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Abstract In this paper, a closed-chain multibody model of a pantograph/catenary system is developed and
used for the optimal design of a nonlinear controller based on an open-loop control architecture. The goal of the
nonlinear controller is the reduction of the contact force arising from the pantograph/catenary interaction and,
at the same time, the suppression of the mechanical vibrations of the pantograph mechanism. The analytical
formulation employed in this paper for describing the nonlinear dynamics of the pantograph/catenarymultibody
system considers a Lagrangian approach and is based on a redundant set of generalized coordinates. The contact
forces generated by the pantograph/catenary interaction are modeled in this work employing an elastic force
element collocated between the pantograph pan-head and a moving support. The external support follows a
prescribed motion law that simulates the periodic deployment of the catenary system. On the other hand, in
this investigation, the algebraic constraints arising from the closed-loop topology of the pantograph multibody
system are enforced employing a method based on the Udwadia–Kalaba equations recently developed in
the field of analytical dynamics. Furthermore, the problem of the determination of an effective feedforward
controller for reducing the pantograph/catenary contact force is formulated in this work as a nonlinear optimal
control problem. For this purpose, the solution of the control optimization problem is carried out by using an
adjoint-based computational procedure. Numerical simulations demonstrate the effectiveness of the nonlinear
controller obtained in this investigation for the pantograph/catenary multibody system.

Keywords Multibody dynamics ·Udwadia–Kalaba equations ·Nonlinear control ·Adjoint method ·Contact
force control · Mechanical vibrations suppression

1 Introduction

The pantograph/catenary system, which represents the object of this investigation, is the prevalent energy
collection device for railway trains based on an electric traction [1]. When electrical trains need to operate at a
high speed, the stability of the current collection from the railway network becomes a crucial requirement [2].
The proper functioning of the current collection system is determined by the dynamic behavior that results from
the pantograph/catenary interaction. Therefore, the pantograph/catenary contact force must be carefully tuned
considering the dynamic behavior of the mechanical components of the pantograph mechanisms [3]. To this
end, a consistent prediction of the time evolution of the interaction force between the pantograph strips and the
catenary wire represents a fundamental aspect in the process of the evaluation of the performance of this form
of energy collection system [4]. The dynamic variation of the interaction force between the pantograph and
the catenary is due to many different factors such as, for instance, the presence of adverse weather conditions,
the nonlinear vibration of the car body, the action of aerodynamic forces, the flexibility of the cables that form
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the catenary, the induction of nonstationary waves in the catenary wire, and the interaction between multiple
energy collectors [5,6]. In the worst-case scenario, these adverse factors can lead to a complete loss of contact
between the pantograph and the catenary or to a damage to the railway infrastructure [7]. Furthermore, several
additional parameters influence thewear rates of themechanical components of the pantograph/catenary system
that come in contact. For example, in addition to the magnitude of the contact force, the sliding speed, the
materials in contact, and the current intensity are important operational parameters. Therefore, the development
of an effective control system for monitoring and influencing the contact force between the catenary wire and
the pantograph contact strips can lead to an important improvement in the mechanical performance of the
pantograph/catenary system.

This paper is focused on the dynamic analysis of the pantograph/catenary multibody system. The main
factors that influence the time evolution of the contact force between the pantograph and the catenary that are
of interest for this investigation are the geometric nonlinearity of the closed-loop topology of the pantograph
mechanism and the intrinsic nonlinear nature of the pantograph/catenary interaction that generates the contact
force. In order to achieve a constant current collection, the contact between the pantograph strips and the
catenary wire is imposed by means of the action of an uplift force exerted by a pneumatic actuator operating on
the pantograph lower arm [8]. If the uplift force applied is too high, a large contact force between the pantograph
strips and the catenary wire is obtained, which, in turn, can lead to an excessive wear of the components in
contact due to high friction. On the other hand, if the applied uplift force is too low, a small contact force
between the pantograph and catenary system is produced, which can cause a loss of contact leading potentially
to electrical arcing. Thus, the design of the uplift force is performed adopting a trade-off strategy between
these two contrasting goals [9]. From one side, an important requirement is the achievement of an adequate
contact quality resulting from the pantograph/catenary interaction. From the other, the need of a low wear of
the components in contact is another necessary requirement. One possible strategy for solving this important
problem is represented by the application of an actively controlled pantograph which can improve the contact
quality between the pantograph contact strips and the catenary wire [10]. The design of an effective control
strategy for an actively controlled pantograph mechanism requires as a preliminary step the development of
an accurate multibody model of the pantograph/catenary system in order to correctly capture the geometric
nonlinearities of this complex mechanism [11].

In this investigation, the multibody approach to the analysis of constrained mechanical systems is adopted.
Multibody systems are mechanical systems composed by collections of rigid bodies, flexible components,
kinematic joints, force elements, and control actuators [12–15]. The complex dynamic behavior of a general
multibody system is induced by the presence of high nonlinearities in the equations of motion which are able to
capture large reference displacements and large finite rotations [16,17]. Therefore, general analysis approaches
are required in order to describe the dynamic behavior of a general multibody mechanical system [18]. For
this purpose, an efficient formulation of the dynamic equations and a consistent derivation of the algebraic
equations that define the kinematic joints must be achieved. Considering an analytical approach based on
redundant Lagrangian coordinates, the principal methodologies used for the kinematic and dynamic analysis
of rigid multibody systems are the reference point coordinate formulation (RPCF) and the natural absolute
coordinate formulation (NACF) [19,20]. In general, all the multibody formulations can be developed for both
two-dimensional and three-dimensional systems. For the kinematic description of a rigid body, the RPCF
employs a set of orientation coordinates which can be minimal or redundant. In the first case, the minimal set
of Euler angles is typically used leading to the RPCF with Euler angles (EA). In the second case, the most
common approach is to use the redundant set of Euler parameters leading to the RPCF with Euler parameters
(EP) [21]. The NACF, on the other hand, directly employs the set of direction cosines for the definition of the
orientation of a rigid body [22]. Themain advantage of both theRPCFand theNACF is the fact that the algebraic
constraint equations that model the kinematic joints can be modeled in a simple local level even in the case
of complex multibody systems [23]. Furthermore, one of the main features of the rigid multibody framework
based on redundant coordinates is the possibility of developing efficient and effective computational algorithms
for the numerical solution of the dynamic equations of motion grounded on a total Lagrangian approach and
characterized by a nonincremental solution procedure [24]. Therefore, the multibody formulation approach
discussed in detail in this investigation and used for modeling the pantograph/catenary mechanism is the planar
RPCF with EA.

The correct formulation of the dynamic equations that describe the nonlinear behavior of rigid multibody
systems is of fundamental importance for solving the optimal control, estimation, and identification prob-
lems [25,26]. In fact, the conventional algorithms based on the linearization of the equations of motion are
inappropriate for controlling the nonlinear behavior of multibody systems and more complex design methods,
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estimation procedures, and control strategies must be employed [27,28]. One possible approach for addressing
these challenging problems relies on the application of advanced nonlinear control and estimation method-
ologies to the nonlinear dynamics of multibody systems [29–31]. For this purpose, the optimal control theory
based on the Pontryaginminimum principle can be used leading either to the Hamilton–Jacobi–Bellman partial
differential equation or to a set of nonlinear differential-algebraic equations that form a nonlinear two-point
boundary-value problem. The Hamilton–Jacobi–Bellman (HJB) equation is the continuous-time analog of
the discrete deterministic dynamic programming algorithm [32,33]. For a given dynamical system with an
associated cost functional, the solution of the HJB equation is the function value which corresponds to the
minimum cost function and leads to an optimal feedforward (open-loop) controller [34]. However, other com-
putational methods for the design of nonlinear control strategies can also be used for developing a nonlinear
control system for a general multibody mechanical system. For example, the feedback linearization method,
the sliding mode control, and nonlinear control methods based on the control Lyapunov function can be used
for the construction of a nonlinear controller. By means of an appropriate change of variables, the nonlinear
control methods based on the feedback linearization approach are able to determine a state feedback control
action which transforms the nonlinear system into an equivalent linear system that can be easily controlled. The
sliding mode control is a nonlinear control method that alters the dynamics of a mechanical system using a dis-
continuous control action that forces the dynamical system to evolve toward, or slide along, the boundaries of
a multiple dynamic behavior associated with different control structures that are close to a nominal operational
point of the state space [35]. The nonlinear control methods based on the on the control Lyapunov function,
on the other hand, allows for obtaining a regular stabilizing feedback controller for a nonlinear system from a
differentiable control Lyapunov function by using the Artstein theorem [36]. However, as discussed in detail
in the paper, the nonlinear control methodology of interest for this study is based on the adjoint equations that
form a nonlinear two-point boundary-value problem.

In the literature, several comprehensive studies concerning the recent research challenges pertaining to
the mechanical and electrical aspects related to the interaction between the pantograph mechanism and the
overhead catenary line can be found, thereby demonstrating the importance of the main problem of interest for
this investigation. A detailed overview of the research challenges associated with the interaction between the
pantograph system and the overhead equipment connected to the catenarywires can be found in the recent work
of Bruni et al. [37]. Chen et al. [38] proposed a newmethod for describing the contact between pantograph and
catenary employing the equation of displacement compatibility. Navik et al. [39,40] proposed and validated a
finite elementmodel for assessing the pantograph/catenary interaction contact forces and developed a numerical
procedure for identifying the system damping using field measurements. Song et al. [41] investigated the
performance of an active control system by using a multibody model of the pantograph in combination with a
nonlinear finite element model of catenary, taking also into account the influence of more realistic conditions,
such as the controller time delay and the limitation of controller sensitivity, in order to quantify the influence
of such conditions on the performance of the active controller. Lu et al. [42] studied the effects of a double
pantograph operating simultaneously, with the contact force on trailing pantograph fluctuating violently due
to the passage of leading pantograph, and proposed a prior-information-based finite-frequency H-infinity
controller incorporating an adaptive estimator for the active control of the double pantographs. Bautista et
al. [43] presented an algorithm capable of simulating the interaction between a catenary system, represented
as a finite element model, and a pantograph system, modeled as a multibody linkage, in order to optimize the
design of the infrastructure as well as the configuration of the pantograph mechanism. Lee et al. [44] focused
on studying the dynamic interaction between the catenary and the pantograph of a high-speed train in order
to improve the transmission of electric power to the railway vehicle and obtain stable operations. Ambrosio et
al. [45] explored the use of cosimulation procedures that enable to model and analyze the subsystems using
different methods and computer codes, while maintaining the synchronism of the forward time integration,
and included the deformation in the multibody formulation by using the finite element method to discretize
the particular components which exhibit deformations that influence the overall system performance. Massat
et al. [46] focused on the numerical modeling of pantograph/catenary interaction and proposed an efficient
cosimulation process between finite element and multibody modeling methods. Lee et al. [47] investigated the
estimation of the lateral and vertical track irregularities from the measurements of the corresponding axle-box
accelerometers in order to monitor the track conditions by in-service high-speed trains employing Kalman-
based methods, band-pass, and compensation filters. Seo et al. [48] studied the large aerodynamic lifting force
generated in high-speed trains by the contact plate and the body of pantograph and how this phenomenon causes
the wear of the catenary contact wire. Lee and Park [49] discussed how the dynamic interaction between the
catenary and the pantograph of high-speed trains affects the stable electric power supply and proposed a flexible
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multibody model which represents an efficient tool for the analysis of the dynamic behavior of the catenary
and the pantograph which is also useful for the design of reliable current collection systems. Song et al. [50]
proposed a nonlinear finite element model for analyzing the wind-inducedmechanical vibrations of the railway
catenary system considering a spatial stochastic wind field. Song et al. [51] proposed a nonlinear controller
based on the sliding mode approach for a high-speed active pantograph for improving the current collection
quality under a strong stochastic wind field. Duan et al. [52] analyzed the contact force of pantograph/catenary
mechanism and studied the influence of the friction coupling on the current collection system. Schirrer et
al. [53] modeled the complex dynamics of the pantograph/catenary interaction by using a real-time-capable
distributed-parameter description in moving coordinates and presented a pantograph test rig with accurate
emulation of the catenary system in order to allow efficient, realistic, and reproducible testing. Shi et al. [54]
developed a backstepping precise control method for the pantograph/catenary contact load based on a fuzzy
logic and considered the influence of wind load as well as the parameters uncertainty on the dynamics of
the system. Ren et al. [55] proposed a semi-active control strategy for optimizing the pantograph/catenary
coupling based on model predictive control techniques. Guo et al. [56] analyzed the statistical characteristics
of contact force arising from the pantograph/catenary interaction by using mathematical statistic methods and
demonstrated the fact that the dynamic contact force has a periodic fluctuation which is in accordance with the
normal distribution.Wang et al. [57] investigated the potential use of pantograph pan-head vertical acceleration
instead of the pantograph/catenary contact force for monitoring the configuration of railway catenaries. The
significant interest in the topics related to the pantograph/catenary interaction is apparent in the conspicuous
recent literature production and demonstrates also the importance of the problem analyzed in this work.

