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Abstract A dynamic model of a rotor-blade system is established considering the effect of nonlinear supports
at both ends. In the proposed model, the shaft is modeled as a rotating beam where the gyroscopic effect is
considered, while the shear deformation is ignored. The blades are modeled as Euler–Bernoulli beams where
the centrifugal stiffening effect is considered. The equations of motion of the system are derived by Hamilton
principle, and then, Coleman and complex transformations are adopted to obtain the reduced-order system.
The nonlinear vibration and stability of the system are studied by multiple scales method. The influences of
the normal rubbing force, friction coefficient, damping and support stiffness on the response of the rotor-blade
system are investigated. The results show that the original hardening type of nonlinearity may be enhanced
or transformed into softening type due to the positive or negative nonlinear stiffness terms of the bearing.
Compared with the system with higher support stiffness, the damping of the bearing has a more powerful
effect on the system stability under lower support stiffness. With the increase in rubbing force and support
stiffness, the jump-down frequency, resonant peak and the frequency range in which the system has unstable
responses increase.

Keywords Main resonances · Rotor-blade system · Stability · Nonlinear vibration

Nomenclature

A, A′ Cross-sectional area of the shaft and blade
A1, A2 The complex functions of the dimensionless displacements to be solved
c, cblade, cbearing Damping coefficients of the shaft, blade and bearing
cby1, cbz1, cby2, cbz2 The damping coefficients of bearing 1 and bearing 2 along Y and Z

directions
D0, D2 Partial derivative with respect to T0 and T2
D11, D22, D33 Torsional and flexural stiffness
ey, ez Eccentricity with respect to y and z axes
E Young’s modulus
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Ey, Ez Misalignment along Y and Z directions
ff , fb Forward and backward whirl mode frequencies
Fn, Ft Normal and tangential rubbing forces at the tip of blade
Fnmax, Fnmaxi Maximum normal rubbing force
Fti , Ftxi , Ftyi , Fni Rubbing forces on the i th blade
FFNF, FBNF First-order forward and backward natural frequencies
FTNF First-order torsional natural frequency
G Shear modulus
I Cross section inertia moment of the blade
I1, I2, I3 Polar and diametral mass moments of inertia
I ′
11 Area moment of inertia of the blade
Idisk, Jdisk Diametral and polar mass moment of inertia of the disk
Is Cross section inertia moment of the shaft
k Linear support stiffness
k1, k2, k3 Shaft curvatures
L , l Length of the blade and shaft
l1, l2 The distances of the disk to the left and right end
m Mass per unit length of the shaft
m′ Density of the blade
mD, Jp, Jd The mass, the polar and diametral mass moment of inertia of bladed disk
mdisk The mass of the disk
N11 Longitudinal stiffness
Nb The number of blades
O1 The center of rotating blade
O2, O ′

2 The center of static and rubbed casing
p∗ Dimensionless vibration displacement of the blade in the complex plane
ra The ratio of excitation frequency to rotating frequency
rg The radius of the blade-tip orbit
R0 The radius of the casing
Rd The radius of the disk
SFNF, SBNF Second-order forward and backward natural frequencies
t Time
tc Contact time
tp Rotating period
t0 Start time of the rubbing
T, Tshaft, Tblades, Tdisk Kinetic energy, kinetic energies of shaft, blades and disk
T0, T2 Components of time on large scale and second-order small scale
u, v, w Longitudinal and transverse displacements of the shaft
uc The displacement of the casing
V, Vshaft, Vblades, Vbearing Potential energy, potential energies of shaft, blades and bearings
W,WFni The work, the work done by rubbing force applied on i th blade
xb, yb The location of the point along the flapwise and chordwise directions
xd The location of the disk
z∗ Dimensionless displacement of the shaft in the complex plane

Greek symbols

α strain along the neutral axis of the shaft
αni , βni , c1i , c2i , c3i , c4i (i = 1, 2) The coefficients of the mode shape of the shaft to be solved
βc Contact angle
βf , βb Dimensionless forward and backward whirl mode frequencies
γ Stagger angle of the blade
δ Variational operator
δ(x) Dirac delta function
ε Non-dimensional small-scale parameter
ζ The distance of the point from the blade root
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θi , θyi , θzi (i = 1, 2) Angular displacements of the i th part of the shaft
Θf , Θb Forward and backward mode shape coefficients of the blades
Θni (x) (i = 1, 2) Piecewise nth-ordermode shapes of angular displacements in the complex

plane
k Shear correction factor
λi , ri (i = 1, 2) The coefficients of free vibration differential equation of the shaft to be

solved
Λ Vibration amplitude of the blade
μ Friction coefficient
ξ, η Coleman transformation parameters
ρ Density of the shaft
σ Detuning parameter
ψ, θ, β Euler angles
ψf , ψb Forward and backward mode shapes of the rotating blades
ω The frequency of harmonic motion
ω1, ω2, ω3 Angular velocities of the rotating shaft
Ω Rotating speed
ϑ Duffing term coefficient
ϑi The azimuth angle of the i th blade on the disk
φ Torsional deformation
φf , φb Forward and backward whirl mode shapes of the shaft
φi Angular position of the i th blade
φni Piecewise mode shapes of the shaft at nth-order critical speed
kφ Torsional stiffness

1 Introduction

Rotating systems including shaft, blade and bearing assembly are usually used in many engineering machiner-
ies, such as compressors, turbines and aero-engines . As they become more flexible, high-amplitude vibration
or even unstable dynamic behavior may happen. So, the investigation on dynamic characteristics and stabil-
ity of rotor-blade system is necessary. Considering the geometrical nonlinearity, Khadem et al. [1] adopted
multiple scales method to study the free and forced vibrations of the simply supported rotating shaft under
the conditions of primary resonances. They also investigated the resonances of a simply supported spinning
shaft modeled as an in-extensional rotating beam with large amplitudes and discussed the influences of mass
eccentricity and external damping on the steady-state response of the shaft based on harmonic balance method
[2]. Shahgholi and Khadem [3] investigated the main and parametric resonances of an asymmetric rotating
shaft with speed fluctuations.

Obviously, not only the dynamics of the rotating shaft, but also the vibration responses of the rotor-blade
system should be investigated to consider the coupling effects of the blades or the bladed disk and shaft.
The shaft–bladed disk model, where the bearing is assumed to be rigid or a linear spring model with viscous
damping, is widely used to study the coupling vibration of the blades and rotor [4–14]. Chiu and Chen [4]
investigated the influence of shaft-torsion and blade-bending vibrations on the coupling nonlinear vibrations
of a multi-disk rotor system. By analyzing the natural frequencies and the mode shapes of the system, they
revealed that the natural frequencies were affected by disk distance and that the instability depended on the
number of disks. Chiu and Huang [5] studied the coupling vibrations among the shaft-torsion, disk-transverse
and blade bending of a rotor system with a mistuned blade. Considering the centrifugal stiffening and spin
softening effects of the blades, the lateral-torsional vibrations and gyroscopic effect of the shaft, Ma et al.
[6] proposed a mathematical model of rotor-blade systems. Genta et al. [7] developed annular finite elements
to compute the second- and higher-order harmonics modes of rotating bladed disks. Considering the effects
of mass eccentricity, Diken and Alnefair [8] discussed the vibration responses of a rotor-blade system. The
results showed that rotor acceleration can excite the blade’s vibration with rotor’s natural frequency at critical
speed and the modal behaviors of the blades were different at the subcritical, supercritical and critical speeds
of the rotor. Using Lagrange equation, Wang et al. [9] established a time-dependent nonlinear model of a
flexible blade-rotor-bearing system and addressed the nonlinear behavior of the rotor-bearing system with
the interaction between the blades and the rotor. Assuming the blades as Euler–Bernoulli beams, Santos et
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al. [10] contributed to the investigation of rotor-blades dynamic interaction, theoretically and experimentally.
They carried out experiments of the rotor system at different angular velocities and verified the theoretical
results. Using nonlinear bearings and a Jeffcott rotor with a number of planar blades, Najafi et al. [11–13]
studied the nonlinear behavior of blade disk systems and discussed the damping effects on the bifurcation
phenomenon of the system. Based on Floquet theory, Sanches et al. [14] predicted the bifurcation positions of
the bladed rotor used in helicopters and described the instability zones under different conditions. Considering
the rigid body displacement and the flexible displacement of the casing, Parent and Thouverez [15] studied the
dynamic stability of a turbofan engine bearing the light contacts between fan blades and casing by reasonably
simplifying an aero-engine. Considering Duffing type of nonlinear supports in rotor systems, the vibration
response and bifurcation characteristics were analyzed in [16,17].

