φ and the Boussinesq harmonic functions ϕ and ψ as

ux = ∂φ

∂x
+ ∂ϕ

∂x
+ 2

∂ψ

∂y
(9)

uy = ∂φ

∂y
+ ∂ϕ

∂y
− 2

∂ψ

∂x
(10)

in which the three functions must satisfy the conditions

∇2φ = K (x, T )τ, ∇2ϕ = 0 and ∇2ψ = 0 (11)

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
, K (x, T ) = (1+ν(x,T ))

(1−ν(x,T ))
α(x, T ) is the restraint coefficient and τ = T − T0.

By using Eqs. (9) and (10) in Eqs. (5) and (6), the results for corresponding stress functions are obtained
as follows.

For plane stress field
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For plane strain field
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σxy = 2G(x, T )

{
∂2φ

∂x∂y
+ ∂2ϕ

∂x∂y
+ ∂2ψ

∂y2
− ∂2ψ

∂x2

}
(13)

The boundary condition on the traction-free surface stress functions is

σxx |x=0 = σxx |x=a = σyy
∣∣
y=0 = σyy

∣∣
y=b = 0 (14)

3 Solution of the problem

3.1 Heat conduction equation

Introducing Kirchhoff’s variable transformation following [2–4,7,9,12]

θ(T ) =
∫ T

T0

k(x, T )dT (15)

and taking into account that the material with simple thermal nonlinearity is considered, we obtain Eq. (1)
with variable θ as

∂2θ

∂x2
+ ∂2θ

∂y2
= 1

κ

∂θ

∂t
(16)

The initial and boundary conditions (2) become

θ = 0, at t = 0

∂θ
∂x − ε1θ = f (y, t), at x = 0

∂θ
∂x + ε2θ = f (y, t), at x = a

∂θ
∂y − ε1θ = 0, at y = 0

∂θ
∂y + ε2θ = 0, at y = b

(17)

Here, κ = k0/(C0 ρ0), in which k0,C0, and ρ0 are the reference values of thermal conductivity, calorific
capacity, and density, respectively.

For the sake of brevity, we consider f (y, t) = Q1δ(y − y0) sin h(ωt)
This represents a hyperbolically varying impulsive point heat of strength Q1 at the points (x = 0, y = y0)

and (x = a, y = y0).
Applying the transform defined in Eq. (A1—Appendix A) on Eq. (16) over the variable x , we obtain

− β2
n θ̄ + A3 f̄ (y, t) + ∂θ̄

∂y
= 1

κ

∂θ̄

∂t
(18)

The initial and boundary conditions (17) become

θ̄ = 0, at t = 0
∂θ̄
∂y − ε1θ̄ = 0, at y = 0
∂θ̄
∂y + ε2θ̄ = 0, at y = b

(19)

where A3 = A1βn + A1(βn cosβna + ε1 sin βna).
Again applying the transform defined in Eq. (A6—Appendix A) on Eq. (18) over the variable y, we obtain

∂ ¯̄θ
∂t

+ A4
¯̄θ = A5 sin h(ωt) (20)

Subject to the initial condition

θ̄ = 0, at t = 0 (21)

where A4 = κ(β2
n + α2

m), A5 = A2A3Q1y0κ(αm cosαm y0 + ε1 sin αm y0).
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Applying Laplace transform and its inverse on Eq. (20) using the initial condition (21), we obtain

¯̄θ(βn, αm, t) = E1 exp(−ωt) + E2 exp(ωt) + E3 exp(−A2t) (22)

where E1 = A5/(2ω − 2A4), E2 = A5/(2ω + 2A4), E3 = A5ω/(A2
4 − ω2).