This work deals with the construction of an effective method for solving the hybrid motion/force control
problem of the pantograph/catenary system. In order to achieve this goal, a closed-chain multibody model of a
high-speed railway pantograph is developed in the paper. For this purpose, a Lagrangian approach based on a
redundant set of generalized coordinates is used in this investigation. Furthermore, an optimal control approach
based on the adjoint method is employed in this work for calculating an effective open-loop control action.
The cost functional for the development of an optimal feedforward controller is designed in order to penalize
the deviation of the pantograph/catenary contact force from the desired set point. The goal of the nonlinear
feedforward controller is to reduce the wear of the pantograph contact strips and attenuate the mechanical
vibrations of the pantograph mechanism. Numerical simulations confirm the effectiveness of the approach
developed in the paper.

The remaining part of this paper is based on the following structure. In Sect. 2, the pantograph/catenary
system of interest for this investigation is described in detail. In Sect. 3, background material on the kinematic
analysis of two-dimensional rigid multibody systems is recalled and it is used for obtaining a kinematic model
of the pantograph system. In Sect. 4, background material on the dynamic analysis of two-dimensional rigid
multibody systems is provided and it is employed for constructing a dynamic model of the pantograph sys-
tem. In Sect. 5, an adjoint-based computational methodology for obtaining an optimal feedforward controller
for nonlinear dynamical systems is described considering the fundamental equations of constrained motion
for multibody mechanical systems introduced by Udwadia and Kalaba. In Sect. 6, several numerical results
obtained employing the multibody modeling approach considered in this work, the Udwadia–Kalaba tech-
nique for handling the kinematic constraints, and the nonlinear adjoint-based control optimization method are
presented. In Sect. 7, the summary of the manuscript, the conclusions obtained in this investigation, and some
comments on the future directions of research are reported.

2 Description of the pantograph/catenary multibody system

The high-speed railway pantograph system considered in this paper is a Faiveley Transport CX pantograph, and
a CADmodel of this mechanical system is shown in Fig. 1. On the other hand, a planar rigid multibody model
of the pantograph/catenary system developed in this work is shown in Fig. 2. The pantograph/catenary system
shown in Fig. 2 is modeled as closed-chain rigid mechanical system. In particular, the high-speed railway
pantograph is modeled as a planar mechanism similar to a four-bar linkage. To this end, the thrust rod, the
lower arm, and the upper arm of the pantograph are modeled as rigid bodies. However, the effect of the upper
link on the pantograph dynamics is neglected. The angle or rotation of the thrust rod is denoted with θ1(t),
whereas the angle or rotation of the crank of the upper arm is denoted with θ2(t). The fixed angle or rotation of
the upper armwith respect to the crank is denotedwith β, while the angle or rotation of the lower arm is denoted
with θ3(t). The vertical displacement of the pantograph pan-head is denoted with x(t), whereas the vertical
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Fig. 1 CAD model of the high-speed railway CX pantograph

displacement of the moving support is denoted with s(t). As shown in Fig. 2, half of the length of the thrust
rod is denoted with L1, half of the length of the crank of the upper arm is denoted with L2, half of the length of
the lower arm is denoted with L3, and half of the length of the upper arm is denoted with L4. The action of the
catenary system on the pantograph dynamics is modeled considering an external support having a preassigned
motion. The reference height of the moving support is denoted with H0. As shown in Fig. 2, the horizontal
and vertical coordinates of the revolute joint which connects the lower arm to the ground are, respectively,
denoted with H1 and H2. The mass of the thrust rod is denoted with m1, the mass of the crank of the upper
arm is denoted with m2, the mass of the lower arm is denoted with m3, the mass of the upper arm is denoted
with m4, and the mass of the pan-head is denoted with m5. The pantograph/catenary system is subjected to
a constant gravitational field having a gravity acceleration denoted with g. A pneumatic actuator provides to
the pantograph the lift force necessary for sustaining the contact between the pantograph pan-head and the
catenary wire. As shown in Fig. 2, this device is located at an height HE from the ground and it has a distance
LE from the center of mass of the lower arm. The pneumatic actuator provides a force field which is modeled
considering the combination of a constant lift force p1, a linear elastic component with stiffness k1, and a
linear dissipative component with damping r1. A suspension system is collocated between the pantograph
pan-head and the tip of the upper arm. This suspension system is modeled with a linear spring having a
stiffness k2 mounted in parallel with a linear damper having a damping coefficient r2. The dynamic behavior
of the pantograph/catenary interaction is modeled considering a force field between the moving support that
models the catenary and the pantograph pan-head. This force field models the pantograph/catenary interaction
considering a linear spring with stiffness coefficient k3 and a linear damper with damping coefficient r3. The
displacement of the moving support is assumed to be a superposition of two sinusoidal functions given by:

s(t) = S1 sin(2π f1t) + S2 sin(2π f2t) (1)

where S1 and S2 are the amplitudes of the two external displacements of the moving support, whereas f1 and
f2 are the frequencies of the two external displacements of the moving support. The periodic movement of the
floating support models the interaction between the pantograph and the catenary in a simplified by realistic
manner. In particular, the first harmonic function represents the effect of the catenary span on the pantograph
dynamics, whereas the second harmonic function represents the effect of the distance between the catenary
droppers on the pantograph dynamics. In order to reduce the amplitude of the mechanical vibrations induced
by the pantograph/catenary interaction, a control actuator is interposed between the pantograph pan-head and
the tip of the upper arm of the pantograph. The external action of the control actuator provided is denoted with
u(t). A detailed list of the data used for perming the dynamic simulations of the pantograph/catenary system
is reported in Table 1.
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Fig. 2 Planar rigid multibody mechanical model of the pantograph/catenary system

3 Pantograph kinematics

3.1 Kinematics of rigid multibody systems

Consider a set of nb rigid bodies connected by means of a set of nc mechanical joints. The spatial configuration
of this multibody system can be described setting one inertial frame of reference XYZ, which serves as an
unique standard for describing the kinematics of the multibody system under examination, and a floating
frame of reference x j y j z j for each rigid body j [58]. If r j (Pj , t) is the global position vector of a generic
particle Pj on the body j , this absolute position vector can be expressed as the sum of global position vector
of the origin of the body reference R j (t) and the position vector of the point Pj with respect to the origin of
the body reference u j (Pj , t) as follows:

r j (Pj , t) = R j (t) + u j (Pj , t) = R j (t) + A j (t)ū j (Pj ) (2)

where A j (t) denotes the rotation matrix of the body j and ū j (Pj ) denotes the position of the point Pj with
respect to the origin of the body reference expressed using the local coordinates of the material point Pj . On the
other hand, it can be easily proved that the angular velocity ω̄ j (t) of the body j referred to the local reference
system can be computed as:

˜̄ω j (t) = AT
j (t)Ȧ j (t) (3)

where ˜̄ω j (t) is a skew symmetric matrix and the angular velocity vector defined with respect to the local frame
of reference ω̄ j (t) is the axial vector associated to this skew symmetric matrix [59]. Let q(t) be the generalized
coordinate vector of the multibody system of interest containing the parameters which univocally identify the
general configuration of the systems. The time derivative of the position vector r j (Pj , t) of a generic particle
Pj on the body j can be derived in terms of the time derivative of the generalized coordinate vector q̇(t) as:

ṙ j (Pj , t) = Ṙ j (t) + Ȧ j (t)ū j (Pj ) = L j (Pj , t)q̇(t) (4)

where L j (Pj , t) denotes the Jacobian matrix of the position vector relative to the material point Pj computed
with respect to the system generalized coordinate vector q(t). In particular, the Jacobian matrix of the position
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Table 1 Data of the pantograph/catenary multibody system

Descriptions Symbols Data (units)

Half length of the thrust rod L1 0.700 (m)
Half length of the crank L2 0.110 (m)
Half length of the lower arm L3 0.850 (m)
Half length of the upper arm L4 0.950 (m)
Reference height of the moving support H0 2.635 (m)
Horizontal position of the ground revolute joint H1 0.200 (m)
Vertical position of the ground revolute joint H2 0.140 (m)
Reference height of the pneumatic actuator HE 0.140 (m)
Local distance of the pneumatic actuator LE 0.500 (m)
Fixed angle between the crank and the upper arm β 0.209 (rad)
Mass of the thrust rod m1 2.000 (kg)
Mass of the crank m2 1.038 (kg)
Mass of the lower arm m3 1.038 (kg)
Mass of the upper arm m4 8.962 (kg)
Mass of the pan-head m5 0.500 (kg)
Gravitational acceleration g 9.810 (m/s2)
Lift force of the pneumatic actuator p1 1000.000 (N)
Stiffness of the pneumatic actuator k1 100.000 (N/m)
Damping of the pneumatic actuator r1 1.000 (N s/m)
Stiffness of the suspension system k2 200.000 (N/m)
Damping of the suspension system r2 2.000 (N s/m)
Stiffness of the pantograph/catenary interaction k3 300.000 (N/m)
Damping of the pantograph/catenary interaction r3 3.000 (N s/m)
First amplitude of the support displacement S1 0.100 (m)
Second amplitude of the support displacement S2 0.010 (m)
First frequency of the support displacement f1 1.000 (Hz)
Second frequency of the support displacement f2 10.000 (Hz)
Initial angular displacement of the thrust rod θ1,0 2.356 (rad)
Initial angular displacement of the crank θ2,0 0.918 (rad)
Initial angular displacement of the lower arm θ3,0 −0.647 (rad)
Initial displacement of the pan-head x0 0.010 (m)
Initial angular velocity of the thrust rod ω1,0 0.001 (rad/s)
Initial angular velocity of the crank ω2,0 −0.009 (rad/s)
Initial angular velocity of the lower arm ω3,0 0.008 (rad/s)
Initial velocity of the pan-head v0 0.100 (m/s)

vector r j (G j , t) of the center of mass G j of the rigid body j is of interest for the kinematic analysis and it
can be expressed as follows:

J j (t) = L j (G j , t) (5)

where J j (t) denotes the Jacobian matrix of the position vector r j (G j , t) of the center of mass G j of the rigid
body j computed with respect to the system generalized coordinate vector q(t). It is worth to note that the
virtual displacement of a material point Pj attached to a rigid body j can be found by using the Jacobian
matrix L j (Pj , t) as follows:

δr j (Pj , t) = L j (Pj , t)δq(t) (6)

where δq(t) denotes the virtual change of the system generalized coordinate vector q(t). Furthermore, it can
be proved that the angular velocity ω̄ j (t) of the body j can be expressed as a linear combination of the time
derivative of the generalized coordinate vector q̇(t) as:

ω̄ j (t) = �̄ j (t)q̇(t) (7)

where the matrix �̄ j (t) denotes the Jacobian matrix of the angular velocity vector ω̄ j (t) of the body j com-
puted with respect to the time derivative of the system generalized coordinates q̇(t). The kinematic equations
discussed before completely describe the configuration of a generic particle Pj on the body j in terms of the
system generalized coordinate vector q(t) and its time derivative q̇(t) both referred to an inertial frame of
reference XYZ.