Damping is a non-negligible factor which can influence the stability and bifurcation of the rotor and it can
be divided into two types: external damping and internal damping. External damping, i.e., bearing damping,
is not responsible for the instability of rotor-blade systems [18]. Internal damping, i.e., rotating damping, is
caused by the friction between the rotating parts and couplings [19] and the structural damping of the blade and
shaft [20]. The influences of damping on the instability of the system were discussed in Ref. [21]. Sorge et al.
[22] investigated the influence of internal damping on the whirling motion of the rotor at supercritical range.
Samantaray et al. [23] studied the stability of the rotor using polynomial nonlinear internal damping. Using a
simple bladed-rotor model, Genta [24] pointed out that the structural damping of blades could not trigger any
instability at supercritical ranges. Adopting Euler–Bernoulli beam theory to model the shaft and blade, Bab
et al. [25] investigated the main resonances of a coupled flexible rotor with a disk and a set of flexible/rigid
blades. The influences of mass eccentricity and damping on the steady response of the system were studied
based on multiple scales method.

Rubbing has a great influence on the stability of the system. With respect to point or partial rubbing, the
rubbing forces were regarded as periodic impulse loading. Petrov [26,27] adopted nonlinear multi-harmonic
rubbing force to study the response of the rotor. Sinha [28,29] presented somemathematical expressions for the
pulse force, like half-sine wave pulse, rectangular pulse and so on. Turner et al. [30,31] also adopted half-sine
wave pulse force to analyze the blade-casing rubbing. To simulate blade-casing rubbing, two kinds of pulse
load functions were adopted by Kou and Yuan [32]: sine pulse function and continuous sine function. Ma et al.
[33] focused on determining the maximal normal rubbing force under blade-elastic-casing rubbing. Rubbing
caused by blade off was studied in Refs. [34–36].

The studies listed above show that in some references, the shaft was commonly assumed as a simply
supported rotating beam without considering the stiffness or the damping of the bearing [1–3,25]. In practice,
the stiffness and the damping of the bearing changewith the rotating speed, and they have a significant influence
on the instability region of the system. This paper mainly focuses on the following aspects:

(1) The Duffing type of nonlinear support [11,16,17] is introduced to describe the effect of the bearing on the
mode shapes and critical speeds of the rotor. Furthermore, the nonlinearity type, response amplitudes and
jump-down frequencies of the system under different support stiffness and Duffing term coefficients are
obtained. In addition, the influence of the damping of the bearing and rotor on the stability of the system
under different support stiffness is discussed.

(2) The local intermittent blade-casing rubbing is considered; especially, the influences of normal rubbing
force and friction coefficient on the response amplitudes and the instability regions are discussed. The
analytical solution is also verified by the numerical solution obtained from Runge–Kutta method.

2 Equations of motion

A rotor-blade system including a slender spinning shaft, a rigid disk located at x = xd position of the shaft
and a set of blades with stagger angle γ is taken as the research object, as shown in Fig. 1. The following
coordinate systems are adopted to analyze the dynamics of the rotor-blade system:

(1) The frame X − Y − Z is a fixed inertial coordinate system, where X axis is along the direction of the
neutral axis of the undeformed shaft.

(2) The frame x − y− z is a dynamic local coordinate system corresponding to the principle axes of the cross
section of the deformed shaft.

(3) The frame xb − yb − zb is a dynamic local coordinate system of blades, in which xb, yb and zb are along
the chordwise, flapwise and radial directions, respectively.
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Fig. 1 Schematic of the rotor-blade system

The bearings are regarded as the nonlinear supports in Y and Z directions, and the displacement in X direction
at the left end of the shaft is constrained, so is the torsional displacement, which means kφ = ∞. There is no
constraint at the right end in X direction. For simplicity, let cbz1 = cbz2 = cby1 = cby2 = cbearing.

2.1 The energies of the spinning shaft

The displacements at arbitrary location of the shaft along the X , Y and Z axes are denoted by variables u(x, t),
v(x, t) and w(x, t), respectively. The transformation from inertial coordinate system X − Y − Z to the local
coordinate system x − y − z is expressed by three Euler angles ψ(x, t), θ(x, t) and β(x, t), as shown in Fig. 2
[1–3]. Firstly, the inertial coordinate system X − Y − Z rotates around Y axis at the angle of θ , reaching the
position of X1 −Y1 − Z1. After that, the frame X1 −Y1 − Z1 rotates around X1 axis at the angle of β, reaching
the position of X2 − Y2 − Z2. Finally, the frame X2 − Y2 − Z2 rotates around Z2 axis at the angle of ψ ,
reaching the position of x − y− z. It should be noted that ψ(x, t) and θ(x, t) are corresponding to the bending
deformation of the shaft, while β(x, t) is the summation of torsional deformation φ(x, t) and the rigid body
rotation displacement of the shaft Ωt , i.e.,

β(x, t) = Ωt + φ(x, t) (1)

where Ω denotes the rotating speed of the shaft.
Therefore, the curvatures k1, k2, k3 and the angular speeds around X , Y and Z axes ω1 , ω2, ω3 of the

spinning shaft can be calculated as [3]:

k1 = φ′ − ψ ′ sin θ, k2 = ψ ′ cos θ sin β + θ ′ cosβ, k3 = ψ ′ cos θ cosβ − θ ′ sin β (2)

ω1 = β̇ − ψ̇ sin θ, ω2 = ψ̇ cos θ sin β + θ̇ cosβ, ω3 = ψ̇ cos θ cosβ − θ̇ sin β (3)

where dot and prime denote derivative with respect to t and x , respectively.
Consequently, the kinetic and potential energies of the spinning shaft can be determined as follows:

Tshaft = 1

2

∫ l

0

(
m
(
u̇2 + v̇2 + ẇ2)+ I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
dx (4)

Vshaft = 1

2

∫ l

0

(
N11α

2 + D11k
2
1 + D22k

2
2 + D33k

2
3

)
dx (5)

where l, m, I1, I2, I3, N11, α, D11, D22 and D33 are the length of the shaft, the mass per unit length, the polar
mass moment of inertia, the mass moment of inertia around y axis, the mass moment of inertia around z axis,
the longitudinal stiffness, the strain along the neutral axis of the shaft, torsional stiffness, the flexural stiffness
about y axis, the flexural stiffness about z axis, respectively, which can be calculated as:

I1 =
∫
A

(
y2 + z2

)
dm, I2 =

∫
A
z2dm, I3 =

∫
A
y2dm, D11
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Fig. 2 Coordinates transformation using Euler angles

=
∫
A
G
(
y2 + z2

)
dA, D22 =

∫
A
Ez2dA, D33 =

∫
A
Ey2dA

N11 =
∫
A
EdA, α =

√
(1 + u′)2 + v′2 + w′2 − 1 (6)

where A, E and G are cross-sectional area, Young’s modulus and shear modulus of the shaft.
The elastic potential energy stored in the bearings can be expressed as:

Vbearing =
|z|∫

0

f (z)dzδ(x) +
|z|∫

0

f (z)dzδ(x − l) (7)

where f (z) is the nonlinear restoring force of the bearings and z = v + jw(j2 = −1); δ(x) is Dirac delta
function. If f (z) is expanded using Taylor series method and truncated at the cubic nonlinear term, then
f (z) = kz + ϑz|z|2, where k and ϑ are the linear support stiffness and the Duffing term coefficient.