Applying the inverse formula defined in Eq. (A7—Appendix A) on Eq. (22), we obtain

θ̄ (βn, y, t) =
∞∑

m=1

S(αm, y)[E1 exp(−ωt) + E2 exp(ωt) + E3 exp(−A2t)] (23)

Applying inverse formula defined in Eq. (A2—Appendix A) on Eq. (23), we obtain

θ(x, y, t) =
∞∑

m=1

∞∑
n=1

{S(βn, x)S(αm, y)[E1 exp(−ωt) + E2 exp(ωt) + E3 exp(−A2t)]} (24)

Applying variable inverse transformation from θ to T (AppendixB), the temperature distribution in Eq. (24)
becomes

T (x, y, t) ∼= T0 +
∞∑

m=1

∞∑
n=1

{{1/[u(x) exp(�1T0)]}S(βn, x)S(αm, y)

×[E1 exp(−ωt) + E2 exp(ωt) + E3 exp(−A2t)]} (25)

where

u(x) = [ fm(x)(km0 − kc0) + kc0 ], fm(x) = 1 − xγ for γ ≥ 0.

3.2 Thermoelastic equations

Using Eq. (25), we obtain the solution for Goodier’s thermoelastic displacement potential φ from Eq. (11) as

φ =
∞∑

m=1

∞∑
n=1

{{K (x, T )g1(x, y)/[g2(x, y)(u(x))3 exp(�1T0)]}S(βn, x)S(αm, y)

× [E1 exp(−ωt) + E2 exp(ωt) + E3 exp(−A2t)]} (26)

where

g1(x, y) = S(βn, x) × S(αm, y),

g2(x, y) = S(αm, y)[u(x)g3
′(x) − 2g3(x)u

′(x)] + S(βn, x)S
′′(αm, y)(u(x))2,

g3(x) = u(x)S′(βn, x) − u′(x)S(βn, x).

For the sake of brevity, we assume the Boussinesq harmonic functions ϕ and ψ so as to satisfy Eq. (11) as

ϕ = ψ =
∞∑

m=1

∞∑
n=1

{sin h(p1t)[Bn sin(βnx) + Dn cos(βnx)]

× [sin(αm y) + cos(αm y)]} (27)

where Bn, Dn are constants.
Substituting the values of φ, ϕ, ψ from Eqs. (26) and (27) in Eqs. (9) and (10), we obtain

ux =
∞∑

m=1

∞∑
n=1

{φ,x + sin h(p1t)βn[Bn cos(βnx) − Dn sin(βnx)][sin(αm y) + cos(αm y)]

+ 2αm sin h(p1t)[Bn sin(βnx) + Dn cos(βnx)][cos(αm y) − sin(αm y)]}
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Table 1 Thermomechanical properties of alumina and nickel at room temperature

Property Alumina (ceramic) Nickel (metal)

Thermal conductivity ki (W/cm K) 0.282 0.901
Thermal diffusivity κi (×10−6 cm2/s) 0.083 0.223
Thermal expansion coefficient αi (×10−6/K) 5.4 14.0
Shear modulus Gi (N/cm2) 8.8 × 106 7.2 × 106

Poisson’s ratio νi 0.23 0.31

uy =
∞∑

m=1

∞∑
n=1

{φ,y + αm sin h(p1t)[Bn sin(βnx) + Dn cos(βnx)][cos(αm y) − sin(αm y)]

− 2 sin h(p1t)βn[Bn cos(βnx) − Dn sin(βnx)][sin(αm y) + cos(αm y)]} (28)

where a comma denotes differentiation with respect to the following variable.
The shear modulus of elasticity (SME) G, coefficient of linear thermal expansion (CLTE) α, and Poisson’s

ratio (PR) ν of the FGM dependent on x are expressed using the SME, CLTE, and PR of metals Gm, αm, νm
and of ceramics Gc, αc, νc with the volume fractions of metals fm(x), and ceramics, 1 − fm(x) as [5]

G(x, T ) = Gm(T ) fm(x) + Gc(T )(1 − fm(x)),

α(x, T ) = αm(T ) fm(x) + αc(T )(1 − fm(x)),

ν(x, T ) = νm(T ) fm(x) + νc(T )(1 − fm(x)) (29)

