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Abstract This paper presents an optimization and numerical analysis of vibration-induced fatigue in a two
degree-of-freedom inerter-based vibration isolation system. The system is comprised of a primary, e.g. source
body, and a secondary, e.g. receiving body, mutually connected through an isolator. The isolator includes
a spring, a dashpot and an inerter. Inerter is a mechanical device which produces a force proportional to
relative acceleration between its terminals. A broadband frequency force excitation of the primary body is
imposed throughout the study. The goal of the proposed optimization is to prolong the fatigue life of the
ground connecting helical spring of the secondary body. The optimization is based on minimizing separately
the displacement and velocity amplitudes. Both optimization criteria are compared with regard to spring
fatigue life improvement for fair benchmark comparison. The inerter-based optimized systems, in which the
H2 index of the receiving body is minimized, are also compared with the optimized systems without inerter.
Notable improvements are observed in inerter-based systems due to the inclusion of an optimally tuned inerter
in the isolator. The proposed analytical vibration fatigue method optimization results are compared with the
finite element method results, and a very good agreement is observed. Most accurate helical spring deflection
and stress correction factors are discussed and determined. Furthermore, the inerter concept is successfully
implemented into finite element-based dynamic solution.

Keywords Vibration isolation · Fatigue life · Inerter · Helical spring · Finite element method · H2
optimization

1 Introduction

The cylindrical helical coil spring is one of the fundamental and most important key mechanical components
found inmany industrial applications (e.g. vehicle suspension components, automotive valve springs, stamping
presses, brakes). Springs are typically used to perform required mechanical functions (i.e. apply, transfer,
indicate or maintain a force/torque, store energy and provide the system with the flexibility [1]).

Vibration isolation systems [2] (e.g. car suspension) are often subjected to high dynamic loading during
service. These loadings can cause harmful vibrations and may result with premature failure from aggressive
fatigue mechanisms which are especially prominent in case of resonant harmonic excitations [2,3]. Massive
spring used in the suspension systems [3,4] is a common example where the crack may initiate at a high stress
location and eventually propagate. This can lead to fatigue failure, especially due to vibration-induced fatigue
effects [2,3,5]. In order to estimate the vibration fatigue, it is necessary to predetermine stiffness, strength and
damping parameters of the system. In particular, all of the above-mentioned parameters should be taken into
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account while evaluating the helical spring fatigue life [2]. The springs as machine elements should withstand
long exploitation period. Hence, they are commonly evaluated with appropriate high-cycle fatigue (HCF)
calculation method (above 103 life cycles) [2]. Shear-governed life criterion is normally considered for spring
fatigue calculation where highly stressed region is usually located at the inner side of the helix [1,2]. Contrary
to that traditional concept, Todinov [6] in accordance with Del Llano-Vizcaya et al. [7] states that the highest
stress region is reported at the outer surface of the helical compression springs with a large coil to wire radius
ratio, rather than usual inside of the helix. Consequently, the fatigue crack originwill presumably also be located
on the outer surface where the maximum amplitude of the principal tensile stress occurs. Furthermore, it is in
accordance with the stress field obtained from numerical fatigue analysis via finite element method (FEM) [7].
As discussed in [2], the problem with unambiguous definition of the stress field and the corresponding fatigue
life is noted in the literature since multiple stress correction factors for helical spring are proposed. One of the
most often used and cited expressions originate from Wahl [8], Bergsträsser [2], Göhner [9–11] and Ancker
and Goodier (A/G) [2,12–19]. The investigation conducted by Calder et al. [14] reported that A/G and Wahl
stress correction factors differ only slightly for small spring pitch angles. Moreover, the Wahl correction factor
matched with their experimental stress measurements of a helical coil automobile spring within less than± 1%
difference. It is often discussed whether using aforementioned stress correction factors may result with highly
conservative fatigue life prediction [1,2].