2.2 The kinetic energy of the disk with mass eccentricity

The disk is supposed to be rigid and fixed at the position x = xd of the shaft; therefore, its potential energy is
zero. With mass eccentricity in y and z directions denoted by ey and ez , the kinetic energy is described as:

Tdisk = 1

2

⎛
⎜⎜⎝mdisk

⎛
⎝ u̇2 + v̇2 + ẇ2 + (Ω + φ̇

)2 (
e2y + e2z

)
− 2

(
Ω + φ̇

)
[(
ez v̇ + eyẇ

)
sin β + (ey v̇ − ezẇ

)
cosβ

]
⎞
⎠

+ Jdiskω2
1 + Idisk

(
ω2
2 + ω2

3

)

⎞
⎟⎟⎠ δ(x − xd) (8)

where mdisk, Idisk and Jdisk are the mass, the diametral mass moment of inertia, the polar mass moment of
inertia of the disk, respectively.

2.3 The energies of the blades

At any time, the angular position of the blade depends on not only the Euler angles, but also the azimuth of
the blade on the disk. Therefore, a new variable φi is defined to describe the specific angular position of the
i th blade, given by:

φi = β (xd, t) + ϑi = Ωt + φ (xd, t) + ϑi , i = 1, . . ., Nb (9)
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where Nb is the number of blades, and ϑi is the azimuth angle of the i th blade on the disk, which is expressed
as:

ϑi = (i − 1)
2π

Nb
, i = 1, . . ., Nb (10)

The position vector of any point on the i th blade in the inertial coordinate system X − Y − Z is expressed
as [37]:

Ri =
⎡
⎣ xd + u (xd, t)

v (xd, t)
w (xd, t)

⎤
⎦+

⎡
⎣ cosφi − sin φi 0
sin φi cosφi 0
0 0 1

⎤
⎦
⎡
⎣1 0 θ (xd, t)
0 1 0
−θ (xd, t) 0 1

⎤
⎦

⎡
⎣1 0 0
0 1 −ψ (xd, t)
0 ψ (xd, t) 1

⎤
⎦
⎡
⎣ cos γ − sin γ 0
sin γ cos γ 0
0 0 1

⎤
⎦
⎧⎨
⎩
xb
Λi (ς, t) + yb
Rd + ς

⎫⎬
⎭ (11)

where xb, Λi, yb, Rd and ζ are the location of the point along the flapwise direction, the vibration amplitude,
the location of the point along the chordwise direction, the disk radius, the distance of the point from the blade
root, respectively. The mass density, the length of the blade and the moment of cross section area about xb axis
are denoted as m′, L and I ′

11. Thus, the kinetic energy of the blade is described as:

T(blade)i = 1

2
m′
∫ L

0

∫
A′
Ṙi · ṘidA

′dς = m′A′L
2

(
u̇2 + v̇2 + ẇ2)+ m′A′

2

∫ L

0
Λ̇2

i dς

+ m′A′

2

(
Ω + φ̇

)2
cos2 γ

∫ L

0
Λ̇2

i dς + m′ I ′
11L

2
cos2 γ

(
Ω + φ̇

)2 + m′A′Γ3

2

(
Ω + φ̇

)2

+m′A′Γ3
(
ψ̇
(
Ω + φ̇

)
θ
)+ m′A′ (Ω + φ̇

) ∫ L

0
(Rd + ς) cos γ Λ̇idς

+m′A′Γ2 sin φi
(−ẇ

(
Ω + φ̇

)+ ẇψ̇ + u̇
(
Ω + φ̇

)
θ
)

+m′A′ sin φi

(
−ẇ cos γ

∫ L

0
Λ̇idς − (Ω + φ̇

)
v̇ cos γ

∫ L

0
Λidς

)

+m′A′ sin φi sin γ

∫ L

0
(Rd + ς) Λ̇i ψ̇dς + m′A′ sin φi sin γ

∫ L

0
(Rd + ς) θΛ̇i

(
Ω + φ̇

)
dς

+m′A′Γ2 cosφi
(
v̇
(
Ω + φ̇

)+ u̇
(
Ω + φ̇

)
ψ − u̇θ̇

)

+m′A′ cosφi

(
v̇ cos γ

∫ L

0
Λ̇idς − (Ω + φ̇

)
ẇ cos γ

∫ L

0
Λidς

)

−m′A′ cosφi sin γ

∫ L

0
(Rd + ς) Λ̇i θ̇dς

+m′A′ cosφi sin γ

∫ L

0
(Rd + ς)ψΛ̇i

(
Ω + φ̇

)
dς + m′A′Γ3

2

(
θ̇ cosφi − ψ̇ sin φi

)2
(12)

where Γ2 and Γ3 in Eq. (12) are given by:

Γ2 =
∫ L

0
(Rd + ς)dς, Γ3 =

∫ L

0
(Rd + ς)2dς (13)

Considering centrifugal stiffening, the potential energy of the blade is:

V(blade)i = 1

2

∫ L

0
E I ′

11

(
∂2Λi (ς, t)

∂ς2

)2
dς + 1

4
m′A′Ω2

∫ L

0

(
L2 + 2RdL − 2Rdς − ς2) (∂Λi (ς, t)

∂ς

)2
dς

(14)

Thus, the total kinetic and potential energies of all the blades are:

Tblades =
Nb∑
i=1

T(blade)i , Vblades =
Nb∑
i=1

V(blade)i (15)
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Fig. 3 Schematic of rubbing between rotor and casing

2.4 Work done by rubbing force

This study assumes that the rubbing between the blade tip and the casing results from themisalignment between
the rotor and the casing (see Fig. 3). In the figure, O1, O2, O ′

2, R0, βc, uc and rg are the center of rotating
blade, the center of static casing, the center of rubbed casing, the radius of the casing, the contact angle, the
displacement of the casing and the radius of the blade tip orbit, respectively. Under the influence of centrifugal
force and rotor whirl, the trajectory of blade tip denoted by red dotted line overlaps the static casing position
denoted by blue dotted line. At this moment, the partial rubbing between the blade tip and the casing occurs.
The casing position after rubbing is denoted by black solid line. According to Refs. [33,38], the normal rubbing
force can be expressed as follows:

Fn =
{
0 0 ≤ t ≤ t0, tc + t0 ≤ t ≤ tp
−Fnmax sin

(
π
tc

(t − t0)
)
t0 ≤ t ≤ tc + t0

(16)

where Fnmax, tc, tp, t0 are the amplitude of normal rubbing force, the contact time, the rotating period and the
start time of the rubbing; tc and βc are expressed as follows:

tc = 60βc

2πΩ
, βc = 2 cos−1

(
R2
0 + (R0 + δ − rg

)2 − r2g
2R0

(
R0 + δ − rg

)
)

(17)

The information on the calculation of normal rubbing force is introduced in detail inRef. [33]. The tangential
rubbing force at i th blade tip is denoted by Fti and Fti = μFni , where μ is the friction coefficient. The normal
and tangential rubbing forces applied to the system are shown in Fig. 4a. Furthermore, similar to Fig. 7 of Ref.
[37], Fti can be decomposed along xb and yb directions, i.e., Ftyi = Fticosγ , Ftxi = Fti sinγ (see Fig. 4b).
Here, γ is the stagger angle of the blade. The work done by the rubbing force is expressed as:

WFni = μFniΛi (L , t) cos γ − μFni (Rd + L) φiδ (x − xd)

+Fni ((− cosφi + μ sin φi ) v + (− sin φi − μ cosφi ) w) δ (x − xd) (18)

2.5 Equations of motion

One of the supports (right support) is movable along the longitudinal axis (see Fig. 1). As a result, the rotating
shaft is in-extensional and the strain along the neutral axis of the shaft can be ignored. Therefore, one may
obtain

u′ =
√
1 − v′2 − w′2 − 1 = −1

2

(
v′2 + w′2)+ · · · (19)
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Fig. 4 Schematic of forces on the rotor-blade system: a normal and tangential rubbing forces, b decomposition of tangential
rubbing force