1596 C. M. Pappalardo et al.

3.2 Pantograph kinematic model

The generalized position of amaterial point on the pantograph can be identified using a set of n2 = 4Lagrangian
coordinates. The system generalized coordinates can be grouped in a vector q(t) defined as:

q(t) =
⎡
⎢⎣

θ1(t)
θ2(t)
θ3(t)
x(t)

⎤
⎥⎦ (8)

where θ1(t), θ2(t), and θ3(t) are the angles of rotation of the thrust rod, crank of the upper arm, and lower arm,
respectively, whereas x(t) is the vertical displacement of the pantograph pan-head shown in Fig. 2. Employing
this set of n2 = 4 generalized coordinates, the configuration of the pantograph system can be obtained using
the kinematic equations based on a Lagrangian approach that are described in the previous subsection of the
paper. In order to achieve this goal, the configuration of all the rigid components that form the pantograph
multibody system can be separately analyzed for the geometric description of the motion. The position of a
generic point P1 on the thrust rod referred to a local reference system located at the center of mass of the thrust
rod can be identified with a local position vector ū1(P1) which can be expressed as:

ū1(P1) =
⎡
⎣
x̄1(P1)
0
0

⎤
⎦ (9)

where x̄1(P1) represents the local abscissa of the point P1 on the thrust rod. Assuming that the angle of rotation
of the thrust rod is denoted with θ1(t) and that the rotation axis of the thrust rod is identified by the fixed unit
vector e3 = [

0 0 1
]T, the corresponding rotation matrix A1(t) can be readily calculated as follows:

A1(t) =
⎡
⎣
cos(θ1(t)) − sin(θ1(t)) 0
sin(θ1(t)) cos(θ1(t)) 0
0 0 1

⎤
⎦ . (10)

The position of the thrust rod center of mass R1(t) can be computed exploiting the fixed position of the
revolute joint collocated in the point O as follows:

R1(t) = −A1(t)ū1(O) =
⎡
⎣
L1 cos(θ1(t))
L1 sin(θ1(t))
0

⎤
⎦ (11)

where ū1(O) denotes the position vector of the point O referred to the thrust rod reference system. Therefore,
the position of a generic point P1 on the thrust rod referred to the global reference system can be derived using
the fundamental equations of the kinematics of multibody systems as:

r1(P1, t) = R1(t) + A1(t)ū1(P1) =
⎡
⎣

(L1 + x̄1(P1)) cos(θ1(t))
(L1 + x̄1(P1)) sin(θ1(t))
0

⎤
⎦ . (12)

The angular velocity vector of the thrust rod referred to the local reference system can be expressed as:

ω̄1(t) =
⎡
⎣
0
0
θ̇1(t)

⎤
⎦ . (13)

The Jacobian matrix J1(t) of the position vector of the thrust rod center of massR1(t) can be easily derived
as:

J1(t) = ∂R1(t)

∂q(t)
=

⎡
⎣

−L1 sin(θ1(t)) 0 0 0
L1 cos(θ1(t)) 0 0 0
0 0 0 0

⎤
⎦ . (14)
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The Jacobian matrix L1(P1, t) of the position vector r1(P1, t) of a generic point P1 on the thrust rod can
be derived as:

L1(P1, t) = ∂r1(P1, t)
∂q(t)

=
⎡
⎣

− (L1 + x̄1(P1)) sin(θ1(t)) 0 0 0
(L1 + x̄1(P1)) cos(θ1(t)) 0 0 0
0 0 0 0

⎤
⎦ . (15)

The Jacobian matrix �̄1(t) relative to the thrust rod angular velocity vector ω̄1(t) can be computed as
follows:

�̄1(t) = ∂ω̄1(t)

∂q̇(t)
=

⎡
⎣
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎦ . (16)

The previous kinematic equations completely describe the thrust rod configuration as functions of the
system generalized coordinate vector q(t) and its time derivative q̇(t). The mathematical descriptions of the
geometric configurations of the components that form the pantographmultibodymodel can be readily obtained
following the procedure described in this section as reported in detail in “Appendix A”.

4 Pantograph dynamics

4.1 Dynamics of rigid multibody systems

Once that an adequate kinematic description of the system configuration is obtained in terms of the body gen-
eralized positions and orientations, the equations of motion that model the dynamics of the multibody system
under study can be derived by using the D’Alembert–Lagrange principle of virtual work. For this purpose,
a systematic analytical technique can be employed for effectively computing the mass matrix and the inertia
quadratic velocity vector of the bodies which compose the multibody system of interest [60]. Let Tj (t) be the
kinetic energy of a general rigid body j which belongs to the multibody system of interest. This scalar function
can be readily expressed in terms of the system generalized coordinate vector q(t) and its time derivative
q̇(t) [61]. To this end, considering for simplicity a mono-dimensional rigid body j that is of interest for this
investigation, the body kinetic energy Tj (t) can be explicitly computed as follows:

Tj (t) = 1

2

∫
Ω j

ρ j ṙTj (Pj , t)ṙ j (Pj , t)dV̄ j

= 1

2
q̇T (t)

∫ L j

−L j

m j

2L j
LT

j (Pj , t)L j (Pj , t)dx̄ j (Pj )q̇(t)

= 1

2
q̇T (t)

(
m jJTj (t)J j (t) + �̄

T
j (t)ĪG, j �̄ j (t)

)
q̇(t)

= 1

2
q̇T (t)M j (t)q̇(t) (17)

where ρ j is the mass density of the rigid body j , V̄ j denotes the volume of the rigid body Ω j , L j is half of
the length of the mono-dimensional rigid body j , m j represents the mass of the body j , and ĪG, j denotes the
inertia matrix of the body j referred to the body center of mass G j . Thus, the rigid body j mass matrixM j (t)
can be explicitly written as follows:

M j (t) = m jJTj (t)J j (t) + �̄
T
j (t)ĪG, j �̄ j (t). (18)

On the other hand, consider the virtual work performed by the inertia forces relative to the body j which is
denoted as δWi, j (t). This scalar quantity can be explicitly written in terms of the system generalized coordinate
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vector q(t) and its time derivative q̇(t). In order to do so, consider again for simplicity a general mono-
dimensional rigid body j . The virtual work of the inertia forces δWi, j (t) can be readily calculated as follows:

δWi, j (t) = −
∫

Ω j

ρ j r̈Tj (Pj , t)δr j (Pj , t)dV̄ j

= −
∫ L j

−L j

m j

2L j

(
L j (Pj , t)q̈(t) + L̇ j (Pj , t)q̇(t)

)T
L j (Pj , t)δq(t)dx̄ j (Pj )

= −q̈T (t)
∫ L j

−L j

m j

2L j
LT

j (Pj , t)L j (Pj , t)dx̄ j (Pj )δq(t)

− q̇T (t)
∫ L j

−L j

m j

2L j
L̇T

j (Pj , t)L j (Pj , t)dx̄ j (Pj )δq(t)

= QT
i, j (t)δq(t) (19)

where Qi, j (t) denotes the Lagrangian component relative to the inertial forces of the rigid body j which can
be readily written as follows:

Qi, j (t) = −
∫ L j

−L j

m j

2L j
LT

j (Pj , t)L j (Pj , t)dx̄ j (Pj )q̈(t)

−
∫ L j

−L j

m j

2L j
LT

j (Pj , t)L̇ j (Pj , t)dx̄ j (Pj )q̇(t)

= −M j (t)q̈(t) + Qv, j (t) (20)

where M j (t) is the body j mass matrix and Qv, j (t) is the quadratic velocity vector relative to the body j
inertial forces that can be explicitly computed as:

Qv, j (t) = −
∫ L j

−L j

m j

2L j
LT

j (Pj , t)L̇ j (Pj , t)dx̄ j (Pj )q̇(t) = −C j (t)q̇(t) (21)

where C j (t) is the inertia quadratic velocity matrix of the rigid body j which is defined as:

C j (t) =
∫ L j

−L j

m j

2L j
LT

j (Pj , t)L̇ j (Pj , t)dx̄ j (Pj ) = m jJTj (t)J̇ j (t). (22)

The generalized inertia forces associated with the rigid body j discussed before completely describe the
inertia effects of the rigid body of interest. On the other hand, let Fe, j (t) be an external force acting on the
rigid body j and applied to a general point Pj . The virtual work of this external force δWe, j (t) can be easily
calculated as:

δWe, j (t) = FT
e, j (t)δr j (Pj , t) = FT

e, j (t)L j (Pj , t)δq(t) = QT
e, j (t)δq(t) (23)

where Qe, j (t) represents the generalized force vector corresponding to the external force Fe, j (t) which can
be explicitly derived as follows:

Qe, j (t) = LT
j (Pj , t)Fe, j (t). (24)

The dynamic equations discussed before completely describe the dynamic behavior of each body j of the
rigid multibody system under study in terms of the system generalized coordinate vector q(t) and its time
derivative q̇(t) both referred to an inertial frame of reference XYZ.
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4.2 Equations of motion of constrained multibody mechanical systems

The D’Alembert–Lagrange principle of virtual work can be used in conjunction with the Lagrange multiplier
technique for the analytical derivation of the differential-algebraic equations of motion of a rigid multibody
mechanical systems constrained by kinematic joints [62]. For this purpose, consider a set of nc holonomic
constraints described by the following set of algebraic equations:

f(t) = 0 (25)

where the vector of holonomic constraints f(t) is a vector function which involves only the generalized coor-
dinate vector q(t) and the time t [63]. A virtual change of the constraint vector yields:

δf(t) = A(t)δq(t) = 0 (26)

whereA(t) is the Jacobianmatrix of the constraint function f(t) computed with respect to the generalized coor-
dinate vector q(t). The D’Alembert–Lagrange principle is a direct extension of the principle of virtual work
from static analysis to dynamic analysis [64]. Furthermore, theD’Alembert–Lagrange principle combinedwith
the Lagrange multipliers technique can be readily used for obtaining the equations of motion of a multibody
system constrained by a set of holonomic algebraic equations. In particular, the basic assumption of classical
mechanics is that the constraints perform a zero virtual work. Let δWc(t) be the virtual work of the constraint
forces. Considering a set of holonomic constraints described by the vector function f(t), the virtual work of
the constraint forces can be computed directly from the virtual change of the constraint equations as follows:

δWc(t) = λT (t)δf(t) = λT (t)A(t)δq(t)

=
(
AT (t)λ(t)

)T
δq(t) = QT

c (t)δq(t) = 0 (27)

where λ(t) is a vector of Lagrange multipliers corresponding to the holonomic constraint equations andQc(t)
is the vector of generalized constraint forces associated with the kinematic constraints [65]. On the other hand,
consider a set of Nb rigid bodies and let δWi(t) be the virtual work of the inertia forces relative to the entire
rigid multibody system under study. This virtual work associated with the system inertia forces can be written
as follows:

δWi(t) =
Nb∑
j=1

δWi, j (t) =
Nb∑
j=1

Qi, j (t)δq(t)

= (−M(t)q̈(t) + Qv(t))
T δq(t) (28)

where M(t) denotes the system mass matrix and Qv(t) is the system inertia quadratic velocity vector which
can be explicitly derived as follows:

M(t) =
Nb∑
j=1

M j (t) (29)

Qv(t) =
Nb∑
j=1

Qv, j (t) = −C(t)q̇(t) (30)

where C(t) denotes the system quadratic velocity matrix which is defined as:

C(t) =
Nb∑
j=1

C j (t). (31)

On the other hand, let δWe(t) be the virtual work of the system generalized external forces. This virtual
work can be calculated as follows:

δWe(t) =
Nb∑
j=1

δWe, j (t) = QT
e (t)δq(t) (32)
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where Qe(t) denotes the system generalized force vector associated with the external forces which can be
obtained as:

Qe(t) =
Nb∑
j=1

Qe, j (t). (33)

The D’Alembert–Lagrange principle of virtual work states that the total virtual work performed by all the
forces acting on amechanical system during a virtual displacement compatible with the kinematic constraints is
equal to zero [66]. Since the virtual work of the constraint forces vanishes, the D’Alembert–Lagrange principle
can be written as follows:

δWi(t) + δWe(t) + δWc(t) = 0. (34)

The substitution of the respective expression for each virtual work in the D’Alembert–Lagrange principle
yields:

(
−M(t)q̈(t) + Qv(t) + Qe(t) + AT (t)λ(t)

)T
δq(t) = 0. (35)

This vector equation can be reformulated as follows:

δqT (t)
(
H(t) + AT (t)λ(t)

)
= 0 (36)

where the generalized force vector H(t) is given by:

H(t) = −M(t)q̈(t) + Qv(t) + Qe(t). (37)

The vector of generalized coordinates q(t) can be partitioned into a set of independent coordinates qi(t)
and a set of dependent coordinates qd(t) as follows:

q(t) =
[
qi(t)
qd(t)

]
. (38)

Similarly, the equations resulting from the D’Alembert–Lagrange principle of virtual work can be parti-
tioned into two sets of dependent and independent equations given by:

[
δqTi (t) δqTd (t)

] ([
Hi(t)
Hd(t)

]
+

[
AT
i (t)

AT
d (t)

]
λ(t)

)
= 0. (39)

The previous equations clearly show that the Lagrangemultipliers vectorλ(t) couples the two sets of depen-
dent and independent equations of motion by means of the Jacobian matrix of the constraint equations A(t).
By performing the vector and matrix multiplications in the preceding equations of virtual work, one obtains:

δqTi (t)
(
Hi(t) + AT

i (t)λ(t)
)

+ δqTd (t)
(
Hd(t) + AT

d (t)λ(t)
)

= 0. (40)

The vector of Lagrangemultipliers λ(t) represents a vector of additional unknowns of the dynamic problem
on hand. Assuming that the Jacobian matrix of the kinematic constraints Ad(t) has a full rank, one can select
the vector of Lagrange multipliers λ(t) to be the solution of the following linear set of algebraic equations
associated with the subset of dependent generalized coordinates:

Hd(t) + AT
d (t)λ(t) = 0. (41)

The vector of Lagrange multipliers contains nc unknowns which are equal in number to the number of
the dependent dynamic equations. On the other hand, since the elements of the vector qi(t) are assumed to be
independent because of the initial hypothesis, the D’Alembert–Lagrange principle of virtual work leads to:

Hi(t) + AT
i (t)λ(t) = 0. (42)

Combining the set of dependent equations with the set of independent equations yields:

H(t) + AT (t)λ(t) = 0. (43)
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This set of ordinary differential equations written in matrix form leads to the augmented formulation of
the equations of motion of a rigid multibody system [67]. The system dynamic equations must be solved
considering at the same time the set of holonomic constraint equations leading to the following system of
differential-algebraic equations of motion:

⎧⎨
⎩
M(t)q̈(t) = Q(t) + AT (t)λ(t)

f(t) = 0
(44)

where Q(t) is the total vector of generalized forces that acts on the multibody system which is defined as:

Q(t) = Qv(t) + Qe(t). (45)

The differential-algebraic equations of motion represent the general form of the equations of motion of
a rigid multibody system constrained by kinematic joints and described by holonomic algebraic equations.
Furthermore, the differential-algebraic equations of motion define the fundamental problem of constrained
motion for a rigid multibody system [68].