Numerically determining the vibration fatigue life is an increasingly evolving field. Various researchers
use mostly FEM-based software for calculation depending on the availability, application and functional-
ity [5,20–22]. Rahman et al. [23] used FEM for obtaining stress amplitudes of engine components and
performing corresponding fatigue calculation. Authors employed a power spectral density (PSD) load and
obtained fatigue results in the frequency domain. According to Halfpenny [24] and also reported by Mršnik
et al. [25,26], operating with a PSD proves to be rather beneficial when working with complicated and com-
putationally expensive FEM models. Hence, the calculation of the frequency response functions (FRFs) is
convenient and much faster than a long-term transient dynamic analysis in the time domain [5]. When
loading conditions are prescribed in the form of PSD which is defined in a frequency domain, structural
response of systems can be computed by using the transfer function (TF), i.e. FRF of target systems and
PSD of excitation loads [24]. Mršnik et al. also gave important scientific contribution to further understand-
ing of the vibration-induced fatigue phenomena by studying multi-axial stress effects [25] and various fre-
quency domain methods [26]. In [25], authors used both FEM and experimental approaches where similar
numerical model was analysed as in [27]. Česnik and Slavič [27] investigated harmonic and random kine-
matic/base excitation load on the aluminium alloy “Y”-shaped specimen and used custom vibration fatigue
plug-in developed for the commercial FEM package analysis environment. Furthermore, the numerically
predicted fatigue life was compared to the experimental results. The results obtained via numerical anal-
ysis estimated substantially more conservative fatigue life compared to the actual fatigue life. Opposed to
common unimodal (i.e. narrow-band PSD), Braccesi et al. [28] considered bimodal PSD for random stress
process and created custom FE-based fatigue life calculation code valid for the frequency domain. Addi-
tionally, Bonte et al. [29] used combination of various FEM packages for the calculation of the vibra-
tion fatigue life. They developed a commercially used simulation method for the fatigue analysis of auto-
motive and other products that are subjected to multiple random excitations by adopting PSD. Further-
more, Zhou et al. [30] used modal stress approach in random vibration fatigue assessment by employ-
ing FEM. The conducted investigations consisted of a two-step procedure. In the first step, modal stress
analysis is conducted to locate the fatigue hotspots in a dynamic structure, while in the second step the
frequency domain-based approach for random fatigue evaluation is performed at fatigue hotspots through
PSD.

Vibration systems are commonly tuned (i.e. optimized) according to some optimization criterion. One of
the metrics for vibrations of the dynamic structures is square vibration amplitude over the entire frequency
range. Proposing the optimization of this quantity is first attributed to Warburton [31] and is generally referred
to as H2 optimization [32–34]. H2 optimization has the objective function of minimizing the total vibration
energy, i.e. mean square motion of the dynamic structure under the white noise of the PSD excitation [31].
Studieswhich incorporate thismethod usually employ theminimization of specific kinetic energy (i.e. vibration
velocity amplitudes) [2,32,35]. However, alternate studies such as minimization of displacement amplitudes
can also be applied [34]. Inerter is a novel mechanical element conceived and developed by Smith [4]. Inerter
produces a force which is proportional to relative acceleration (a2 − a1) between its terminals where equation
Finerter = b(a2 − a1) holds. The coefficient of inerter resistance force Finerter is called inertance. It is denoted
by label “b” and is measured in kilograms, in SI units. Inerters are mathematically approximated in the same
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sense as, for example, springs and dashpots. Consequently, it is assumed that inerter mass is rather small
compared to inertance it provides [2,4,35].