The angles ψ , θ and φ can be calculated as follows [1–3,25]:

ψ = sin−1 v′√
(1 + u′)2 + v′2 , θ = sin−1 −w′√

(1 + u′)2 + v′2 + w′2 (20)

φ = −
∫ x

0
v′′w′dx + · · · (21)

To obtain the nonlinear equations of motion, Hamilton principle is introduced:

δ

∫ t

0
(T − V + W ) dt = 0 (22)

where T , V ,W , t and δ are the total kinetic energy, total potential energy of rotor-blade system, the work done
by rubbing force, the time and variational operator, respectively. The expressions are as follows:

T = Tshaft + Tblades + Tdisk, V = Vshaft + Vblades + Vbearing,W =
Nb∑
i=1

WFni (23)

Substituting Eq. (23) into Eq. (22), the equations of motion are obtained as:[
m′A′Λ̈i + cbladeΛ̇i + E I ′11

∂4Λi

∂ς4

]
+
[
m′A′ (Rd + ς)

(
Ω + φ̇

)2 ∂Λi

∂ς
− m′A′ (Ω + φ̇

)2 cos2 γΛi

+m′A′ (Rd + ς) φ̈ −m′A′
2

(
Ω + φ̇

)2 (
(Rd + L)2 − (Rd + ς)2

) ∂2Λi

∂ς2

]
+ [−μFni cos γ δ (ς − L)

]

+δ (x − xd)
[
m′A′v̈ cosφi cos γ − m′A′ẅ sin φi cos γ

] = 0 (24)⎡
⎢⎣
m
(
v̈ + v′

2

∫ x
0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′) dx + v′′

2

∫ x
l
∫ x
0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′) dxdx)+ cv̇

−I1Ωẇ′′ − I2v̈
′′ + D22

(
v′2v(I V ) + v′w(I V )w′ + 3w′′′w′′w′ + v′′w′′2 + v′′3 + w′′′v′′w′ + 4v′v′′v′′′)

⎤
⎥⎦

+
⎡
⎣mdiskδ (x − xd)

(
v̈ + v′

2

∫ xd
0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′) dx + v′′

2

∫ xd
l

∫ xd
0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′) dxdx)

−JdiskΩẇ′′δ (x − xd) − Idisk v̈
′′δ (x − xd) − mdiskδ (x − xd) Ω2 (ez cosΩt − ey sinΩt

)
⎤
⎦

+
⎡
⎢⎣δ (x − xd)

Nb∑
i=1

⎛
⎜⎝
m′A′L v̈ + m′A′Γ3

((
Ω + φ̇

)
w′)′ − m′A′ sin φi

(
φ̈
∫ L
0 Λidς + 2

(
Ω + φ̇

) ∫ L
0 Λ̇idς

)

+m′A′Γ3v̈
′′ sin2 φi − m′A′ cosφi

(
− ∫ L0 Λ̈idς + (Ω + φ̇

)2 ∫ L
0 Λidς

)
⎞
⎟⎠
⎤
⎥⎦
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+
[(

kv + ϑv(v2 + w2)
)

(δx + δ(x − L)) + cbearingv̇δx + cbearingv̇δ(x − L)
]

−
⎡
⎣
⎛
⎝ Nb∑
i=1

Fni (− cosφi + μ sin φi ) +
Nb∑
i=1

μFni (Rd + L)

∫ xd

0
w′′′dx

⎞
⎠ δ (x − xd)

⎤
⎦ = 0 (25)

⎡
⎢⎣
m
(
ẅ + w′

2

∫ x
0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′) dx + w′′

2

∫ x
l
∫ x
0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′) dxdx)+ cẇ

+I1Ωv̇′′ − I2ẅ
′′ + D22

(
w′′v′′2 + w(I V ) + v′v′′′w′′ + 3w′v′′v′′′ + w′v′v(I V ) + w′2w(I V ) + w′′3 + 4w′w′′w′′′)

⎤
⎥⎦

+
⎡
⎣mdiskδ (x − xd)

(
ẅ + w′

2

∫ xd
0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′) dx + w′′

2

∫ xd
l

∫ xd
0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′) dxdx)

+JdiskΩv̇′′δ (x − xd) − Idiskẅ
′′δ (x − xd) − mdiskδ (x − xd) Ω2 (ez sinΩt + ey cosΩt

)
⎤
⎦

+
⎡
⎢⎣

Nb∑
i=1

⎛
⎜⎝
m′A′Lẅ − m′A′Γ3

((
Ω + φ̇

)
v̇′)′ + m′A′ sin φi

(
− ∫ L0 Λ̈idς + (Ω + φ̇

)2 ∫ L
0 Λidς

)

+m′A′Γ3ẅ
′′ cos2 φi + m′A′ cosφi

(
−φ̈
∫ L
0 Λidς − 2

(
Ω + φ̇

) ∫ L
0 Λ̇idς

)
⎞
⎟⎠δ (x − xd)

⎤
⎥⎦

+
[(

kw + ϑw(v2 + w2)
)

(δx + δ(x − L)) + cbearingv̇δx + cbearingv̇δ(x − L)
]

−
⎡
⎣
⎛
⎝ Nb∑
i=1

Fni (− sin φi − μ cosφi ) −
Nb∑
i=1

μFni (Rd + L)

∫ xd

0
v′′′dx

⎞
⎠ δ (x − xd)

⎤
⎦ = 0 (26)

It should be noted that Eq. (24) expresses the equation of motion of the i th blade, while Eqs. (25)–(26) describe
the equations of motion of the shaft in Y and Z directions. In order to facilitate the understanding for readers,
the terms are classified into some groups marked by brackets based on their characteristics. For Eq. (24),
the terms are divided into four groups which are corresponding to the blade structure, the influence of rotor
torsional displacement, the impact of rubbing force and the effect of rotor translational displacement on the i th
blade’s vibration, respectively. For Eqs. (25)–(26), the terms are divided into five groups that are corresponding
to the rotor structure, the influence of the mass, the mass moment of inertia and mass eccentricity of the disk,
the effect of the vibration of blades, the effect of the bearings at both ends of the shaft and the impact of rubbing
force on the lateral vibration of the rotor, respectively.

In addition, the damping forces cbladeΛ̇i , cv̇, cẇ, cbearingv̇ and cbearingẇ are attached to Eqs. (24)–(26),
where cblade and c are damping coefficients of the blade and shaft.

3 Transformations and non-dimensionalization

It is quite sophisticated and even impossible adopting analytical method to solve the large number of coupled
equations.With the aim of reducing the number of equations of motion, the Coleman transformation is adopted
in which two parameters ξ and η are brought in as [14]:

ξ = − 2

Nb

Nb∑
i=1

Λi (ς, t) cosφi , η = − 2

Nb

Nb∑
i=1

Λi (ς, t) sin φi (27)

In order to make further efforts for dimensional reduction, the equations are transformed to complex plane by
the following parameters:

p = ξ − jη, z = v + jw, p̄ = ξ + jη, z̄ = v − jw (28)

Through these transformations, the systemwith 2+Nb degrees of freedom is switched to that with two degrees
of freedom. The equations of motion are given by:[

m′A′ p̈ + cblade ṗ + E I ′11
∂4 p

∂ς4

]
+
[
m′A′ (Rd + ς)

(
Ω + φ̇

)2 ∂Λi

∂ς
+ m′A′ (Ω + φ̇

)2 p sin2 γ

+2m′A′j
(
Ω + φ̇

)
ṗ + cblade

(
Ω + φ̇

)
j ṗ + m′A′φ̈ jp − m′A′

2

(
Ω + φ̇

)2 (
(Rd + L)2 − (Rd + ς)2

) ∂2 p

∂ς2

]
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+
⎡
⎣ 2

Nb
μ cos γ δ (ς − L)

Nb∑
i=1

Fni e
−jφi

⎤
⎦+ δ (x − xd)