Following Noda [1], we assume G(T ), α(T ), ν(T ) as per exponential law as follows:

G j (T ) = G j0 exp(�1T ), α j (T ) = α j0 exp(�2T ), ν j (T ) = ν j0 exp(�2T ),

j = m, c;�1 ≤ 0,�2 ≥ 0 (30)

Here, G j0, α j0, and ν j0 are the reference values of SME, CLTE, and PR, respectively.
By using Eqs. (26), (27), (29), and (30) in Eqs. (12) and (13), the resulting components of stresses in plane

stress field and plane strain field may be obtained.
By using the traction-free conditions given byEq. (14) in the equation of stresses (12) and (13), the constants

Bn and Dn maybe obtained. The stresses and the constants Bn and Dn are obtained usingMathematica software.

4 Numerical results and discussion

Following Awaji et al. [5], we consider a model of a ceramic–metal-based FGM, in which alumina is selected
as ceramic and nickel as metal (Table 1).

For numerical computations, we introduce the following nondimensional parameters:

T̄ = T

T0
, X̄ = x

b
, Ȳ = y

b
, � = κt

b2
, (ūx , ū y) = (ux , uy)

K0Tob
,

(σ̄xx , σ̄yy, σ̄xy) = (σxx , σyy, σxy)

EG0T0
, K0 = 1 + ν

1 − ν
α0.

with parameters a = 4 cm, b = 2 cm, t = 2 s, surrounding temperature T0 = 320◦K.
Figures 1, 2, 3, 4, 5, 6, 7, 8, and 9 show the variations of dimensionless temperature and thermal stresses.

The figures on the left are plotted for the homogeneous case (i.e., taking �1 = �2 = 0, so that the material
properties become independent of temperature and spatial variable), whereas those on the right are plotted for
the nonhomogeneous case (i.e., taking �1 	= 0, �2 	= 0, so that the material properties become dependent of
temperature and spatial variable).

Figure 1 shows the variation of temperature along x-axis for different values of Ȳ = 0.3, 0.7. In the
homogeneous case, the temperature is positive at the outer part of the plate which is decreasing to negative till
X̄ = 1.2, and suddenly increasing thereafter toward the origin. In the nonhomogeneous case, the magnitude of
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Fig. 1 Variation of dimensionless temperature along x-axis

Fig. 2 Variation of dimensionless temperature along y-axis

Fig. 3 Variation of dimensionless stresses (plane stress field) along x-axis

Fig. 4 Variation of dimensionless stresses (plane stress field) along y-axis
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Fig. 5 Variation of dimensionless stresses (plane strain field) along x-axis

Fig. 6 Variation of dimensionless stresses (plane strain field) along y-axis

Fig. 7 Variation of dimensionless temperature with time

Fig. 8 Variation of dimensionless stresses (plane stress field) with time
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Fig. 9 Variation of dimensionless stresses (plane strain field) with time

temperature is decreasing from higher to lower which nearly converges to zero at X̄ = 1.2 and monotonically
increases toward the other end of the rectangular plate.

Figure 2 shows the variation of temperature along y-axis for different values of X̄ = 0.5, 2. In both the
homogeneous and nonhomogeneous cases, it is observed that the temperature is slowly and steadily increasing
till the middle part and suddenly decreasing toward the upper end of the rectangular plate.

Figure 3 shows the variation of stresses in the plane stress field along x-axis. In the homogeneous case, the
stress components σ̄xx , σ̄yy are tensile throughout the plate, while σ̄xy is compressive in the region 1.2 < X̄ < 2
and tensile toward the origin. In the nonhomogeneous case, the stresses σ̄xx , σ̄yy are compressive throughout
the plate except for σ̄yy near the origin where it is seen to be tensile. The stress component σ̄xy is tensile
throughout the plate, except near the origin where it is compressive.

Figure 4 shows the variation of stresses in the plane stress field along y-axis. In both the cases, all the stress
components are seen to be tensile.