In the preceding work [2], all the above presented concepts were implemented into an analytical solution.
Although this problem is discussed in other studies [34–38], reference [2] is further suitably referred to, as
this previously proposed approach addresses vibration isolation and fatigue life assessment simultaneously.
The unit PSD load was applied on the dynamic system. The minimization of the specific kinetic energy of
inerter-based system in the frequency domain yielded substantial reduction in vibration velocity amplitudes.
Consequently, extension of the corresponding cylindrical spring fatigue life was reported. However, concerns
were raised whether the exclusively fatigue-based optimization would prove more efficient with regard to the
spring fatigue life when compared to solely kinetic energy-based optimization. The aim of this study is to
revisit and address this question by employing alternate displacement-based criterion and utilizing linear FEM
to assess the accuracy of the adopted expressions [2], especially with regard to before discussed approximate
spring stress and displacement correction factors. Using FEM as control verification tool with a purpose of
benchmark comparison is a common practice used in conjunction with complex analytical calculations [39].

In this study, which is a direct continuation leading the approach of the same problem from previous
work [2], the goal is to model the fatigue load of a helical spring acting as a linear elastic element in a simplified
twodegree-of-freedom(2-DOF) inerter-basedvibration isolation system.Analytical andnumericalmethods are
employed by means of specialized software packages: FEM-based Abaqus [40] and Fe-Safe [41]. Fe-Safe can
import and analyse FEM generated static/dynamic multi-axial complex stress fields with the aim of assessing
the fatigue life. The paper is structured as follows. In Sect. 2, analytical mathematical 2-DOF inerter-based
vibration isolation systemmodel is establishedwhere optimized parameters for both viscous damper and inerter
are determined. H2 optimization of the newly proposed displacement and referent velocity amplitudes [2] is
used as a criterion. Novel displacement-based optimization parameters for inertance and damping are derived
and explicitly given. In Sect. 3, various dimensionless spring deflection and stress correction factors from the
referent literature are revisited from [2] and discussed. The accuracy of previously derivedTimoshenko/Cowper
(T/C)-based deflection factor [2,8] is determined. The most accurate spring correction factors are later used in
the context of analytically calculating displacement and stress amplitudes under PSD force loading. In Sect. 4,
previously established deflection and stress correction factors are further discussed by comparing analytically
obtained results with FEM. Final Sect. 5 presents a benchmark example adopted from [2] by utilizing all before
proposed methods and finally comparing analytical and numerical results of the vibration fatigue optimization
study. Previously derived analytical expression [2] based on the vonMises energy criterion for shear-governed
biaxial and proportional stress is verified. The proposed expression explicitly ties vibration displacement
amplitudes with HCF life of the helical spring. Moreover, the ideal inerter concept is implemented in the
commercial FEM code Abaqus.

2 2-DOF inerter-based vibration isolator mathematical model

In this chapter, the generalized analytical model for the discrete 2-DOF inerter-based vibration isolation system
optimization process is established as a straightforward closed-form solution. The studied problem is fully
adopted from [2] and represented by a simple model shown in Fig. 1a. It is assumed that the critical fatigue
component is a helical spring k3, shown in Fig. 1b. The material parameters of the spring are as follows:
E is Young modulus, ν is Poisson’s ratio, S′

f is fatigue strength coefficient and B is Basquin’s exponent [2]
denoted in capital letter in order not to be mistaken for inertance b. Number of active coils is designated
as n (n = 2 in Fig. 1b), h is spring total length where h = n · l for n = arbitrary integer ≥ 1, and l is
the spring pitch. D and d are large and small spring diameters, respectively, while C = D/d is defined as
spring index [1,2]. Recommended values of spring index C for practical engineering purposes lie in between
C = 4−12 [2]. Angle α represents the pitch angle which can be calculated according to usual geometric
expression α = arctan[l/(πD)] (Fig. 1b).