[
m′A′ z̈ cos γ

] = 0

(29)⎡
⎣m

(
z̈ + z′

2

∫ x
0

(
2ż′ ˙̄z′ + z̈′ z̄′ + ¨̄z′z′

)
dx + z′′

2

∫ x
l
∫ x
0

(
2ż′ ˙̄z′ + z̈′ z̄′ + ¨̄z′z′

)
dxdx

)
+ cż + jI1Ω ż′′ − I2 z̈

′′

+D22

(
z(I V ) + 2z′′z′ z̄′′′ + 1

2 z
′′ z̄′z′′′ + 3

2 z̄
′′z′z′′′ + z̄′′z′′2 + 1

2 z
(I V ) z̄′z′ + 1

2 z
(I V )z′2

)
⎤
⎦

+δ (x − xd)

⎡
⎣
(
mdisk + m′A′LNb

) (
z̈ + z′

2

∫ xd
0

(
2ż′ ˙̄z′ + z̈′ z̄′ + ¨̄z′z′

)
dx + z′′

2

∫ xd
l

∫ xd
0

(
2ż′ ˙̄z′ + z̈′ z̄′ + ¨̄z′z′

)
dxdx

)

+jΩ
(
Jdisk + m′A′NbΓ3

)
ż′′ −

(
Idisk + m′A′NbΓ3

2

)
z̈′′ − mdiskΩ

2 (jez + ey
)
ejΩt

⎤
⎦

+
[
m′A′Nb cos γ δ (x − xd)

2

∫ L

0
p̈dς

]
+
[(

kz + ϑz |z|2
)

(δx + δ(x − L)) + cbearing żδx + cbearing żδ(x − L)
]

+
⎡
⎣ Nb∑
i=1

Fni (1 + jμ)ejφi δ (x − xd) + j
Nb∑
i=1

Fniμ (Rd + L)

∫ xd

0
z′′′dxδ (x − xd)

⎤
⎦ = 0 (30)

The solution of small parameter domain is obtained from multiple scales method. By non-dimensionalization,
the numerical differences of the response amplitudes at different scales are greatly reduced and the morbid
problem in computing can be avoided. In order to improve the calculation accuracy, the following dimensionless
parameters are employed:

z∗ = z

l
, e∗

y = ey
l

, e∗
z = ez

l
, x∗ = x

l
, x∗

d = xd
l

, I ∗
1 = I1

ml2
, I ∗

2 = I2
ml2

, Ω∗ =
√
ml4

D
Ω, t∗

=
√

D

ml4
t, k∗ = kl3

D

c∗
blade = cblade

m′A′

√
ml4

D
, c∗ = cl2√

mD
, r∗ = ml2

m′A′L2 , ς∗ = ς

L
, R∗

d = Rd

L
, Λ∗

i = Λi

L
, I ′

11∗

= E I ′
11ml4

m′A′DL4 ,m∗
disk = mdisk

ml

mr = mdisk + m′A′LNb

ml
, Jr = Jdisk + m′A′NbΓ3

ml3
, Ir = Idisk + m′A′NbΓ3

2

ml3
, F∗

ni = l2Fni
D

,mr2 = m′A′Nb

2ml

l∗ = l

L
, L∗ = L

l
, c∗

bearing = cbearingl2√
mD

, ϑ∗ = ϑl5

D
(31)

It should be noted that e∗
y , e

∗
z and F∗

ni are of order ε
3, and c∗

blade, c
∗ and c∗

bearing are of order ε
2 where ε is a small

dimensionless parameter. Substituting Eq. (31) into Eqs. (24)–(26), the dimensionless equations of motion are
expressed as:
[
p̈∗ + c∗

bladeε
2 ṗ∗ + I ′

11
∗ ∂4 p∗

∂ς∗4

]
+
[(

R∗
d + ς∗) (Ω∗ + φ̇∗)2 ∂p∗

∂ς∗ + (Ω∗ + φ̇∗)2 p∗ sin2 γ

+2
(
Ω∗ + φ̇∗) j ṗ∗ + c∗

bladeε
2 (Ω∗ + φ̇∗) jp∗ + jφ̈ p∗ −

(
Ω∗ + φ̇∗)2

2

((
R∗
d + 1

)2 − (R∗
d + ς∗)2) ∂2 p∗

∂ς∗2

]

+
[
2ε3

Nb
μ cos γ δ

(
ς∗ − 1

) Nb∑
i=1

F∗
ni r

∗e−jφi
]

+ z̈∗ cos γ δ
(
x∗ − x∗

d

) = 0 (32)

⎡
⎢⎢⎢⎣

(
z̈∗ + z′∗

2

∫ x∗
0

(
2ż′∗ ˙̄z′∗ + z̈′∗ z̄′∗ + ¨̄z′∗z′∗

)
dx∗ + z′′

2

∫ x∗
1

∫ x∗
0

(
2ż′∗ ˙̄z′∗ + z̈′∗ z̄′∗ + ¨̄z′∗z′∗

)
dx∗dx∗

)

+ε2c∗ ż∗ + jI ∗
1 Ω∗ ż′′∗ − I ∗

2 z̈
′′∗

+
(
z(I V )∗ + 2z′′∗z′∗ z̄′′′∗ + 1

2 z
′′∗ z̄′∗z′′′∗ + 3

2 z̄
′′∗z′∗z′′′∗ + z̄′′∗z′′∗2 + 1

2 z
∗(I V )

z̄′∗z′∗ + 1
2 z

(I V )∗ z′∗2
)

⎤
⎥⎥⎥⎦
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+
(
z(I V )∗ + 2z′′∗z′∗ z̄′′′∗ + 1

2
z′′∗ z̄′∗z′′′∗ + 3

2
z̄′′∗z′∗z′′′∗ + z̄′′∗z′′∗

2 + 1

2
z∗(I V ) z̄′∗z′∗ + 1

2
z(I V )∗ z′∗

2
)

+
⎡
⎢⎣
mrδ

(
x∗ − x∗

d

) (
z̈∗ + z′∗

2

∫ x∗
d

0

(
2ż′∗ ˙̄z′∗ + z̈′∗ z̄′∗ + ¨̄z′∗z′∗

)
dx∗ + z′′

2

∫ x∗
d

1

∫ x∗
d

0

(
2ż′∗ ˙̄z′∗ + z̈′∗ z̄′∗ + ¨̄z′∗z′∗

)
dx∗dx∗

)

+jΩ∗ Jrδ
(
x∗ − x∗

d

)
ż′′∗ − Irδ

(
x∗ − x∗

d

)
z̈′′∗ − m∗

diskΩ
∗2ε3

(
je∗
z + e∗

y

)
ejΩ

∗t∗δ
(
x∗ − x∗

d

)
⎤
⎥⎦

+
[
mr2 cos γ δ

(
x∗ − x∗

d

) ∫ 1

0
p̈dς

]
+
[(

k∗z∗ + ϑ∗z∗
∣∣z∗∣∣2) (δx∗ + δ(x∗ − 1)

)+ c∗
bearingε

2 ż∗δx∗ + c∗
bearingε

2 ż∗δ(x∗ − 1)
]

+
[

Nb∑
i=1

F∗
niε

3 (1 + jμ)ejφi δ(x∗ − x∗
d ) + j

Nb∑
i=1

F∗
niε

3L∗μ
(
R∗
d + 1

) ∫ x∗
d

0
z′′′∗dx∗δ

(
x∗ − x∗

d

)] = 0 (33)

4 Solution methodology

To solve the nonlinear equations of motion, the perturbation techniques are widely used, especially themultiple
scales method, which is applied to solve the equations of motion in the following sections.