Figure 5 shows the variation of stresses in the plane strain field along x-axis. In the homogeneous case, all
the stress components are tensile throughout the plate. In the nonhomogeneous case, the stress component σ̄xx
is compressive near the outer and middle parts of the plate, while tensile in the remaining region. The stress
component σ̄yy is tensile at the outer region, while compressive toward the origin.

Figure 6 shows the variation of stresses in the plane strain field along y-axis. In both the cases, all the stress
components are tensile throughout the plate.

Figure 7 shows the variation of temperature with time for different values of X̄ = 0.5, 2. In both the cases,
the temperature is slowly and steadily increasing with the increase in time.

Figure 8 shows the variation of stresses in the plane stress field with time. In the homogeneous case, the
stress components σ̄xx , σ̄yy are tensile throughout the plate with the increase in time, while σ̄xy is compressive
with the increase in time. In the nonhomogeneous case, all the stress components are compressive with increase
in time.

Figure 9 shows the variation of stresses in the plane strain fieldwith time. In the homogenous case, the stress
components σ̄xx , σ̄yy are tensile and theirmagnitude is increasingwith increase in time. In the nonhomogeneous
case, the stresses are compressive till � = 1, while tensile afterward.

5 Conclusion

The research work in the field of thermoelastic problems of thermosensitivity with convective heat exchange
in functionally graded materials is unfortunately limited due to the mathematical complexity of equations
in the stress and strain field. In most of the research work, the solutions of field equations are obtained by
considering homogeneous material properties. The technique utilized as a part of this work is very effective in
managing problems with nonhomogeneousmaterials. The proposed integral transform technique for analyzing
the temperature distribution in the FGM rectangular plate gives exact solution of the heat conduction equation.
The broadest articulations for temperature and stress parts have been inferred and exhibited graphically.

It is observed that temperature assumes a fundamental part in characterizing the nonlinearity of the mate-
rial. To a greater extent, an impact on the temperature distribution is exercised by the thermosensitivity of
the material. Numerical calculations indicate that its consideration drastically leads to a decrease in temper-
ature. The plane stress profile is found to be compressive as well as tensile in the homogeneous case and
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nonhomogeneous cases. The plane strain profile is found to be tensile in both the cases. The plane stress field
becomes tensile over a period of time (as time increases) in the homogeneous case while it is tensile in the
nonhomogeneous case.

The pattern of curves shows the properties of thermoelastic conduct of the medium and fulfills the requisite
conditions of the problem. The obtained stress components give novel data prompting to understand the
deformation mechanism in auxiliary materials. The outcomes acquired can shape a reason for choosing regime
parameters in the examination process of heat conduction in heatproof auxiliary components and defense for
considering the changeability of the thermally sensitive coefficients in dealing with heat and mass exchange
problems.

Appendix A

Following [24], we define the integral transform and its inversion formula of the temperature function θ(x, y, t)
with respect to the space variable x , in 0 ≤ x ≤ a as

(
Integral
Transform

)
θ̄ (βn, y, t) =

a∫
x ′=0

S(βn, x
′)θ̄(x ′, y, t)dx ′ (A1)

(
Inversion
Formula

)
θ(x, y, t) =

∞∑
n=1

S(βn, x)θ̄(βn, y, t) (A2)

Here, S(βn, x) is the kernel of the transform given by

S(βn, x) = A1(βn cosβnx + ε1 sin βnx) (A3)

where

A1 =
⎡
⎣√

2/

√√√√(β2
n + ε21

) (
a + ε2

β2
n + ε22

)
+ ε1

⎤
⎦ (A4)

Here, βn
′s are the positive roots of the transcendental equation

tan βna = βn(ε1 + ε2)

β2
n − ε1ε2

(A5)

Similarly, the integral transform and its inversion formula of the temperature function θ̄ (βn, y, t) with
respect to the space variable y, in 0 ≤ y ≤ b are defined as [24]