4.3 Central equations of constrained dynamics

An effective method can be used to solve the fundamental problem of constrained motion considering the cen-
tral equations of constrained dynamics. This method is able to derive explicitly the generalized acceleration
vector q̈(t) of a multibody system, which can be constrained by a general set of holonomic and nonholonomic
algebraic constraints, together with the vector of generalized constraint forcesQc(t) and the vector of Lagrange
multipliers λ(t) [69]. In order to apply the resolution method based on the central equations of constrained
dynamics to the differential-algebraic equations of motion which characterize the dynamic behavior of a rigid
multibody system constrained by kinematic joints, the algebraic equations associated with the kinematic con-
straints must be represented in a standard form [70]. The standard form of the constraint equations can be
readily obtained calculating the second time derivative of the constraint vector f(t) as follows:

f̈(t) = A(t)q̈(t) − b(t) = 0 (46)

whereA(t) denotes the Jacobian matrix of the holonomic constraint vector f(t) and b(t) is a quadratic velocity
vector relative to the second timederivative of the constraint vector f(t)which canbe, respectively, computed as:

A(t) = ∂f(t)
∂q(t)

(47)

b(t) = − ∂

∂q(t)

(
∂f(t)
∂q(t)

q̇(t)

)
q̇(t) − 2

∂2f(t)
∂q(t)∂t

q̇(t) − ∂2f(t)
∂t2

. (48)

On the other hand, considering the virtual work of the constraint forces [71], the vector of generalized forces
associated with the kinematic constraints Qc(t) can be explicitly written in terms of the Lagrange multipliers
vector λ(t) as follows:

Qc(t) = AT (t)λ(t). (49)

Employing the standard form of the constraint equations obtained before and adopting the original form
of the vector of generalized constraint forces, the equations of motion of a rigid multibody system constrained
by kinematic joints can be reformulated in the following matrix form:

⎧⎨
⎩
M(t)q̈(t) = Q(t) + Qc(t)

A(t)q̈(t) = b(t)
. (50)

It can be proved that the Gauss’s principle of least constraint applied to the previous reformulation of the
fundamental problem of constrained motion leads to the central equations of constrained dynamics [72]. These
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equations are also called Udwadia–Kalaba equations by the name of their discoverers and can be written in a
compact matrix form as follows:

⎧⎨
⎩
q̈(t) = a(t) + F(t)e(t)

Qc(t) = G(t)e(t)
(51)

where a(t) is the generalized acceleration vector relative to the multibody system released from the kinematic
constraints, e(t) is the generalized error vector relative to the acceleration of the multibody system released
from the kinematic constraints, F(t) is a feedback matrix relative to the generalized acceleration vector of the
multibody system constrained by the holonomic constraints, andG(t) is a feedbackmatrix relative to the vector
of generalized constraint forces which act on the constrained multibody system [73,74]. Assuming that the
mass matrix M(t) has full rank, the generalized acceleration vector relative to the multibody system released
from the kinematic constraints a(t) can be explicitly computed as:

a(t) = M−1(t)Q(t). (52)

The generalized error vector e(t) analytically quantifies how much the generalized acceleration vector of
the rigid multibody system released from the kinematic constraints violates the algebraic constraint equations
acting on the system. This vector can be readily computed as follows:

e(t) = b(t) − A(t)a(t). (53)

Assuming that the mass matrix M(t) has full rank and that the row rank of the Jacobian matrix of the
constraint equations A(t) is equal to the number of constraint equations nc, it can be proved that the feedback
matrix of the constrained multibody system F(t) can be computed as follows:

F(t) = B(t)D(t) (54)

where B(t) and D(t) are two constraint matrices defined as:

⎧⎨
⎩
B(t) = M−1(t)AT (t)

D(t) = (
A(t)M−1(t)AT (t)

)−1
. (55)

On the other hand, the feedback matrix of the generalized forces vector denoted with G(t) can be readily
computed as:

G(t) = AT (t)D(t). (56)

The central equations of constrained dynamics based on the Udwadia–Kalaba methodology allow for solv-
ing the fundamental problem of constrained motion of a rigid multibody system by means of a transformation
of the set of index-three differential-algebraic equations into a set of index-one differential-algebraic equations
amenable to be treated as ordinary differential equations. However, in general, this analytical process based
on the Udwadia–Kalaba equations requires the use of a constraint stabilization technique in order to eliminate
the drift phenomenon of the kinematic constraints. The problem of the constraint drift is the violation of the
constraint equations at the position and velocity levels due to the alternative differentiation of the constraint
equations for lowering the index of the differential-algebraic system of equations of motion and obtaining the
standard differential form of the constraint equations. For solving this problem, well-known techniques are
available in the multibody literature such as the Baumgarte stabilization method, the penalty approach, and
the generalized coordinate partitioning technique. As discussed in detail in the numerical results section (Sect.
6) of the paper, in this investigation a numerical procedure based on the generalized coordinate partitioning
technique was used for the stabilization of the algebraic equations that model the kinematic constraint of the
pantograph/catenary rigid multibody system.
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4.4 Pantograph dynamic model

Denoting with m1 the mass of the thrust rod and assuming that the thrust rod has a diagonal inertia matrix
Ī1 = diag

(
Īxx,1, Īyy,1, Īzz,1

)
where Īzz,1 = 1

3m1L2
1, the corresponding mass matrix M1(t) of the thrust rod

can be calculated by using the analytical description of its configuration as follows:

M1(t) = m1JT1 (t)J1(t) + �̄
T
1 (t)Ī1�̄1(t) =

⎡
⎢⎣

4
3m1L2

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ . (57)

The generalized matrix relative to the centrifugal and Coriolis inertia effects of the thrust rod C1(t) can be
computed using the analytical description of the thrust rod configuration as follows:

C1(t) = m1JT1 (t)J̇1(t) = O. (58)

The inertia quadratic velocity vector of the thrust rod Qv,1(t) can be easily derived as:

Qv,1(t) = −C1(t)q̇(t) = 0. (59)

The weight force of the thrust rod Fg,1(t) can be represented in a vector form as:

Fg,1(t) =
⎡
⎣
0
−m1g
0

⎤
⎦ . (60)

The generalized force vector relative to the weight of the thrust rod Qg,1(t) can be computed as follows:

Qg,1(t) = JT1 (t)Fg,1(t) =
⎡
⎢⎣

−m1gL1 cos(θ1(t))
0
0
0

⎤
⎥⎦ . (61)

The previous dynamic equations completely describe the thrust rod inertia and gravitational effects as
functions of the system generalized coordinate vector q(t) and its time derivative q̇(t). The mathematical
descriptions of the inertia terms and of the generalized forces of the components that form the pantograph
multibodymodel can be readily obtained following the procedure described in this section as reported in details
in “Appendix B”.

4.5 Pantograph constraint equations

Since the topological structure of the pantograph is equivalent to a closed chain, the constraint equations can be
readily derived considering simple closed-loop equations. These equations can be easily derived considering
the geometry of the OBCA four-bar linkage shown in Fig. 2 as follows:

r1(B, t) + r2(C, t) + r3(A, t) − r(A) = 0. (62)

The loop equations impose a position-level set of constraint equations on the pantograph generalized
coordinates which can be expressed as follows:

f(t) = 0 (63)

where the constraint vector function f(t) can be computed in terms of the system generalized coordinates as:

f(t) = r1(B, t) + r2(C, t) + r3(A, t) − r(A)

=
[
2L1 cos(θ1(t)) + 2L2 cos(θ2(t)) + 2L3 cos(θ3(t)) − H1
2L1 sin(θ1(t)) + 2L2 sin(θ2(t)) + 2L3 sin(θ3(t)) − H2

]
. (64)

In order to be able to use the Udwadia–Kalaba method, this set of the constraint equations must be recast
in the standard form that allows for computing the explicit expression of the constraint generalized forces by
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means of the fundamental equations of constrained motion. This task can be readily performed computing the
second time derivative of the constraint equations as follows:

f̈(t) = ∂f(t)
∂q(t)

q̈(t) + ∂

∂q(t)

(
∂f(t)
∂q(t)

q̇(t)

)
q̇(t) + 2

∂2f(t)
∂q(t)∂t

q̇(t) + ∂2f(t)
∂t2

= A(t)q̈(t) − b(t). (65)

One can rewrite the previous equations as follows:

A(t)q̈(t) = b(t). (66)

where the system constraint matrix A(t) and the system constraint vector b(t) can be obtained as follows:

A(t) = ∂f(t)
∂q(t)

=
[−2L1 sin(θ1(t)) −2L2 sin(θ2(t)) −2L3 sin(θ3(t)) 0
2L1 cos(θ1(t)) 2L2 cos(θ2(t)) 2L3 cos(θ3(t)) 0

]
(67)

b(t) = − ∂

∂q(t)

(
∂f(t)
∂q(t)

q̇(t)

)
q̇(t) − 2

∂2f(t)
∂q(t)∂t

q̇(t) − ∂2f(t)
∂t2

=
[
2L1 cos(θ1(t))θ̇21 (t) + 2L2 cos(θ2(t))θ̇22 (t) + 2L3 cos(θ3(t))θ̇23 (t)
2L1 sin(θ1(t))θ̇21 (t) + 2L2 sin(θ2(t))θ̇22 (t) + 2L3 sin(θ3(t))θ̇23 (t)

]
. (68)

Employing the analytical expressions of the constraint matrix A(t) and of the constraint vector b(t), the
generalized forces vector relative to the closed-loop constraint equationsQc(t) can be explicitly derived using
the fundamental equations of constrained motion as:

Qc(t) = M1/2(t)
(
A(t)M−1/2(t)

)−1 (
b(t) − A(t)M−1(t)Q(t)

)

= AT (t)
(
A(t)M−1(t)AT (t)

)−1 (
b(t) − A(t)M−1(t)Q(t)

)

= G(t)e(t) (69)

where the constraint matrix G(t) and the constraint vector e(t) are, respectively, defined as follows:
⎧⎨
⎩
G(t) = AT (t)

(
A(t)M−1(t)AT (t)

)−1

e(t) = (
b(t) − A(t)M−1(t)Q(t)

)
.

(70)

The explicit expression of the constraint forces corresponding to the closed-loop constraint equations con-
siderably simplifies themathematical structure of the equations ofmotion of the pantograph/catenarymultibody
system. Furthermore, the analytical form of the dynamic equations of the pantograph/catenary multibody sys-
tem allows for the use of the general methodologies of the optimal control theory for the development of a
nonlinear controller based on the adjoint method.

4.6 Equations of motion of the constrained pantograph

Considering the matrix and vector quantities obtained for the dynamic model of the pantograph/catenary sys-
tem, the equations of motion of this mechanism constrained by kinematic joints can be readily derived using
the methods of Lagrangian dynamics leading to the index-one set of differential-algebraic equations given by
Eq. (50). In Eq. (50),M(t) denotes the total systemmass matrix of the pantograph/catenary multibody system,
Q(t) denotes the total system generalized force vector of the pantograph/catenary multibody system, Qc(t)
denotes the generalized forces vector relative to the closed-chain constraint equations, A(t) denotes the sys-
tem closed-chain constraint matrix, and b(t) denotes the system closed-chain constraint vector. Furthermore,
employing the fundamental equations of the constrained motion based on the Udwadia–Kalaba method, the
equations of motion of the pantograph/catenary multibody system can be rewritten as follows:

M(t)q̈(t) = Q(t) + G(t)e(t) (71)
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where the constraintmatrixG(t) and the constraint vector e(t) are defined in terms of the closed-chain constraint
equations applied on the pantograph/catenary dynamicmodel. From the computational point of view, exploiting
the explicit expressionof the closed-chain constraint forces one canperform the numerical integration of the sys-
tem equations of motion employing an explicit integration method and, subsequently, the algebraic constraint
equations can be enforced at both the position and velocity levels bymeans of a standard constraint stabilization
algorithm. On the other hand, from the control design viewpoint, the compactness of the analytical expression
relative to the closed-chain constraint forces considerably facilitates the synthesis of a nonlinear feedforward
controller employing the iterative adjoint-based control optimization method discussed in the paper.