4.1 Linear mode shapes of the shaft with nonlinear supports

The support stiffness and the bladed disk clamped on the shaft have some influences on the linear mode
shapes and critical speeds of the shaft, but they have been ignored by many researchers. Considering the
parameters of the bladed disk and the supports at both ends, the mode shapes of rotating shaft at different
speeds are solved. In this section, the bladed disk is regarded as a lumped point with mass mD, the polar mass
moment of inertia Jp and the diametral mass moment of inertia Jd. It is obvious that mD = mdisk + Nbm′A′L ,
Jp = Jdisk + Nbm′A′Γ3 and Jd = Jp/2. The shaft is regarded as a Timoshenko beam with nonlinear supports
at both ends (see Fig. 5), and l1, l2 are the distances of the disk to the left and right end, l1 = xd and l2 = l− xd.
The angular displacements around Y and Z axes are denoted by θyi and θzi , and θi = θyi + jθzi (i = 1, 2). The
differential equation of the shaft’s free vibration at rotating speed Ω is [39]:

∂4zi
∂x4

− ρ

E

(
1 + E

κG

)
∂4zi

∂x2∂t2
+ 2jΩρ

E

∂3zi
∂x2∂t

+ ρA

E Is

∂2zi
∂t2

− 2jΩρ2

EκG

∂3zi
∂t3

+ ρ2

EκG

∂4zi
∂t4

= 0 (34)

where i = 1, 2; xi ∈ [0, li ]; ρ, κ and Is denote density, the section shearing coefficient and the sectional
moment of inertia of the shaft, respectively. Setting φni (x) as piecewise mode shapes at the nth-order critical
speeds (n = 1, 2, . . .), zi can be expressed as zi = φni (x)ejωt under main resonances, whereω is the frequency
of harmonic motion, then φni (x) should satisfy:

d4φni

dx4i
+ 2ri

l2i

d2φni

dx2i
− λ4i

l4i
φni = 0 (35)

Fig. 5 Shaft with nonlinear supports and bladed disk
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where

2ri
l2i

= ρ

E

(
1 + E

κG

)
ω2 − 2Ωρω

E

λ4i

l4i
= ρA

E Is
ω2 + 2Ωρ2ω3

EκG
− ρ2ω4

EκG
(36)

The general solution of Eq. (35) is given by:

φni (x) = c1i sin αni x + c2i cosαni x + c3i sinh βni x + c4i cosh βni x (37)

where c1i ,c2i ,c3i ,c4i are the coefficients to be solved, and αni and βni should satisfy:

α2
ni =

ri +
√
r2i + λ4i

l2i
, β2

ni =
−ri +

√
r2i + λ4i

l2i
(38)

Setting Θni (x) as the piecewise nth-order mode shapes of θi , it should satisfy:

Θni =
(
κGA + E Is

ρω2

κG

)
φ′
ni + E Isφ′′′

ni

κGA − ρ Isω2 + 2ρ IsΩω
(39)

The boundary conditions of nonlinear supports at both ends can be given by:

∂Θn1

∂x1

∣∣x1=0 = 0, − κGA
(
Θn1 − φ′

n1

) ∣∣x1=0 = (kφn1 + ϑφ3
n1

) ∣∣x1=0

∂Θn2

∂x2

∣∣x2=l2 = 0, κGA
(
Θn2 − φ′

n2

) ∣∣x2=l2 = (kφn2 + ϑφ3
n2

) ∣∣x2=l2 (40)

The abutment conditions at xd position can be expressed as:

φn1
∣∣x1=l1 = φn2

∣∣x2=0 , Θ1
∣∣x1=l1 = Θ2

∣∣x2=0

κGA
(
Θn2 − φ′

n2

) ∣∣x2=0 − κGA
(
Θn1 − φ′

n1

) ∣∣x1=l1 = mDω2φn2
∣∣x2=0

E IsΘ
′
n1

∣∣x1=l1 − E IsΘ
′
n2

∣∣x2=0 = (Jdω2Θn2 − JpΩωΘn2
) ∣∣x2=0 (41)

Under the main resonance, it can be decided that Ω = ω. Substituting Eq. (37) into Eqs. (40)–(41), the
subsection mode shapes and critical speeds of the shaft-disk-blade system can be obtained. According to the
continuity condition, the integral nth-order mode shape of the shaft is

φn(x) =
{

φn1(x) 0 ≤ x ≤ l1
φn2(x − l1) l1 < x ≤ l (42)

Under the following parameters l = 0.5952 m, A = 3.14 × 10−4m2, Is = 7.85 × 10−9m4, E = 2 × 1011Pa,
ρ = 7800 kg/m3, xd = 0.4077 m, mD = 0.735 kg, Jp = 6.25 × 10−4kg · m2 and ϑ∗ = 0; the first two
vibration mode shapes at corresponding critical speeds are shown in Fig. 6 (k = 2 × 108 N/m) and Fig. 7
(k = 2 × 106 N/m). In order to verify the proposed method, the finite element (FE) model of the rotor-blade
system is established in Nastran software, and the mode shapes and the critical speeds are computed. The
critical speeds under different boundary conditions are shown in Table 1, where ff and fb denote forward and
backward whirl mode frequencies. When the linear support stiffness is 2 × 108 N/m (see Fig. 6), the natural
frequencies and the mode shapes under spring supported condition are similar to those under simply supported
conditions, but when the stiffness is 2 × 106 N/m, they are quite different (see Fig. 7). Furthermore, in the
high-order vibrations, the amplitude of the section where the disk is located is smaller.When ϑ∗ �= 0, the mode
shapes and the backward whirl mode frequencies determined by initial conditions and excitation amplitudes
are difficult to obtain using FE method, so the validation is ignored.
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Fig. 6 Mode shapes of the shaft (k = 2×108 N/m, ϑ∗ = 0): first-order bending mode using proposed method (a) and FEmethod
(b), second-order bending mode using proposed method (c) and FE method (d)

Fig. 7 Mode shapes of the shaft (k = 2×106 N/m, ϑ∗ = 0): first-order bending mode using proposed method (a) and FEmethod
(b), second-order bending mode using proposed method (c) and FE method (d)

Table 1 Critical speeds under different boundary conditions (ϑ∗ = 0)

Boundary condition Stiffness k (N/m) First-order critical speed (Rad/s) Second-order critical speed (Rad/s)
Proposed method FE method Proposed method FE method
ff fb ff fb ff fb ff fb

Spring supported 2 × 106 490.29 −487.63 491.91 −488.52 1835.10 −1796.22 1836.28 −1795.45
Spring supported 2 × 108 523.65 −518.95 523.34 −518.48 2265.93 −2190.57 2261.72 −2189.84
Simply supported — 526.83 −521.77 526.01 −521.43 2315.76 −2198.33 2312.92 −2194.23

4.2 The multiple scales solution

p∗(ς∗, t) and z∗(x∗, t) can be expanded as [2]:

p∗(ς∗, t) = εp1
(
ς∗, T0, T2

)+ ε3 p3
(
ς∗, T0, T2

)+ · · ·
z∗(x∗, t) = εz1

(
x∗, T0, T2

)+ ε3z3
(
x∗, T0, T2

)+ · · · (43)

where T0 = t and T2 = ε2t . Using the chain rule, the derivatives with respect to t are transformed to partial
derivatives with respect to T0 and T2 as:

∂

∂t
= D0 + ε2D2 + · · ·

∂2

∂t2
= D2

0 + 2ε2D2D0 + · · · (44)
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where D0 = ∂/∂T0 and D2 = ∂/∂T2. Substituting Eqs. (43) and (44) into Eqs. (32) and (33) and equating the
coefficients of like powers of ε on both sides, the corresponding equations of the first and third hierarchies are
obtained and presented in “Appendix A.” Galerkin method is adopted to separate variables. The solutions of
Eq. (A.1) can be considered as [25]:

z1
(
x∗, T0, T2

) = φ f
(
x∗) A1 (T2) e

jβfT0 + φb
(
x∗) A2 (T2) e

jβbT0

p1
(
ς∗, T0, T2

) = Θ f ψf
(
ς∗) A1 (T2) e

jβfT0 + Θbψb
(
ς∗) A2 (T2) e

jβbT0 (45)

where A1(T2) and A2(T2) are the complex functions to be solved, φ f (x∗), φb(x∗), β f , βb are the forward
and backward whirl mode shapes of the shaft, dimensionless forward and backward whirl mode frequencies,
respectively. � f and �b are forward and backward mode shape coefficients for the blades, used to denote the
relationship between the vibration amplitudes of the blades and the shaft; ψ f (ς