(
Integral
Transform

)
¯̄θ(βn, αm, t) =

b∫
y′=0

S(αm, y′)θ̄(βn, y
′, t)dy′ (A6)

(
Inversion
Formula

)
θ̄ (βn, y, t) =

∞∑
m=1

S(αm, y) ¯̄θ(βn, αm, t) (A7)

Here, S(αm, y) is the kernel of the transform given by

S(αm, y) = A2(αm cosαm y + ε1 sin αm y) (A8)

where

A2 =
⎡
⎣√

2/

√√√√(α2
m + ε21

) (
a + ε2

α2
m + ε22

)
+ ε1

⎤
⎦ (A9)
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Here, βn
′s are the positive roots of the transcendental equation

tan αmb = αm(ε1 + ε2)

α2
m − ε1ε2

. (A10)

Appendix B

The volume fraction distribution of metal obeying simple power law with exponent γ is given as [5]

fm(x) = 1 − xγ for γ ≥ 0 (B1)

where fm(x) is the local volume fraction of metal in a functionally graded plate and γ is a parameter that
describes the volume fraction of metal.

The thermal conductivity of the functionally graded material dependent on x is expressed using the thermal
conductivities ofmetals km andof ceramics kcwith the volume fractions ofmetals fm(x) and ceramics 1− fm(x)
as follows:

k(x, T ) = km(T ) fm(x) + kc(T )(1 − fm(x)) (B2)

Inverse transformationWe substitute Eq. (B2) in Eq. (15) to obtain the inverse transformation of Eq. (15)
as

θ(T ) =
∫ T

T0
(km(T ) fm(x) + kc(T )(1 − fm(x))dT (B3)

To determine T from Eq. (B3), we analyze the discrete values of θ in a thin layer where the volume
fraction and the material properties are assumed to be constants for each layer. Hence, we obtain the following
approximation:

θ(T ) = fm(x)
∫ T

T0

km(T )dT + (1 − fm(x)

T∫
T0

kc(T ))dT (B4)

Following Noda [1], we assume the temperature-dependent thermal conductivity as

k(T ) = k0 exp(�1T ), �1 < 0

Hence, Eq. (A4) becomes

θ = (1/�1)[[exp(�1T ) − exp(�1T0)]u(x)] (B5)

where u(x) = [ fm(x)(km0 − kc0) + kc0 ].
Using Eq. (B5) in Eq. (22), we obtain

T (x, y, t) = 1

�1
loge[exp(�1T0) + h(x, y, t)] = 1

�1
loge

[
exp(�1T0)

(
1 + h(x, y, t)

exp(�1T0)

)]
(B6)

h(x, y, t) =
∞∑

m=1

∞∑
n=1

{(�1/u(x))S(βn, x)S(αm, y) × [E1 exp(−ωt) + E2 exp(ωt) + E3 exp(−A2t)]}

(B7)

We use the following logarithmic expansion:

loge[(h(x, y, t)/ exp(�1T0)) + 1] = [h(x, y, t)/ exp(�1T0)]
+ (1/2)[(h(x, y, t))/ exp(�1T0)]2 + (1/3)[(h(x, y, t))/ exp(�1T0)]3 + · · · (B8)

We observe that [h(x, y, t)]L given in Eq. (B7) converges to zero as L tends to infinity.
Also the truncation error in Eq. (B8) is observed as 4.113 × 10−5.
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Hence, for the sake of brevity, neglecting the terms with order more than one, we obtain

loge[(h(x, y, t)/ exp(�1T0)) + 1] ∼= [h(x, y, t)/ exp(�1T0)]
Hence, Eq. (B6) becomes

T (x, y, t) ∼= T0 +
[
{1/u(x) exp(�1T0)}

{ ∞∑
m=1

∞∑
n=1

{S(βn, x)S(αm, y)

×[E1 exp(−ωt) + E2 exp(ωt) + E3 exp(−A2t)]}
}]
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