5 Pantograph nonlinear control

5.1 Elements of optimal control theory

The objective of optimal control theory is to develop analytical methods capable of constructing optimal con-
trol actions. A control law is considered optimal when it is able to satisfy the design constraints imposed on
a given dynamical system. The design constrains are mathematically formulated in terms of a performance
index. Therefore, an optimal controller is a control law that minimizes the performance index formulated
for a nonlinear dynamical system. Consider a dynamical system described by the following set of nonlinear
differential equations:

ż(t) = n(t) (72)

where z(t) denotes the system state vector and n(t) is the nonlinear system state function. The central idea of
the optimal control theory is to find a control action u(t) that minimizes a cost functional Jc that mathematically
describes the goal of the control system [75]. To this end, the mathematical methods of calculus of variations
can be effectively used. The cost functional Jc is a quantitative expression which can be used to determine
the performance of a particular control law u(t) in terms of the prescribed design goals [76]. A general cost
functional can be defined as:

Jc = h(t)|T +
∫ T

0
g(t)dt (73)

where h(t) and g(t) are two analytical functions, respectively, referred to as the terminal cost function and the
current cost function or the cost-to-go function. In the optimal control theory, system state-space equations
(72) are interpreted as a set of dynamic constraints for the minimization problem of the performance index. An
effective approach for the solution of this complex problem is based on the principal analytical techniques of
the calculus of variation. In particular, the variational techniques for the minimization of a functional can be
used employing the Pontryagin minimum principle in order to obtain the necessary conditions which identify
the minimum of the performance index [77]. To this end, the first step consists in adjoining system state-space
equations (72) to cost functional (73) in order to obtain an augmented cost functional J̄c as follows:

J̄c = h(t)|T +
∫ T

0
g(t) + vT (t) (n(t) − ż(t)) dt (74)

where v(t) is a costate or adjoint state vector which contains the Lagrange multipliers that arise from adjoining
the state-space equations of motion (72) to cost functional (73) [78,79]. In order to simplify the mathematical
derivation of the equations for the identification of an optimal control law, the system Hamiltonian function
H(t) can be defined as:

H(t) = g(t) + vT (t)n(t). (75)

According to the Pontryagin minimum principle, an optimal control action u∗(t) is identified by the min-
imum of the Hamiltonian function H∗(t) [80]. In order to obtain the equations which define the minimum
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of the Hamiltonian function, the augmented cost functional J̄c can be expressed in terms of the Hamiltonian
function H(t) by using the integration by parts rule as follows:

J̄c = h(t)|T +
∫ T

0
g(t) + vT (t) (n(t) − ż(t)) dt

= h(t)|T +
∫ T

0
H(t) − vT (t)ż(t)dt

=
(
h(t) − vT (t)z(t)

)∣∣∣
T

+
(
vT (t)z(t)

)∣∣∣
0
+

∫ T

0
H(t) + v̇T (t)z(t)dt . (76)

The first variation of the augmented cost functional J̄c can be written as:

δ J̄c =
⎛
⎝

((
∂h(t)

∂z(t)

)T

− v(t)

)T

δz(t)

⎞
⎠

∣∣∣∣∣∣
T

+
(
vT (t)δz(t)

)∣∣∣
0

+
∫ T

0

((
∂H(t)

∂z(t)

)T

+ v̇(t)

)T

δz(t) + ∂H(t)

∂u(t)
δu(t)dt

=
((

ηT (t) − v(t)
)T

δz(t)
)∣∣∣∣

T
+

(
vT (t)δz(t)

)∣∣∣
0

+
∫ T

0

(
ϕT (t) + AT

c (t)v(t) + v̇(t)
)T

δz(t)

+
(
ψT (t) + BT

c (t)v(t)
)T

δu(t)dt (77)

where Ac(t) and Bc(t) are, respectively, the state function sensitivity matrix with respect to the system state
and the state function sensitivity matrix with respect to the control action, whereas the vectors η(t), ϕ(t),
and ψ(t) denote, respectively, the terminal cost function sensitivity vector with respect to the system state,
the current cost sensitivity vector with respect to the system state, and the current cost sensitivity vector with
respect to the control action. These sensitivity matrices and vectors are explicitly defined as follows:

⎧⎪⎨
⎪⎩
Ac(t) = ∂n(t)

∂z(t) , Bc(t) = ∂n(t)
∂u(t)

η(t) = ∂h(t)
∂z(t) , ϕ(t) = ∂g(t)

∂z(t) , ψ(t) = ∂g(t)
∂u(t) .

(78)

Assuming that the system initial state z0 is known and that the final time T is fixed [81], the necessary condi-
tions for the minimization of the cost functional Jc can be computed employing the fundamental theorem of the
calculus of variation by setting the first variation of the augmented cost functional J̄c equal to zero as follows:

ż(t) = n(t) (79)

v̇(t) = −AT
c (t)v(t) − ϕT (t) (80)

BT
c (t)v(t) + ψT (t) = 0. (81)

It is important to note that the first set of differential equations coincides with the state-space form of
system dynamical equations (72), while the second set of differential equations (80) represents the so-called
costate equations or adjoint state equations [82]. The third set of algebraic equations (81), on the other hand, is
called stationarity conditions. State equations (72) involve a set of initial conditions at the time instant t = 0,
whereas adjoint equations (80) involve a set of terminal conditions at the time instant t = T . Stationary condi-
tions (81) are algebraic equations which identify the minimum of the cost functional [84]. The resulting set of
differential-algebraic equations represents the necessary conditions for solving the constrained minimization
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problem of the cost functional Jc. These equations form a two-point boundary-value problem which can be
recasted in the following compact form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż(t) = n(t), z(t)|0 = z0

v̇(t) = −AT
c (t)v(t) − ϕT (t), v(t)|T = η(t)|T

BT
c (t)v(t) + ψT (t) = 0.

(82)

The set of the system state-space equations together with the adjoint equations constitutes a coupled nonlin-
ear two-point boundary-value problemwhich must be solved in conjunction with the set of algebraic equations
called stationarity conditions. Finding an analytical solution for this complex mathematical problem is chal-
lenging. However, some effective numerical methods are available for obtaining an approximate solution of a
certain class of differential-algebraic nonlinear two-point boundary-value problems. Among these numerical
methods, the adjoint-based control optimization procedure is of interest for this investigation and is discussed
in the next subsection.

5.2 Adjoint method for control optimization

The adjoint method is an iterative method that can be used for numerically solving the nonlinear two-point
boundary-value problem (82) resulting from the minimization of the cost functional Jc. This method is based
on nonlinear optimization techniques and adopts an iterative adjoint-based control optimization approach [85].
In particular, the adjoint method is suitable for performing an effective and efficient computation of a set of
control actions for dynamical systems with a large number of degrees of freedom [86]. The basic idea behind
the adjoint method is to exploit the numerical evaluation of the cost functional gradientGc(t) in the minimiza-
tion process of the cost functional Jc. By doing so, the nonlinear control optimization problem can iteratively
solved employing well-known numerical techniques for the minimization of multivariable functions [87]. For
this purpose, the adjoint-based optimization procedure starts from a trial time history of the desired control
action u0. Subsequently, using the current estimation of the time history of the control action uk (or the initial
trial guess of the control action u0 at the first iteration), the system state equations (72) and the system adjoint
equations (80) are solved numerically performing, respectively, a forward and a backward marching on the
time grid. The results of this process are a trial time history of the system state zk and a trial time history of the
adjoint vector vk . In general, the time history of the cost functional gradientGk

c corresponding to the estimated
time histories of the system state zk and to the system costate vk is different from zero. Therefore, since in a
general step of this iterative method the numerical solution for the control action does not correspond to the
cost functional minimum, the computation of the cost functional gradient Gk

c can be used in the minimization
procedure of the cost functional in order to identify the direction of the minimum. In particular, the time history
of the cost functional gradientGk

c can be computed explicitly from stationary equations (81) once that the time
history of the system state zk and the time history of the adjoint state vk are known as follows:

Gk
c =

(
Bk
c

)T
vk +

(
ψk

)T
(83)

where Bk
c and ψk denote, respectively, the time history of the state function sensitivity matrix computed with

respect to the control action and the time history of the current cost sensitivity vector computed with respect
to the control action. The time history of the cost functional gradient Gk

c can be used in an iterative gradient-
based optimization algorithm in order to gradually improve the estimation of the optimal time history of the
control action uk . By doing so, the minimization procedure is automatically directed toward the minimum of
the cost functional which corresponds to the solution of the control optimization problem [88]. In particular,
the minimization algorithms based on a line search strategy make use of a time history of a prescribed descent
direction ek . Thedescent direction ek is used for the computationof theminimumof the cost functional bymeans
of a line search algorithm. The research of theminimumalong this direction allows for improving the estimation
of the numerical solution of the optimization problem from the current time history of the control action uk

to the next time history of the control action uk+1 which corresponds to a lower value of the cost functional.
Therefore, the time history of the control action can be iteratively updated using a line searchmethod as follows:

uk+1 = uk + αkek (84)
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where αk is a line parameter which represents the length of the step corresponding to the current iteration.
Several minimization methods based on a line search strategy are available in the literature. In general, the
minimization algorithms based on a line search strategy differ from each other on the method used for the
computation of the time history of the descent direction ek . However, all the methods for computing the vector
of descent direction ek are based on the use of the time history of the cost functional gradient. The solution
for the length of the step αk of the line search can be readily found employing a minimum search algorithm
for functions of one variable as follows:

αk = argmin
α

(Jc) . (85)

The complete numerical procedure for the computer implementation of the iterative adjoint-based control
optimization method can be summarized as follows:

– Step 1—Direct problem solution: Use the current time history of the optimal controller uk (or a trial time
history u0 for the control action at the first iteration) for numerically solving forward in time system state-
space equations (72) using as boundary conditions the assigned set of initial conditions z|0 = z0. This
computational step leads to the determination of the current state trajectory zk . To this end, explicit or
implicit Runge–Kutta methods can be used.

– Step 2—Adjoint problem solution: Use the current state trajectory zk for numerically solving backward in
time the system adjoint state equations (80) using as boundary conditions the set of terminal conditions
v(t)|T = η(t)|T . This computational step leads to the determination of the current adjoint state trajectory
vk . To this end, explicit or implicit Runge–Kutta methods can be used.

– Step 3—Gradient computation: Employing the explicit expression (83) originating from the stationary
equations (81), use the current state trajectory zk and the current adjoint state trajectory vk to compute the
current time history of the cost functional gradient Gk

c .
– Step 4—Search direction computation: use the current time history of the cost functional gradient Gk

c for
the computation of the current time history of the search direction ek . To this end, the steepest descent
method, conjugate gradient methods, or quasi-Newton methods can be used.

– Step 5—Initial guess computation: Compute an initial guess of the step length α0 for the initialization of
the minimum search algorithm based on a line search. To this end, the Taylor series method can be used.

– Step 6—Bracketing: Use the initial guess for the length of the minimization step α0 for performing the
bracketing of the minimum of the cost functional Jc in an interval a0, b0, and c0 along the time history of
the search direction ek . To this end, the Fibonacci method or the golden section method can be used.

– Step 7—Minimization: Use the bracketed interval identified by the triplet a0, b0, and c0 for the minimiza-
tion of the cost functional Jc along the time history of the search direction ek . This computational step leads
to the determination of the step length αk corresponding to the local minimum of the cost functional. In this
computational step, the time history of the control action uk+1 is updated using a line search strategy (84).
To this end, the Fibonacci search method, the golden section search method, or the Brent search method
can be used. If the convergence criterion of the iterative procedure is not satisfied, restart from step 1.

The numerical solution of the nonlinear two-point boundary-value problem given by Eq. (82) provides
the optimal time history of the control action u∗, the optimal time history of the system state trajectory z∗,
and the optimal time history of the adjoint state trajectory v∗ corresponding to the minimum value of the cost
functional J ∗

c . As shown in the numerical results section (Sect. 6), the adjoint method for optimal control is
used in this paper for the determination of an optimal feedforward controller for the reduction in the contact
force between the pantograph pan-head and the catenary wire.

5.3 Pantograph state-space model

The dynamicmodel of the pantographmultibodymechanical system can be readily converted from the second-
order configuration-space representation given by Eq. (71) to the first-order state-space representation given
by Eq. (72) by using the analytical approach developed in the paper. To this end, one can define the following
state vector:

z(t) =
[
q(t)
q̇(t)

]
. (86)
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By doing so, one obtains the following explicit definition of the nonlinear state function for the panto-
graph/catenary system:

n(t) =
[
q̇(t)
a(t) + F(t)e(t)

]
. (87)

Since by using the proposed analytical approach the state function n(t) of the pantograph mechanism is
written in a closed form, one can readily apply the adjoint method for the numerical calculation of an optimal
open-loop control action for regulating the pantograph/catenary interaction.