∗) and ψb(ς
∗) are forward

and backward mode shapes of the rotating blades. It should be noted that both forward and backward whirl
modes are considered in Eq. (45). According to the discussion in Section 4.1, the mode shapes of the shaft are
given by:

φ f
(
x∗) = φb

(
x∗) = φn

(
x∗) , n = 1, 2, . . ., 0 ≤ x∗ ≤ 1 (46)

Furthermore, the blades are modeled as cantilever beams and the mode shapes are expressed as:

ψi
(
ς∗) = (sin (βi Lς∗)− sinh

(
βi Lς∗))− sin (βi L) + sinh (βi L)

cos (βi L) − cosh (βi L)

(
cos
(
βi Lς∗)− cosh

(
βi Lς∗))

β1L = 1.8751, β2L = 4.6941 · · · 0 ≤ ς∗ ≤ 1 (47)

Detuning parameter σ = O(1) is introduced to describe the proximity of Ω∗ to β f :

Ω∗ = β f + ε2σ (48)

Substituting Eqs. (45)–(48) into Eqs. (A.3) and (A.4) yields:
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where N.S.T stands for non-secular terms. Four secular terms are listed in “Appendix B.” It should be noted
that Hz, f (x∗, T2) and Hp, f (ς

∗,T2) include time-dependent impulse function term F∗
ni . Integrating Eqs. (B.1)

and (B.3) for a full-cycle period at steady state with respect to T0, F∗
ni is converted into a stationary function

about F∗
nmaxi ,which is the maximum rubbing force on the i th blade. Equations (49)–(50) would have nontrivial

solutions if and only if the solvability conditions are satisfied:
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= 0
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∣∣∣∣∣∣∣∣∣∣∣∣∣
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where
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Separating the real and imaginary parts, Eq. (51) is transformed to:
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Fig. 8 Schematic of rotor-blade system: a physical dimension, b Campbell diagram, c rubbing between blade tip and casing

Through discussing the eigenvalues of the Jacobian matrix of the left hand of Eq. (53), the stability of the
rotor-blade system is determined. The real parts of the eigenvalues give stability information: The solution is
unstable if it has more than one (including one) positive real parts [15].

Using Galerkin method to separate the variables, Eqs. (32) and (33) are converted to ordinary differential
equations which can be solved by Runge–Kutta numerical method. The results are used to verify the accuracy
of the multiple scales perturbation solutions.

5 Numerical simulation

Numerical simulation is performed to analyze the nonlinear vibration and the stability of the rotor-blade system
which is composed of a flexible rotating shaft with two nonlinear supports, a rigid disk clamped on the shaft
and eight identical blades cantilevered on the disk(see Fig. 8a). The blade numbering is shown in Fig. 8c.
The blue curves depict the low-order natural frequencies of the rotor-blade system at different rotating speeds,
among which the first-order forward whirl mode frequency is so close to the backward whirl mode frequency
that they seem to be on one curve. The red line (ra = 1) indicates that the excitation frequency is equal to the
rotating frequency on this line. The frequency corresponding to the intersection point of the red line and the
frequency curves is the main resonance frequency (see Fig. 8b). From Campbell diagram (k∗ = 26860 and
ϑ∗ = 0, see Fig. 8b), it can be seen that only the first-order primary resonance may occur. The black dotted
line represents the tip of the blade, and the blue double dot dash line represents the inner wall of the casing in
Fig. 8c. The overlapping of the two lines represents the occurrence of rubbing.

Due to the assembling misalignment, the gaps among the blade tips and the casing are not circularly
symmetric. The values of misalignment along Y and Z directions are denoted by Ey and Ez . Based on the
preconditions that e∗

y = e∗
z and Ey = Ez , it is obvious that the rubbing force reaches the maximum value at

the tip of the blade 2# (see Fig. 8c). According to our time-domain simulation results, only blade 2# rubs with
the casing at steady state and tc ≈ 0.07tp. For simplicity, F∗

nmax2 is denoted by F∗
n in the following section.
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Fig. 9 Frequency response curves under different Duffing term coefficients (e∗
y = e∗

z = 0.001, c∗
blade = c∗ = c∗

bearing = 0.2,
μ = 0.1, F∗

n = 0.225, k∗ = 26860)

5.1 Effects of support stiffness parameters

Figure 9 illustrates the frequency response curves of the rotor-blade system under different Duffing term
coefficients. When ϑ∗ = −2.5 × 107, the original hardening-type nonlinearity is transformed into softening
type because of negative nonlinear Duffing term. However, the hardening-type nonlinearity is enhanced by a
wide margin due to positive nonlinear Duffing term, so is the jump-down frequency.

Generally, the multiple solutions are related to the initial conditions. For example, when ϑ∗ = 0, at the
region around σ = 0.4, there are three possible solutions, one of which is unstable and the other two are stable,
as are denoted by blue curves in Fig. 9. The trends of solutions under various initial conditions are shown in
Fig. 10, where P1 and P3 are stable focal points, while P2 is a saddle point. These three points are marked
by solid blue dots in Fig. 9. All the initial conditions in the shaded region will lead to the stable solution P1
on the lower resonant branch, while all the initial conditions in the non-shaded region will lead to the stable
solution P3 on the upper resonant branch. The arrows indicate the directions of movements; thus, the shaded
area constitutes the attraction region of point P1, while non-shaded area constitutes the attraction region of
point P3. As an unstable solution, point P2 is on the border of two attraction regions and it may move toward
either P1 or P3 after being disturbed.

Figures 11 and 12 depict the phase diagram of the rotor-blade system in the absence or presence of nonlinear
terms for σ = 0.1 and ϑ∗ = −2.5×107. Although the solutions are all stable, the trajectories of the simulation
results without nonlinear terms are smooth and regular, while those with nonlinear terms are undulant.

Figure 13 describes the frequency response curves of the system under different support stiffness. For
σ < −0.2 and ϑ∗ = 0, the response amplitudes of the system under different support stiffness are very close,
and for the range of−0.2 < σ < 0.533 and ϑ∗ = 0, the amplitudes of upper branch of the system under lower
support stiffness are higher than those under higher support stiffness. With a lower jump-down frequency, it
is more quick for the responses of the system to reach the resonance peak under lower support stiffness. In
addition, for the system with higher support stiffness, the resonance peak and jump-down frequency are higher
and the unstable range is broader.

5.2 Effects of loading parameters

Figure 14 depicts the frequency response curves of rotor-blade system under different normal rubbing forces.
The nonlinearity is of a hardening type without Duffing term. When the normal rubbing force is zero, the
system has only one stable solution. With the slight increase in the normal rubbing force, the resonance peak
and the corresponding frequency rise slightly, but the solution keeps stable. As the force approaches the value
of 0.225, the bifurcation occurs, and for some values of detuning parameter, there are three solutions; one of
them is unstable and marked with blue dotted line. The figure shows that the rubbing forces will reinforce the
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Fig. 10 Attraction regions of different solutions (e∗
y = e∗

z = 0.001, c∗
blade = c∗ = c∗

bearing = 0.2, μ = 0.1, F∗
n = 0.225,

k∗ = 26860, ϑ∗ = 0)

Fig. 11 Phase diagram in the Y -plane (e∗
y = e∗

z = 0.001, c∗
blade = c∗ = c∗

bearing = 0.2, μ = 0.1, F∗
n = 0.225, k∗ = 26860,

σ = 0.1)

hardening nonlinearity, raise the formants and resonant frequencies, bring out the bifurcation and extend the
unstable frequency range.

Figure 15 illustrates the effect of friction coefficient on the frequency response of the system. In the range
of AB, before the system approaches the jump-down frequency, the response amplitude of the system with a
higher friction coefficient is slightly higher than that with lower friction coefficient, while actually they are very
close. However, with a lower jump-down frequency, the amplitude of the system with lower friction coefficient
no longer increases after B points. Through the BC area, the amplitude of the system with a higher friction
coefficient reaches a higher resonance peak with a broader range of upper resonant branch.