The goal of the vibration-based optimization is to minimize vibrations of the secondary or receiving body,
i.e. vibrations of mass m2 which are proportional to the maximum deflection amplitudes of the spring k3. In
this optimization, the excitation of the primary/source body F1(t) is assumed to contain white noise spectral
properties [2,35], i.e. unit PSD loading amplitude F01(Ω) = 1 over the entire frequency range. The whole
vibration system consists of discrete masses m1 and m2, ideally massless springs k1, k2 and k3, viscous
dampers c1, c2 and c3 and an inerter of inertance b2. Isolator consists of spring k2, damper c2 and inerter b2.
The ideal inerter produces a force Finerter proportional to the relative acceleration [4] between masses m1 and
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(a) (b)

Fig. 1 a 2-DOF linear discrete vibration isolation system, b helical spring k3 properties [2]

m2. The described discrete parameter approximation may represent a reduced-order model [36] of a system of
a more complex nature [37] which includes distributed mass, stiffness and damping parameters, as discussed
in [35,38]. The damping of the source and receiving bodies is assumed to be negligible (i.e. c1 ≈ c3 ≈0) which
provides for substantially more simple solution derivation. However, the relations are also approximately valid
for the systems with small inherent damping [35].

The equations of motion [2,3,35] for system in Fig. 1a can be written in the general matrix form as

Mẍ (t) + Cẋ (t) + Kx (t) = F (t) , (1)

where M is the global mass matrix, C is the global damping matrix, K is the global stiffness matrix and F(t)
is the excitation column force vector. Displacement of the masses m1 and m2 from static equilibrium position,
velocity and acceleration vectors are denoted by x(t), ẋ(t) and ẍ(t), respectively.

Global matrices and vectors from Eq. (1), accounting for negligible damping c1 and c3, can be written as

M =
[
m1 + b2 −b2

−b2 m2 + b2

]
, C =

[
c2 −c2

−c2 c2

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]
, (2a, b, c)

x =
[
x1 (t)
x2 (t)

]
, F =

[
F1 (t)
0

]
, (3a, b)

where the parameters and functions in the matrices and vectors are denoted in Fig. 1a. Due to influence of
inerter b2, mass matrix M from Eq. (2a) is no longer diagonal [3]; however, it is still symmetric [2,35].

By assuming harmonic excitation and expressing the excitation and the steady-state response in the complex
form F(t) = F0eiΩt and x(t) = x0eiΩt , where i = √−1, the solution of Eq. (1) can be directly written as

x0 (Ω) = [
x01 x02

]T = [
(iΩ)2 M + iΩC + K

]−1
F, (4)

where terms inside the square bracket denote dynamic stiffness matrix and x0(Ω) is the complex displacement
amplitude. Multiplying Eq. (4) with the term i Ω yields complex velocity amplitude v0 expression which can
be written as

ẋ0 (Ω) ≡ v0 (Ω) = [
ẋ01 ẋ02

]T = iΩx0 (Ω) . (5)

By considering M, C and K matrices from Eq. (2a–c), the steady-state (i.e. time-invariant) complex response
of the mass m2 can now be expressed in simplified form as the following FRFs

x02 (Ω)

F01
= B0 + (iΩ) B1 + (iΩ)2 B2 + (iΩ)3 B3

A0 + (iΩ) A1 + (iΩ)2 A2 + (iΩ)3 A3 + (iΩ)4 A4
,

ẋ02 (Ω)

F01
≡ v02 (Ω)

F01
= iΩ

x02 (Ω)

F01
,

(6a, b)
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where coefficients A0 − A4 and B0 − B3 with respect to Eq. (6a, b) are defined as

A0 = (k2 + k3) k1 + k2k3
A1 = c2 (k1 + k3)
A2 = (m2 + b2) k1 + (m1 + m2) k2 + (m1 + b2) k3
A3 = c2 (m1 + m2)
A4 = (m2 + b2)m1 + b2m2

,

B0 (x0) = k2
B1 (x0) = c2
B2 (x0) = b2
B3 (x0) = 0

,

B0 (v0) = 0
B1 (v0) = k2
B2 (v0) = c2
B3 (v0) = b2

. (7a–m)