6 Numerical results and discussion

6.1 Numerical integration of the multibody equations of motion

Themechanicalmodel of the pantograph/catenarymultibody systemdiscussed in the paperwas implemented in
a general-purposemultibody code developed by the authors in theMATLAB simulation environment. By doing
so, several numerical simulations were performed to validate the proposed model in different dynamic sce-
narios that reproduce the pantograph/catenary interaction. In particular, the computational procedure utilized
for performing the numerical simulations presented in this section belongs to the broad class of the numerical
methods for the dynamic simulations of multibody mechanical systems. This class of computational method-
ologies exploits both the differential index reduction strategy and the constraint stabilization technique based
on the projection algorithm for the orthogonalization of the algebraic equations associated with the kinematic
joints. To this end, the computational procedure adopted in the paper considers an effective combination of the
classical fourth-order explicit Runge–Kutta method, which is used for the timemarching of the numerical solu-
tion, with the generalized coordinate partitioning technique, which is employed for eliminating the violations
of the constraint equations. An effective and efficient combination of this two important computationalmethods
can be performed with use of the Udwadia–Kalaba method for deriving the generalized constraint forces in an
explicit form [89]. In particular, the procedure employed in this paper for the numerical integration of the system
equations of motion consists of two stages that are repeated at each time step of the numerical simulation. In the
first step of the computational algorithm employed in this work, a fourth-order explicit Runge–Kutta method
with fixed time step is implemented in order to march forward in time the numerical solution of the equations
of motion. In the second step of the computational procedure used in this paper, the system state resulting from
the time marching of the equations of motion is partitioned in dependent and independent coordinates and,
subsequently, the constraint equations are enforced numerically at both the position and velocity levels. The
enforcement of the kinematic constraints is achieved first by projecting the dependent generalized coordinates
onto the manifold of the numerical solution for the constraint equations at the position level and, subsequently,
by solving a system of linear algebraic equations associated with the dependent generalized velocities for the
constraint equations at the velocity level [90]. To this end, a customized Newton–Raphson iterative procedure
is used for imposing the constraint equations at the position level and the standard LU factorization with
the Gaussian elimination and backward substitution is employed for imposing the constraint equations at the
velocity level. Therefore, the computational method used in this paper leads to an approximate solution of the
nonlinear set of the pantograph/catenary equations of motion that is physically correct and numerically stable.

6.2 Numerical simulations of the pantograph dynamics

The numerical results reported in this subsection show a set of numerical simulations performed using the
computational procedure for the numerical solution of the differential-algebraicmultibody equations ofmotion
described previously. All the numerical simulations discussed in this subsection are performed without con-
sidering the control input, and therefore, they correspond to the regular operating conditions of the panto-
graph/catenary multibody system. The time step used for the numerical simulations is equal to �t =0.020 (s),
whereas the time span considered for the dynamic analysis is T = 10.000 (s). In this scenario, the time evolu-
tion of the angle of rotation and of the angular velocity of the thrust rod is represented, respectively, in Figs. 3a
and 4a; the time evolution of the angle of rotation and of the angular velocity of the crank is represented,
respectively, in Figs. 5a and 6a; the time evolution of the angle of rotation and of the angular velocity of the
lower arm is represented, respectively, in Figs. 7a and 8a; the time evolution of the displacement and of the
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(a) Uncontrolled motion. (b) Controlled motion.

Fig. 3 Thrust rod angular displacement
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(a) Uncontrolled motion. (b) Controlled motion.

Fig. 4 Thrust rod angular velocity

velocity of the pan-head is represented, respectively, in Figs. 9a and 10a; and the time evolution of the contact
force between the pantograph system and the catenary wire is represented in Fig. 11a. Since in this scenario
the magnitude of the contact force is considered too large, thereby leading to an excessive wear of the contact
components that form the pantograph pan-head, a control action needs to be designed in order to decrease the
amplitude of the contact force which arises from the pantograph/catenary interaction.

6.3 Optimal control design

The computational procedure used for the optimal synthesis of the control action makes use of the adjoint-
based numerical procedure developed in this work. In particular, a feedforward controller is designed by using
the iterative adjoint-based control optimization method. The purpose of the feedforward controller designed
in this paper is twofold. First, the control strategy must reduce the mechanical vibrations of the pantograph
multibody system induced by the moving support that simulates the external action of the catenary wire. At
the same time, the function of the control action is to attenuate the contact force arising from the interaction of
the pantograph pan-head and the catenary wire which is modeled by using the moving support. The reduction
in the contact force must be such that the mean value of the contact force is not affected because it must guar-
antee the correct functioning conditions of the multibody system, which are based on the contact between the
pantograph pan-head and the catenary wire. For the problem at hand, the contact force between the pantograph
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Fig. 5 Crank angular displacement
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Fig. 6 Crank angular velocity
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Fig. 8 Lower arm angular velocity
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Fig. 11 Pantograph/catenary contact force

and the catenary F(t) can be modeled as follows:

F(t) = −k3 (H0 + s(t) − 2L1 sin(θ1(t)) − 2L2 sin(θ2(t)))

− k3 (−2L4 sin(θ2(t) − β) − x(t))

− r3
(
ṡ(t) − 2L1 cos(θ1(t))θ̇1(t) − 2L4 cos(β − θ2(t))θ̇2(t)

)

− r3
(−2L2 cos(θ2(t))θ̇2(t) − ẋ(t)

)
. (88)

In this investigation, the terminal cost function h(t) is designed as follows:

h(t) = 1

2
(z(t) − z̃(t))TQT (t) (z(t) − z̃(t))

= 1

2

(
QT,1(t)

(
θ1(t) − θ̃1(t)

)2 + QT,2(t)
(
θ2(t) − θ̃2(t)

)2)

+ 1

2

(
QT,3(t)

(
θ3(t) − θ̃3(t)

)2 + QT,4(t)(x1(t) − x̃1(t))
2
)

+ 1

2

(
QT,5(t)

(
θ̇1(t) − ˙̃

θ1(t)
)2 + QT,6(t)

(
θ̇2(t) − ˙̃

θ2(t)
)2)

+ 1

2

(
QT,7(t)

(
θ̇3(t) − ˙̃

θ3(t)
)2 + QT,8(t)

(
ẋ1(t) − ˙̃x1(t)

)2)
(89)

where QT (t) = diag(QT,1(t), QT,2(t), QT,3(t), QT,4(t), QT,5(t), QT,6(t), QT,7(t), QT,8(t)) is a diagonal
weight matrix which characterizes the structure of the terminal cost function h(t). On the other hand, the
cost-to-go function g(t) is designed as:

g(t) = 1

2
(z(t) − z̃(t))TQz(t) (z(t) − z̃(t))

+ 1

2
(u(t) − ũ(t))TQu(t) (u(t) − ũ(t))

+ 1

2

(
F(t) − F̃(t)

)T
QF(t)

(
F(t) − F̃(t)

)

= 1

2

(
Qz,1(t)

(
θ1(t) − θ̃1(t)

)2 + Qz,2(t)
(
θ2(t) − θ̃2(t)

)2)

+ 1

2

(
Qz,3(t)

(
θ3(t) − θ̃3(t)

)2 + Qz,4(t)(x1(t) − x̃1(t))
2
)
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+ 1

2

(
Qz,5(t)

(
θ̇1(t) − ˙̃

θ1(t)
)2 + Qz,6(t)

(
θ̇2(t) − ˙̃

θ2(t)
)2)

+ 1

2

(
Qz,7(t)

(
θ̇3(t) − ˙̃

θ3(t)
)2 + Qz,8(t)

(
ẋ1(t) − ˙̃x1(t)

)2)

+ 1

2
Qu(t)(u(t) − ũ(t))2 + 1

2
QF(t)

(
F(t) − F̃(t)

)2
(90)

where Qz(t) = diag(Qz,1(t), Qz,2(t), Qz,3(t), Qz,4(t), Qz,5(t), Qz,6(t), Qz,7(t), Qz,8(t)), Qu(t) = Qu(t),
and QF(t) = QF(t) are diagonal weight matrices which characterize the structure of the current cost function
g(t). The terminal cost sensitivity vector with respect to the system state η(t) can be readily derived calculating
the Jacobian matrix of the terminal cost function h(t) with respect to the system state z(t), whereas the current
cost sensitivity vector with respect to the system state ϕ(t) can be readily derived calculating the Jacobian
matrix of the current cost function g(t) with respect to the system state z(t). The current cost sensitivity vector
with respect to the control action ψ(t) can be readily derived calculating the Jacobian matrix of the current
cost function g(t) with respect to the control action u(t). Employing the terminal cost sensitivity vector η(t)
and the current cost sensitivity vectors ϕ(t) and ψ(t), the synthesis of a feedforward controller can be per-
formed by using the proposed adjoint-based computational procedure leading an optimal control action and
to a corresponding optimal evolution of the system state vector.

6.4 Feedforward controller synthesis

The feedforward controller represents an open-loop controller which is designed employing the iterative
adjoint-based control optimization method discussed in this paper. The goal of the control system is to penal-
ize the deviation of the pantograph/catenary contact force from the desired set point in order to minimize
the wear of the pantograph contact elements and, at the same time, obtaining a reduction in the mechanical
vibrations of the pantograph mechanism. The control scheme which describes how the feedforward controller
operates on the dynamical system that models the pantograph/catenary interaction is represented in Fig. 12.
In particular, the weight matrices which characterize the cost functions are set as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

QT (t) = diag
(
102, 102, 102, 102, 102, 102, 102, 102

)

Qz(t) = diag
(
102, 102, 102, 102, 102, 102, 102, 102

)

Qu(t) = 10−2, QF(t) = 102

(91)

whereQT (t) denotes the final state weight matrix,Qz(t) denotes the current state weight matrix,Qu(t) denotes
the control weight matrix, and QF(t) denotes the interaction force weight matrix. For the design of the feed-
forward controller, the reference trajectory, the reference control action, and the reference interaction force are
set equal to constant values as follows:

z̃(t) = 0, ũ(t) = 0, F̃(t) = −30 (92)

where z̃(t) denotes the reference trajectory, ũ(t) denotes the reference control action, and F̃(t) denotes the
reference magnitude of the contact force arising from the pantograph/catenary interaction. The iterative con-
vergence of the cost functional toward the minimum achieved by the adjoint-based numerical procedure is
represented in Fig. 13a. The feedforward controller resulting from the adjoint-based optimization process is
represented in Fig. 13b. When the designed feedforward controller acts on the pantograph/catenary multibody
system, the time evolution of the angle of rotation and of the angular velocity of the thrust rod is represented,
respectively, in Figs. 3b and 4b; the time evolution of the angle of rotation and of the angular velocity of the
crank is represented, respectively, in Figs. 5b and 6b; the time evolution of the angle of rotation and of the
angular velocity of the lower arm is represented, respectively, in Figs. 7b and 8b; the time evolution of the
displacement and of the velocity of the pan-head is represented, respectively, in Figs. 9b and 10b; the time evo-
lution of the contact force between the pantograph and the catenary is represented in Fig. 11b. All these figures
show that the feedforward controller produces a considerable amplitude reduction in the system interaction
force between the pantograph pan-head and the catenary wire without affecting the mean value of the contact
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FEEDFORWARD
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Fig. 12 Block diagram of the feedforward control scheme
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Fig. 13 Control optimization

force. These amplitude reductions can be quantified by comparing the mean values and the standard deviation
values of the interaction force with and without the action of the optimal feedforward controller as follows:

⎧⎪⎨
⎪⎩

μF = μF,u−μF,c
μF,u

= 1.036%

λF = λF,u−λF,c
λF,u

= 82,064%
(93)

where μσ,u and λσ,u denote, respectively, the mean values and the standard deviation values of the contact
force of the pantograph/catenary multibody system when there is no control action, whereas μσ,c and λσ,c
denote, respectively, the mean values and the standard deviation values of the system interaction force when
the optimal feedforward controller designed by using the adjoint-based control optimization procedure acts
on the system. The numerical values of the parameters used in Eq. (93) are also reported in Table 2 in order
to further illustrate the effectiveness of the analytical and numerical approach developed in this work. In a
similar manner, the numerical results reported in Table 3 show the percentage reductions in the mean and the
standard deviation values of all the state variables (generalized coordinates) that define the evolution in time
of the pantograph/catenary system with and without the action of the control system. As shown in Table 3,
only the amplitudes of the vibrations of the degrees of freedom x(t) are increased, while the vibrations of the
other degrees of freedom are reduced by the action of the feedforward controller. This behavior can be simply
explained considering the fact that the control actuator u(t) is collocated on the degree of freedom x(t). On
the other hand, it is worth to note the similarities of the time histories of the generalized coordinates θ1(t) and
θ3(t) as well as their time derivatives θ̇1(t) and θ̇3(t) represented in Figs. 3a, 4a, 7a, and 8a, which are referred
to the case in which there is no control action, and the similarities of the time histories represented in Figs. 3b,
4b, 7b and 8b, which are referred to the case in which the control law is active. As mentioned before, these
similarities in the plots appear in the scenario in which the pantograph/catenary system is uncontrolled and
also in the scenario in which the optimal feedforward control force is applied to the multibody system. The
explanation of this phenomenon can be formulated in terms of simple geometric considerations by observing
Fig. 2. Observing Fig. 2, one can notice that the bodies 1 and 3 that form the pantograph system are almost
parallel links and belong to a four-bar linkage identified by the points O , B, C , and A. Consequently, the
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Table 2 Comparison of the contact force parameters