Figure 16 illustrates the response curves of rotor-blade system under different normal rubbing forces.
Because of the characteristic of hardening-type nonlinearity, jump phenomenon does not occur when σ = 0,
and the amplitude increases with the increase in rubbing forces. When σ = 0.4 and σ = 0.8 (ϑ∗ = 0) under
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Fig. 12 Phase diagram in the Z -plane (e∗
y = e∗

z = 0.001, c∗
blade = c∗ = c∗

bearing = 0.2, μ = 0.1, F∗
n = 0.225, k∗ = 26860,

σ = 0.1)

Fig. 13 Frequency response curves under different support stiffness (e∗
y = e∗

z = 0.001, c∗
blade = c∗ = c∗

bearing = 0.2, μ = 0.1,
F∗
n = 0.225)

some values of normal rubbing force, there are three possible solutions with two stable and one unstable.When
0.099 < F∗

n < 0.155, as is highlighted with light blue in Fig. 16, there are three possible solutions under
σ = 0.4, with two stable, but there is only one stable solution under σ = 0.8. When 0.3319 < F∗

n < 0.9956,
as is highlighted with pale yellow in Fig. 16, there are three possible solutions under σ = 0.8, but there is only
one stable solution under σ = 0.4. Therefore, the detuning parameter corresponding to the second bifurcation
point is 0.8 for F∗

n = 0.155, while it is 0.4 for F∗
n = 0.099. Similarly, the detuning parameter corresponding

to the first bifurcation point is 0.4 for F∗
n = 0.3319, while it is 0.8 for F∗

n = 0.9956. It is clear that the
frequencies of the first and the second bifurcation points increase with the increase in normal rubbing force.
For ϑ∗ = −2.5 × 107, the system can reach the same bifurcation frequencies under a smaller rubbing force.

Figure 17 depicts the steady-state responses of the rotor-blade system with different support stiffness
under normal rubbing forces assuming that c∗

blade = c∗ = c∗
bearing = 0.2 and σ = 0.4. When Duffing term

coefficient ϑ∗ = 0, the systemwith lower support stiffness will be unstable under larger normal rubbing forces,
compared with the system with higher support stiffness. Therefore, the system with lower support stiffness
becomes totally stable under larger normal rubbing force. When Duffing term coefficient ϑ∗ = 2.5 × 107,
jump phenomenon does not occur for both systems.
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Fig. 14 Frequency response curves of rotor-blade system under different normal rubbing forces (e∗
y = e∗

z = 0.001, c∗
blade = c∗ =

c∗
bearing = 0.2, μ = 0.1, k∗ = 26860, ϑ∗ = 0)

Fig. 15 Frequency response curves under different friction coefficients (e∗
y = e∗

z = 0.001, c∗
blade = c∗ = c∗

bearing = 0.2,
F∗
n = 0.225, ϑ∗ = 0)

5.3 Effects of damping parameters

Figure 18 depicts the response curves of the rotor-blade system with different support stiffness under different
damping coefficients of the shaft. It can be seen that the system with higher support stiffness needs a larger
damping coefficient to reach a complete stable state than that with lower support stiffness. However, the
response amplitude of the system with smaller support stiffness is larger than that with higher support stiffness
for the same damping coefficient. As the detuning parameter increases, the response amplitudes increase, but
the system needs a smaller damping coefficient to reach a stable state under both conditions. In addition, small
damping coefficients of the shaft may lead to unstable responses regardless of the values of support stiffness.

Figure 19 depicts the response curves of the rotor-blade system with different support stiffness under
different damping coefficients of the bearing. When c∗

bearing ≥ 0.1675, the response of the system with smaller
support stiffness is completely stable. However, the response amplitude of the system with larger support
stiffness almost remains unchanged as the damping of bearing increases. It is obvious that the damping of
bearing has a more powerful effect when the system is under smaller support stiffness.

Figure 20 shows the trajectories of the bifurcation points of the rotor-blade system with different support
stiffness under different damping coefficients of the shaft. As the damping coefficient increases, the detuning
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Fig. 16 Response curves of the rotor-blade system under different normal rubbing forces (e∗
y = e∗

z = 0.001, c∗
blade = c∗ =

c∗
bearing = 0.2, μ = 0.1, k∗ = 26860)

Fig. 17 Response curves with different support stiffness under normal rubbing forces (e∗
y = e∗

z = 0.001, c∗
blade = c∗ = c∗

bearing =
0.2, μ = 0.1, σ = 0.4)

parameters corresponding to the first and second bifurcation points both decrease. Obviously, the decreasing
velocity of the second bifurcation point is faster than that of the first bifurcation point. Finally, the two tracks
meet in one point, and the real damping equal to or greater than this value will guarantee the stability of
the system. It can be seen that the lower damping may lead to unstable response under both conditions. In
addition, the Duffing term of support stiffness makes bifurcation frequencies higher, and the system with the
larger support stiffness needs a larger damping to reach a stable state compared with that with smaller support
stiffness.

6 Conclusions

In this paper, the main resonances of a coupled rotor-blade system with nonlinear supports are investigated.
The influences of normal rubbing force, friction coefficient, damping, support stiffness and mass eccentricity
on the system responses are discussed. Some detailed conclusions are summarized as follows:
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Fig. 18 Response curves under different damping coefficients of the shaft (e∗
y = e∗

z = 0.001, F∗
n = 0, c∗

blade = 0.01, c∗
bearing =

0.02, ϑ∗ = 0)

Fig. 19 Response curves under different damping coefficients of the bearing (e∗
y = e∗

z = 0.001, F∗
n = 0, c∗

blade = c∗ = 0.01,
σ = 0.2, ϑ∗ = 0)

(1) The nonlinearity of the system is of hardening type without nonlinear stiffness terms of the bearing. The
original hardening type of nonlinearity may be enhanced or transformed into softening type due to the
positive or negative nonlinear stiffness terms of the bearing. The increase in the normal rubbing force or
the mass eccentricity destabilizes the system and reinforces the nonlinearity.

(2) The mode shapes and critical speeds of the shaft with bladed disk are different from those without bladed
disk. The decreasing support stiffness weakens the nonlinearity of the system. Lower support stiffness
results in a lower jump-down frequency and a smaller resonance peak. However, the system response
amplitude under lower support stiffness is larger than that under higher support stiffness before its jump-
down frequency.

(3) Before reaching the jump-down frequency, the amplitude of the system with a higher friction coefficient
is slightly larger than that with a lower friction coefficient. By increasing the friction coefficient, the
jump-down frequency is enhanced, which leads to the increase in the response amplitude.

(4) Lowdampingof the shaftmay lead to unstable response of the rotor-blade systems. Furthermore, the system
with larger support stiffness needs a larger damping coefficient to reach the stable state. In addition, the



1398 B. Li et al.

Fig. 20 Trajectories of bifurcation points (F∗
n = 0, e∗

y = e∗
z = 0.001, c∗

bearing = 0.2, c∗
blade = 0.01)

damping of bearing has a more powerful effect on the system vibration responses under smaller support
stiffness.
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Appendix A: The first- and third-order equations extracted from multiple scales method
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Appendix B: The coefficients of ejβ f T0 and ejβbT0
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2(T2) Ā2(T2)

−jc∗φb(x
∗)βbA2(T2) − jc∗

bearingφb(0)βb A2(T2) − jc∗
bearingφb(1)βbA2(T2) = 0 (B.2)

Hp, f
(
ς∗, T2

) = −2j� f βfψf
(
ς∗) dA1(T2)

dT2
− jc∗

blade� f βfψf
(
ς∗) A1(T2) − 2j�∗� f ψf

(
ς∗) dA1(T2)

dT2

−jc∗
blade� f �

∗ψf
(
ς∗) A1(T2) − 2jβfφ f (xd)

dA1(T2)

dT2
cos γ − 2

Nb
μ cos γ

Nb∑
i=1

F∗
ni r

∗ejσT2+j
ϑ

i (B.3)



Nonlinear vibration and dynamic stability analysis of rotor-blade system 1401
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