The transfer admittance (i.e. FRF x02/F01) from Eq. (6a) represents the complex displacement amplitude
of the receiving body per unit forcing F01 =1 of the source body. The transfer mobility (i.e. FRF v02/F01)
from Eq. (6b) represents the complex velocity amplitude of the receiving body per unit forcing F01 = 1 of the
source body. Coefficients B0 − B3 from Eq. (7) are different with regard to variables of displacement x02 and
velocity v02 amplitudes, respectively [i.e. Eqs. (4) and (5)]. FRFs from Eq. (6a, b) are further used to assess the
effectiveness of the vibration isolation. Considering that the excitation force F1 with the unit PSD is assumed,
the H2 index of the receiving body IH2 per unit excitation force can be calculated with relations that write as

IH2 (x0) =
∞∫

−∞

∣∣∣∣ x02 (Ω)

F01

∣∣∣∣
2

dΩ, IH2 (v0) =
∞∫

−∞

∣∣∣∣v02 (Ω)

F01

∣∣∣∣
2

dΩ, (8a, b)

according to [31] and demonstrated in [2,32–35]. TheH2 indices of the receiving body (i.e. IH2) from Eq. (8a,
b) are used throughout this study as a quantitative measure of the broadband frequency vibration isolation
performance quality. The objective is to minimize this quantity for all vibration isolation systems analysed in
the scope of the conducted investigation. Vibration-based optimization with the goal of vibration reduction by
using this particular method can be found in [2,32–35]. The H2 index in Eq. (8) for IH2 = I4 can according
to [2,35] analytically be calculated with closed-form polynomial expression which can be written as

IH2(4) = π
A0B2

3 (A0A3 − A1A2) + A0A1A4
(
2B1B3 − B2

2

) − A0A3A4
(
B2
1 − 2B0B2

) + A4B2
0 (A1A4 − A2A3)

A0A4
(
A0A2

3 + A2
1A4 − A1A2A3

) ,

(9)

where substituting coefficients A0 − A4 and B0 − B3 from Eq. (7) into Eq. (9) yields with the finalH2 index
IH2 analytical expression, which is herein omitted for substantial length [2]. In Eq. (9), index “4” denotes
fourth-order polynomial of the denominator with regard to the term iΩ in Eq. (6).

Two fundamental circular natural frequenciesωn1,2 of the given 2-DOFvibration system can be analytically
obtained by solving the classic eigenvalue problem [2,3] which readily writes as

[
K − (

ωn1,2
)2 M

]
x (t) = 0, (10)

where influence of inertance b2 on eigenvalues is demonstrated later on. The following expressions

ΩA =
√
k2
b2

, lim
c2,k2→∞ Ωa =

√
k1 + k3
m1 + m2

, (11a, b)

denote anti-resonance ΩA and isolator-locking circular frequency Ωa, respectively, as reported in [2,35].
In the next subchapters of this study, two main types of the vibration transmission control are analysed

with respect to minimizing the index IH2. The isolation control without inerter (i.e. b2 = 0) and the isolation
control with optimized inertance bopt are considered. The optimized isolator damping and inertance parameters
are obtained by minimizing the frequency averaged index IH2 of the receiving body denoted symbolically in
Eq. (9). The displacement and velocity amplitudes criteria are used, respectively. As discussed in [2], due to
this particular problem definition, spring k2 cannot be optimized and is further considered as constrained/fixed
value bound by physical limits [35].
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2.1 Isolation optimization considering displacement amplitudes

The parameters from Eq. (7a–i) are considered. The procedure explained in [2] is applied. Differentiating
Eq. (9) with respect to damping c2, equalling with zero and again solving for damping c2 yield with

c2(b2 	=0) [H2 (x0)] =

√√√√√ (m1 + m2)
2 k32 + [

k3m2
1 + m2

2k1 − 2 (m1 + m2) (k3 + k1) b2
]
k22+ [

(k3 + k1)2 b2 − 2k1k3 (m1 + m2)
]
b2k2 + (k3 + k1) b22k1k3

[(k2 + k3) k1 + k2k3] (m1 + m2)
, (12)

where c2 now represents optimum damping copt(b2) for any given inertance b2. By substituting Eq. (12) into
Eq. (9), differentiating with respect to b2, equalling with zero and solving for b2, optimum inertance parameter
bopt is obtained. Inserting b2 = bopt into Eq. (12) results with optimum damping copt2. These expressions
write as

copt2 [H2 (x0)] = k2 |k1m2 − m1k3|√
[(k2 + k3) k1 + k2k3] (m1 + m2) (k1 + k3)