Contact force mean Contact force standard deviation

Uncontrolled motion μF,u = − 29.570 (N) λF,u = 15.602 (N)
Controlled motion μF,c = − 29.876 (N) λF,c = 2.798 (N)
Percentage reduction μF = 1.036 (%) λF = 82.064 (%)

Table 3 Comparison of the generalized coordinate parameters

Generalized coordinate mean Generalized coordinate standard deviation Percentage reduction

Angular displacement θ1

{
μθ1,u = 2.351 (rad)
μθ1,c = 2.342 (rad)

{
λθ1,u = 2.867 × 10−2 (rad)
λθ1,c = 2.032 × 10−2 (rad)

{
μθ1 = 0.375 (%)
λθ1 = 29.132 (%)

Angular displacement θ2

{
μθ2,u = 9.232 × 10−1 (rad)
μθ2,c = 9.312 × 10−1 (rad)

{
λθ2,u = 2.529 × 10−2 (rad)
λθ2,c = 1.836 × 10−2 (rad)

{
μθ2 = −0.868 (%)
λθ2 = 27.410 (%)

Angular displacement θ3

{
μθ3,u = −6.509 × 10−1 (rad)
μθ3,c = −6.580 × 10−1 (rad)

{
λθ3,u = 2.338 × 10−2 (rad)
λθ3,c = 1.649 × 10−2 (rad)

{
μθ3 = −1.099 (%)
λθ3 = 29.471 (%)

Displacement x

{
μx,u = 1.231 × 10−1 (m)

μx,c = 1.005 × 10−1 (m)

{
λx,u = 7.744 × 10−2 (m)

λx,c = 8.780 × 10−2 (m)

{
μx = 18.333 (%)
λx = −13.374 (%)

Angular velocity θ̇1

{
μθ̇1,u = −2.012 × 10−3 (rad/s)
μθ̇1,c = 1.327 × 10−3 (rad/s)

{
λθ̇1,u = 1.452 × 10−1 (rad/s)
λθ̇1,c = 3.662 × 10−2 (rad/s)

{
μθ̇1

= 34.028 (%)

λθ̇1
= 74.784 (%)

Angular velocity θ̇2

{
μθ̇2,u = 1.790 × 10−3 (rad/s)
μθ̇2,c = −1.069 × 10−3 (rad/s)

{
λθ̇2,u = 1.282 × 10−1 (rad/s)
λθ̇2,c = 3.322 × 10−2 (rad/s)

{
μθ̇2

= 40.266 (%)

λθ̇2
= 74.108 (%)

Angular velocity θ̇3

{
μθ̇3,u = −1.638 × 10−3 (rad/s)
μθ̇3,c = 1.101 × 10−3 (rad/s)

{
λθ̇3,u = 1.184 × 10−1 (rad/s)
λθ̇3,c = 2.970 × 10−2 (rad/s)

{
μθ̇3

= 32.760 (%)

λθ̇3
= 74.919 (%)

Velocity ẋ

{
μẋ,u = 9.146 × 10−3 (m/s)
μẋ,c = 1.246 × 10−2 (m/s)

{
λẋ,u = 5.328 × 10−1 (m/s)
λẋ,c = 6.334 × 10−1 (m/s)

{
μẋ = −36.193 (%)
λẋ = −18.869 (%)

angles of rotation θ1(t) and θ3(t), which are, respectively, associated with the bodies 1 and 3 exhibit a similar
dynamic behavior. However, as expected, the ranges of the plots relative to the time evolutions of the bodies
1 and 3 are different because the initial values of the two angles of rotation θ1(t) and θ3(t) are not the same.
The numerical results presented in this subsection clearly demonstrate that the twofold goal of reducing the
mechanical vibrations of the pantograph/catenary multibody system as well as reducing the amplitude of the
contact force between these two components without affecting the contact force reference value is achieved
by the action of the feedforward controller developed in this paper.

7 Summary, conclusions, and future work

The main goal of the research of the authors is to develop new, effective, and efficient methods for the anal-
ysis of multibody mechanical systems, the synthesis of optimal controllers for nonlinear dynamical systems
having an underactuated structure, and the identification of the unknown parameters of mathematical models
of physical systems based on experimental data. Thus, this work is part of a broader research plan devised by
the authors which is focused on the combined use of the analytical and numerical techniques of three different
fields of research, namely multibody dynamics, system identification, and nonlinear control.

One of the primary research objectives of the authors is to find effective analytical methods and effi-
cient numerical procedures for solving the nonlinear control problem associated with the dynamic behavior of
mechanical systems constrained by kinematic joints and subjected to nonlinear excitation forces. To this end, the
analytical methods of multibody system dynamics allow for developing a dynamical model capable of describ-
ing the physics of the phenomenon of interest even in the case of a complex mechanical system composed of a
large number of bodies connected by kinematic pairs. The principal analytical techniques developed in the field
of multibody dynamics that are of interest for the authors are the methods based on the reference point coordi-
nates, which ware used in this investigation, and the approaches based on the natural absolute coordinates that
will be employed in future research work [91–93]. The numerical techniques of system identification, on the
other hand, are able to derive the numerical values of the parameters of a complexmodel by using realistic input
and output experimental datasets as well as to take into account the flexibility of some components of themodel
leading to an identified set of normal modes, natural frequencies, and damping ratios. In the field of system
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identification, the authors found particularly useful the linearmethods based on time domain techniques and the
nonlinear strategies based on the concept of the series expansion [94–96]. Finally, once that a reliable mechan-
ical model has been developed, one can adopt the methods of nonlinear control in order to influence the time
evolution of themechanical systemof interest bymeans of open-loop (feedforward) and closed-loop (feedback)
control actions for obtaining the desired dynamic behavior. In the field of nonlinear control, twomethods are of
particular interest for the authors, namely the nonlinear optimization techniques basedon the adjointmethod and
the inverse dynamics approach based on theUdwadia–Kalaba equations [97–100]. The smart combination of all
the methods mentioned before allows for addressing complex engineering problems such as the control of the
contact force arising from the pantograph/catenary interaction that is of interest for the present study. The origi-
nalmotivations and the subsequent development of this paper are, therefore, grounded in this sound background
experience. In particular, in this investigation, a rigid multibody model of the pantograph/catenary system was
developed and an optimal feedforward controller for the reduction of the contact force originating from the
pantograph/catenary interaction was designed. It was shown in the paper that the use of a control actuator pro-
grammedemploying anonlinear active control strategy and collocatedbetween the pantographpan-head and the
tip of the pantograph upper arm can effectively improve the contact quality of the pantograph/catenary system.

The first important contribution of this paper is the development of a closed-chain multibody model of the
pantograph mechanism. In particular, the analytical approach employed in this investigation was based on the
use of the fundamental equations of constrained motion for enforcing the constraint equations which appear
in the multibody model of the pantograph/catenary system. These equations represent a fundamental method
of analytical mechanics based on the Udwadia–Kalaba formulation. The Udwadia–Kalaba equations allow for
eliminating the Lagrangemultipliers from the equations ofmotion of a constrainedmultibody system. By doing
so, the equations of motion of a general multibody system are transformed from a set of differential-algebraic
equations (DAEs) into a set of ordinary differential equations (ODEs) in which the generalized constraint
forces are modeled as nonlinear force fields. Thus, the Udwadia–Kalaba equations allow for computing the
generalized constraint forces associated with the kinematic constraints of a multibody system in a closed form.
Another important contribution of the paper is the use of the adjoint method for the development of an optimal
nonlinear controller that can be used for the reduction in the contact force between the pantograph and the
catenary. For this purpose, an optimal control law based on an open-loop architecture was designed in the paper
using an iterative adjoint-based control optimization methodology. The goal of the feedforward controller was
to improve the contact quality between the pantograph strips and the catenary wire. The adjoint-based opti-
mization method is a numerical methodology capable of finding an optimal time history of the control action
which corresponds to the minimum of a prescribed cost functional that represents the design goals prescribed
by the analyst. In particular, this numerical procedure combines in an effective and efficient way a nonlinear
conjugate gradient algorithm with the adjoint-based computation strategy for the determination of the gradient
of the cost functional. The analytical derivation and the computational steps of the adjoint-based numerical
procedure used for the determination of an optimal controller were described in detail in the paper.
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Appendix A

In this appendix, the mathematical descriptions of the geometric configurations of the components that form
the pantograph multibody model are reported.
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A.1 Crank geometric configuration

A2(t) =
⎡
⎣
cos(θ2(t)) − sin(θ2(t)) 0
sin(θ2(t)) cos(θ2(t)) 0
0 0 1

⎤
⎦ (94)

R2(t) =
⎡
⎣
2L1 cos(θ1(t)) + L2 cos(θ2(t))
2L1 sin(θ1(t)) + L2 sin(θ2(t))
0

⎤
⎦ (95)

r2(P2, t) =
⎡
⎣
2L1 cos(θ1(t)) + (L2 + x̄2(P2)) cos(θ2(t))
2L1 sin(θ1(t)) + (L2 + x̄2(P2)) sin(θ2(t))
0

⎤
⎦ (96)

ω̄2(t) =
⎡
⎣
0
0
θ̇2(t)

⎤
⎦ (97)

J2(t) =
⎡
⎣

−2L1 sin(θ1(t)) −L2 sin(θ2(t)) 0 0
2L1 cos(θ1(t)) L2 cos(θ2(t)) 0 0
0 0 0 0

⎤
⎦ (98)

L2(P2, t) =
⎡
⎣

−2L1 sin(θ1(t)) − (L2 + x̄2(P2)) sin(θ2(t)) 0 0
2L1 cos(θ1(t)) (L2 + x̄2(P2)) cos(θ2(t)) 0 0
0 0 0 0

⎤
⎦ (99)

�̄2(t) =
⎡
⎣
0 0 0 0
0 0 0 0
0 1 0 0

⎤
⎦ . (100)

A.2 Lower arm geometric configuration

A3(t) =
⎡
⎣
cos(θ3(t)) − sin(θ3(t)) 0
sin(θ3(t)) cos(θ3(t)) 0
0 0 1

⎤
⎦ (101)

R3(t) =
⎡
⎣
2L1 cos(θ1(t)) + 2L2 cos(θ2(t)) + L3 cos(θ3(t))
2L1 sin(θ1(t)) + 2L2 sin(θ2(t)) + L3 sin(θ3(t))
0

⎤
⎦ (102)

r3(P3, t) =
⎡
⎣
2L1 cos(θ1(t)) + 2L2 cos(θ2(t)) + (L3 + x̄3(P3)) cos(θ3(t))
2L1 sin(θ1(t)) + 2L2 sin(θ2(t)) + (L3 + x̄3(P3)) sin(θ3(t))
0

⎤
⎦ (103)

ω̄3(t) =
⎡
⎣
0
0
θ̇3(t)

⎤
⎦ (104)

J3(t) =
⎡
⎣

−2L1 sin(θ1(t)) −2L2 sin(θ2(t)) −L3 sin(θ3(t)) 0
2L1 cos(θ1(t)) 2L2 cos(θ2(t)) L3 cos(θ3(t)) 0
0 0 0 0

⎤
⎦ (105)

L3(P3, t) =
⎡
⎣

−2L1 sin(θ1(t)) −2L2 sin(θ2(t)) − (L3 + x̄3(P3)) sin(θ3(t)) 0
2L1 cos(θ1(t)) 2L2 cos(θ2(t)) (L3 + x̄3(P3)) cos(θ3(t)) 0
0 0 0 0

⎤
⎦ (106)

�̄3(t) =
⎡
⎣
0 0 0 0
0 0 0 0
0 0 1 0

⎤
⎦ . (107)
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A.3 Upper arm geometric configuration

A4(t) =
⎡
⎣
cos(θ2(t) − β) − sin(θ2(t) − β) 0
sin(θ2(t) − β) cos(θ2(t) − β) 0
0 0 1

⎤
⎦ (108)

R4(t) =
⎡
⎣
2L1 cos(θ1(t)) + 2L2 cos(θ2(t)) + L4 cos(θ2(t) − β)
2L1 sin(θ1(t)) + 2L2 sin(θ2(t)) + L4 sin(θ2(t) − β)
0

⎤
⎦ (109)

r4(P4, t) =
⎡
⎣
2L1 cos(θ1(t)) + 2L2 cos(θ2(t)) + (L4 + x̄4(P4)) cos(θ2(t) − β)
2L1 sin(θ1(t)) + 2L2 sin(θ2(t)) + (L4 + x̄4(P4)) sin(θ2(t) − β)
0

⎤
⎦ (110)

ω̄4(t) =
⎡
⎣
0
0
θ̇2(t)

⎤
⎦ (111)

J4(t) =
⎡
⎣

−2L1 sin(θ1(t)) −2L2 sin(θ2(t)) − L4 sin(θ2(t) − β) 0 0
2L1 cos(θ1(t)) 2L2 cos(θ2(t)) + L4 cos(θ2(t) − β) 0 0
0 0 0 0

⎤
⎦ (112)

L4(P4, t) =
⎡
⎣

−2L1 sin(θ1(t)) −2L2 sin(θ2(t)) − (L4 + x̄4(P4)) sin(θ2(t) − β) 0 0
2L1 cos(θ1(t)) 2L2 cos(θ2(t)) + (L4 + x̄4(P4)) cos(θ2(t) − β) 0 0
0 0 0 0

⎤
⎦ (113)

�̄4(t) =
⎡
⎣
0 0 0 0
0 0 0 0
0 1 0 0

⎤
⎦ . (114)

A.4 Pan-head geometric configuration

u5(t) =
⎡
⎣
0
x(t)
0

⎤
⎦ (115)

R5(t) =
⎡
⎣
2L1 cos(θ1(t)) + 2L2 cos(θ2(t)) + 2L4 cos(θ2(t) − β)
2L1 sin(θ1(t)) + 2L2 sin(θ2(t)) + 2L4 sin(θ2(t) − β) + x(t)
0

⎤
⎦ (116)

J5(t) =
⎡
⎣

−2L1 sin(θ1(t)) −2L2 sin(θ2(t)) − L4 sin(θ2(t) − β) 0 0
2L1 cos(θ1(t)) 2L2 cos(θ2(t)) + L4 cos(θ2(t) − β) 0 1
0 0 0 0

⎤
⎦ . (117)

Appendix B

In this appendix, the mathematical descriptions of the inertia terms and of the generalized forces of the com-
ponents that form the pantograph multibody model are reported.
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B.1 Crank inertia terms and generalized forces

M2(t) =

⎡
⎢⎢⎣
4m2L2

1 2L1L2m2 cos(θ1(t) − θ2(t)) 0 0
2L1L2m2 cos(θ1(t) − θ2(t))

4
3m2L2

2 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (118)

C2(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 2L1L2m2θ̇2(t)
· sin(θ1(t) − θ2(t))

0 0

−2L1L2m2θ̇1(t)
· sin(θ1(t) − θ2(t))

0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(119)

Qv,2(t) =
⎡
⎢⎣

−2L1L2m2 sin(θ1(t) − θ2(t))θ̇22 (t)
2L1L2m2 sin(θ1(t) − θ2(t))θ̇21 (t)
0
0

⎤
⎥⎦ (120)

Qg,2(t) =
⎡
⎢⎣

−2m2gL1 cos(θ1(t))
−m2gL2 cos(θ2(t))
0
0

⎤
⎥⎦ . (121)

B.2 Lower arm inertia terms and generalized forces

M3(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4m3L2
1

4L1L2m3
· cos(θ1(t) − θ2(t))

2L1L3m3
· cos(θ1(t) − θ3(t))

0

4L1L2m3
· cos(θ1(t) − θ2(t))

4m3L2
2

2L2L3m3
· cos(θ2(t) − θ3(t))

0

2L1L3m3
· cos(θ1(t) − θ3(t))

2L2L3m3
· cos(θ2(t) − θ3(t))

4
3m3L2

3 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(122)

C3(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 4L1L2m3θ̇2(t)
· sin(θ1(t) − θ2(t))

2L1L3m3θ̇3(t)
· sin(θ1(t) − θ3(t))

0

−4L1L2m3θ̇1(t)
· sin(θ1(t) − θ2(t))

0 2L2L3m3θ̇3(t)
· sin(θ2(t) − θ3(t))

0

−2L1L3m3θ̇1(t)
· sin(θ1(t) − θ3(t))

−2L2L3m3θ̇2(t)
· sin(θ2(t) − θ3(t))

0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(123)

Qv,3(t) =

⎡
⎢⎢⎣

−4L1L2m3 sin(θ1(t) − θ2(t))θ̇22 (t) − 2L1L3m3 sin(θ1(t) − θ3(t))θ̇23 (t)
4L1L2m3 sin(θ1(t) − θ2(t))θ̇21 (t) − 2L2L3m3 sin(θ2(t) − θ3(t))θ̇23 (t)
2L1L3m3 sin(θ1(t) − θ3(t))θ̇21 (t) + 2L2L3m3 sin(θ2(t) − θ3(t))θ̇22 (t)
0

⎤
⎥⎥⎦ (124)

Qg,3(t) =
⎡
⎢⎣

−2m3gL1 cos(θ1(t))
−2m3gL2 cos(θ2(t))
−m3gL3 cos(θ3(t))
0

⎤
⎥⎦ . (125)
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B.3 Upper arm inertia terms and generalized forces

M4(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4m4L2
1

4L1L2m4
· cos(θ1(t) − θ2(t))

+2L1L4m4
· cos(θ1(t) − θ2(t) + β)

0 0

4L1L2m4
· cos(θ1(t) − θ2(t))

+2L1L4m4
· cos(θ1(t) − θ2(t) + β)

4
3m4L2

4 + 4m4L2
2+4m4L2L4 cos(β)

0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(126)

C4(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

4L1L2m4θ̇2(t)
· sin(θ1(t) − θ2(t))

+2L1L4m4θ̇2(t)
· sin(θ1(t) − θ2(t) + β)

0 0

−4L1L2m4θ̇1(t)
· sin(θ1(t) − θ2(t))

−2L1L4m4θ̇1(t)
sin(θ1(t) − θ2(t) + β)

0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(127)

Qv,4(t) =

⎡
⎢⎢⎢⎢⎢⎣

−4L1L2m4 sin(θ1(t) − θ2(t))θ̇22 (t)
−2L1L4m4 sin(θ1(t) − θ2(t) + β)θ̇22 (t)
4L1L2m4 sin(θ1(t) − θ2(t))θ̇21 (t)
+2L1L4m4 sin(θ1(t) − θ2(t) + β)θ̇21 (t)
0
0

⎤
⎥⎥⎥⎥⎥⎦

(128)

Qg,4(t) =
⎡
⎢⎣

−2m4gL1 cos(θ1(t))
−2m4gL2 cos(θ2(t)) − m4gL4 cos(β − θ2(t))
0
0

⎤
⎥⎦ . (129)

B.4 Pan-head inertia terms and generalized forces

M5(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4m5L2
1

4L1L2m5
· cos(θ1(t) − θ2(t))

+4L1L4m4
· cos(θ1(t) − θ2(t) + β)

0
2L1m5

· cos(θ1(t))
4L1L2m5

· cos(θ1(t) − θ2(t))
+4L1L4m4

· cos(θ1(t) − θ2(t) + β)

4m5L2
2 + 4m5L2

4+8m5L2L4 cos(β)
0 0

0 0 0

2m5L2
· cos(θ2(t))

+2m5L4
· cos(β − θ2(t))

2L1m5
· cos(θ1(t))

2m5L2
· cos(θ2(t))

+2m5L4
· cos(β − θ2(t))

0 m5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(130)
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C5(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

4L1L2m5θ̇2(t)
· sin(θ1(t) − θ2(t))
+4L1L4m5θ̇2(t)

· sin(θ1(t) − θ2(t) + β)

0 0

−4L1L2m5θ̇1(t)
· sin(θ1(t) − θ2(t))
−4L1L4m5θ̇1(t)

· sin(θ1(t) − θ2(t) + β)

0 0 0

0 0 0 0

−2L1m5 sin(θ1(t))θ̇1(t)

2L4m5θ̇2(t)
· sin(β − θ2(t))

−2L2m5θ̇2(t)
· sin(θ2(t))

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(131)

Qv,5(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4L1L2m5 sin(θ1(t) − θ2(t))θ̇22 (t)
−4L1L4m5 sin(θ1(t) − θ2(t) + β)θ̇22 (t)
4L1L2m5 sin(θ1(t) − θ2(t))θ̇21 (t)
+4L1L4m5 sin(θ1(t) − θ2(t) + β)θ̇21 (t)
0
2L1m5 sin(θ1(t))θ̇21 (t)
−2L4m5 sin(β − θ2(t))θ̇22 (t)
+2L2m5 sin(θ2(t))θ̇22 (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(132)

Qg,5(t) =
⎡
⎢⎣

−2m5gL1 cos(θ1(t))
−2m5gL2 cos(θ2(t)) − 2m5gL4 cos(β − θ2(t))
0
−m5g

⎤
⎥⎦ (133)

B.5 Pneumatic actuator generalized force

Qk,1(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(p1 − k1 (2L1 sin(θ1(t)) + 2L2 sin(θ2(t)))) 2L1 cos(θ1(t))
−k1 ((L3 + LE ) sin(θ3(t)) − HE ) 2L1 cos(θ1(t))
(p1 − k1 (2L1 sin(θ1(t)) + 2L2 sin(θ2(t)))) 2L2 cos(θ2(t))
−k1 ((L3 + LE ) sin(θ3(t)) − HE ) 2L2 cos(θ2(t))
(p1 − k1 (2L1 sin(θ1(t)) + 2L2 sin(θ2(t)))) (L3 + LE ) cos(θ3(t))
−k1 ((L3 + LE ) sin(θ3(t)) − HE ) (L3 + LE ) cos(θ3(t))
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(134)

Qr,1(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−r1
(
2L1 cos(θ1(t))θ̇1(t)

)
2L1 cos(θ1(t))

−r1
(
2L2 cos(θ2(t))θ̇2(t)

)
2L1 cos(θ1(t))

−r1 (L3 + LE ) cos(θ3(t))θ̇3(t)2L1 cos(θ1(t))
−r1

(
2L1 cos(θ1(t))θ̇1(t)

)
2L2 cos(θ2(t))

−r1
(
2L2 cos(θ2(t))θ̇2(t)

)
2L2 cos(θ2(t))

−r1 (L3 + LE ) cos(θ3(t))θ̇3(t)2L2 cos(θ2(t))
−r1

(
2L1 cos(θ1(t))θ̇1(t)

)
(L3 + LE ) cos(θ3(t))

−r1
(
2L2 cos(θ2(t))θ̇2(t)

)
(L3 + LE ) cos(θ3(t))

−r1 (L3 + LE ) cos(θ3(t))θ̇3(t) (L3 + LE ) cos(θ3(t))
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (135)
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B.6 Pan-head suspension generalized force

Qk,2(t) =
⎡
⎢⎣
0
0
0
−k2x(t)

⎤
⎥⎦ (136)

Qr,2(t) =
⎡
⎢⎣
0
0
0
−r2 ẋ(t)

⎤
⎥⎦ . (137)

B.7 Pantograph/catenary generalized contact force

Qk,3(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k3 (H0 + s(t)) 2L1 cos(θ1(t))
+k3 (−2L1 sin(θ1(t)) + 2L4 sin(β − θ2(t))) 2L1 cos(θ1(t))
+k3 (−2L2 sin(θ2(t)) − x(t)) 2L1 cos(θ1(t))
k3 (H0 + s(t) − 2L1 sin(θ1(t))) 2 (L4 cos(β − θ2(t)) + L2 cos(θ2(t)))
+k3 (2L4 sin(β − θ2(t))) 2 (L4 cos(β − θ2(t)) + L2 cos(θ2(t)))
+k3 (−2L2 sin(θ2(t)) − x(t)) 2 (L4 cos(β − θ2(t)) + L2 cos(θ2(t)))
0
k3 (H0 + s(t) − 2L1 sin(θ1(t)) + 2L4 sin(β − θ2(t)))
+k3 (−2L2 sin(θ2(t)) − x(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(138)

Qr,3(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r3
(
ṡ(t) − 2L1 cos(θ1(t))θ̇1(t) − 2L4 cos(β − θ2(t))θ̇2(t)

)
2L1 cos(θ1(t))

+r3
(−2L2 cos(θ2(t))θ̇2(t) − ẋ(t)

)
2L1 cos(θ1(t))

r3
(
ṡ(t) − 2L1 cos(θ1(t))θ̇1(t)

)
2 (L4 cos(β − θ2(t)) + L2 cos(θ2(t)))

+r3
(−2L4 cos(β − θ2(t))θ̇2(t)

)
2 (L4 cos(β − θ2(t)) + L2 cos(θ2(t)))

+r3
(−2L2 cos(θ2(t))θ̇2(t) − ẋ(t)

)
2 (L4 cos(β − θ2(t)) + L2 cos(θ2(t)))

0
r3

(
ṡ(t) − 2L1 cos(θ1(t))θ̇1(t) − 2L4 cos(β − θ2(t))θ̇2(t)

)
+r3

(−2L2 cos(θ2(t))θ̇2(t) − ẋ(t)
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (139)

B.8 Control actuator generalized force

Qu(t) =
⎡
⎢⎣
0
0
0
u(t)

⎤
⎥⎦ . (140)
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