, bopt [H2 (x0)] = k2 (m1 + m2)

k1 + k3
. (13a, b)

By setting the inertance b2 = 0 in Eq. (12), the optimum damping copt for the case without inerter is

copt(b2=0) [H2 (x0)] = k2

√
(m1 + m2)

2 k2 + k1m2
2 + k3m2

1√
[(k2 + k3) k1 + k2k3] (m1 + m2)

. (14)

Derived Eqs. (13, 14) unambiguously represent closed-form algebraic solutions for optimized damping
and inertance parameters regarding displacement-based, i.e. consequently fatigue-based optimization.

2.2 Isolation optimization considering velocity amplitudes

The proposed procedure described in [2] is further utilized for optimization process. The parameters from
Eq. (7a–e, j–m) are considered further. Differentiating Eq. (9) with respect to damping c2, equalling with zero
and again solving for damping c2 yield with already known solution

c2(b2 	=0) [H2 (v0)] =
√
m1 + m2

k1 + k3
k22 − 2b2k2 + m1k23 + m2k21 + b2 (k1 + k3)2

(k1 + k3) [m1 (b2 + m2) + b2m2]
b22, (15)

where c2 represents optimum damping copt(b2) for any given inertance b2, but now in the context of velocity
amplitudes, i.e. kinetic energy optimization. For inertance b2 =0, Eq. (15) morphs into simpler relation

copt(b2=0) [H2 (v0)] = k2

√
m1 + m2

k1 + k3
, (16)

which represents the optimum damping coefficient c2 = copt. As reported in [2], explicit expressions for bopt
and copt2 in the context of velocity-based optimization are not shown due to the fact that they are rather lengthy
and cannot be expressed in the convenient algebraic form although they are purely analytical. Interestingly,
displacement-based optimization yields with much simpler final expressions for optimized parameters. Albeit,
initial Eq. (15) seems more straightforward for further manipulation when compared to Eq. (12).

3 Helical spring displacement and stress correction factors

In this chapter, spring stiffness and stress corrections from the literature are reviewed. A simple expression
for determining the spring fatigue life is recapitulated from [2] where HCF life is addressed and employed.
Obtained displacement amplitudes in the frequency domain from previous chapter [see Eq. (4)] can now be
tied to stress amplitudes necessary for performing the vibration fatigue analysis. The cylindrical spring can for
simplicity be viewed as a thin/slender and curved rod/beam subjected to torsion load [1]. In the case curvature,
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Table 1 Expressions for stress correction factors Kτ and deflection correction factors Kδ

Author/standard Stress correction factor Kτ Deflection correction factor Kδ

Strength of materials
Wahl, DIN 13906 4C−1

4C−4 + kW
C = 4C−1

4C−4 + 1+2ν
2(1+ν)C –

Röver cos (α)
[

C
C−cos2(α)

+ 1+sin2(α)
4C

]
–

Wood C
C−1 + 1

2C
2C2+C−1

2C2

Honegger cos (α)
[

C
C−cos2(α)

+ 0.615
C

]
2C2−cos4(α)

2C2 cos5(α)

Timoshenko/Cowper – 1 + 7+6ν
12C2(1+ν)

Elasticity theory

Göhner, DIN 2089 1 + 5
4C + 7

8C2 + 1
C3 cos (α) + 3 cos5(α)

16(C2−1)
+ sin(α) tan(α)

1+ν

Ancker and Goodier 1 + 5
4C + 7

8C2 + 1
2 tan

2 (α) 1 − 3
16C2 + 3+ν

2(1+ν)
tan2 (α)

Castigliano/Timoshenko –
(
16C2−13

)
cos(α)

16(C2−1)
+ sin(α) tan(α)

1+ν

Approximate/empirical relation

Bergsträsser, DIN 13906 C+0.5+sin2(α)

C−0.75+1.51 sin2(α)
–

Sopwith, BS 1726 C+0.2
C−1 –

Strain energy (Castigliano’s) method

Shigley – 1 + 1
2C2

Dym –
(
1 + 1

2C2

)
cos (α) +

(
1 + 1

4C2

)
tan(α) sin(α)

(1+ν)

pitch and thickness effects are considered [2], and the analytical expressions for true spring stiffness ktrue and
maximum shear stress τmax are

ktrue = 1

Kδ

F0
δnom

= 1

Kδ

Gd

8C3n
, τmax = Kτ

8F0C

πd2
, (17a, b)

where δnom = 8C3n/(Gd) is nominal spring deflection, Kδ is displacement correction factor, Kτ is (shear)
stress correction factor and G = E/[2(1 + ν)] is the shear modulus. As linear elastic/small deformation and
deflection conditions are assumed, Eq. (17) is valid for both tensile and compressive applied force amplitudes
±F0. For previously defined simple harmonic conditions, equation F(t) = F0eiΩt holds. The helical spring
geometry, parameters, loading and boundary conditions (BCs) are the same as schematically shown in Fig. 1b.
For a more general approach in the scope of this study, boundaries of spring indexC are varied both inside and
outside of the recommended values C = 4−12, in order to parametrically test all physically valid solutions.
As already noted, additional correction factors Kδ and Kτ need to be applied for displacement and shear stress,
where relations δmax = Kδδnom and τmax = Kτ τnom now hold [2], while τnom = 8F0C/(πd2) is designated
as nominal shear stress.

Table 1 is adopted from [2,13], expanded and fitly modified. It sums up all the expressions from the
referent literature used in the scope of this paper. T/C deflection correction factor is proposed in [2] by
adopting Timoshenko thick cantilevered shear-deformable beam analogy and Cowper’s shear correction factor
for circular cross-sectional area. Göhner-based Castigliano/Timoshenko (C/T) deflection correction factor is
previously derived [2] in dimensionless form and denoted in Table 1 in a more convenient and simplified form.

Furthermore, additional stress correction factors can be found in the literature. The investigation conducted
by Göhner [9] directly influenced Henrici [10] who derived similar approximate stress correction factor by
using Legendre power series function which yielded with more complex expression

Kτ,Henrici = 1 + 5

4C
+ 7

8C2 + 155

256C3 + 11911

24576C4 + · · · . (18)

Berry [11], for instance, gives alternate Göhner stress correction equation compared to one denoted in Table 1.

Kτ,Göhner(alt) =
(

C

C − 1
+ 1

4C
+ 1

16C2

)(
C2 − 1

C2 − 0.8125

)
. (19)
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Fig. 2 Deflection correction factors, Kδ : a fully compressible material, ν = 0.0, b incompressible material, ν = 0.5

Interestingly, Eqs. (18), (19) and four-term Göhner equation from Table 1 give almost the same results
for any physically acceptable value of spring index C . Moreover, Calder [14] gives alternate version of A/G
correction

Kτ,A/G(Calder) = 1 + 5

4C
+ 7

8C2 + 1

C
tan2 (α) , (20)

which differs from the expression in Table 1, by comparing the last term denominator. However, for small
pitch angle the difference is negligible compared to original A/G relation, which is in return very similar to
fundamental Göhner expression [2]. A/G deflection correction factor from Table 1 can also be found in their
original paper [12], and it is considered to be one of the most accurate ones found in the literature [15,17,19].
A/G derived detailed equations for the stresses and deflections in a helical spring using the theory of elasticity
approach and employing thin slice method. They used truncated, doubly infinite power series in the terms of
spring index, coil curvature and spring’s initial pitch angle or helix angle combined effects [12,15–17].

All deflection correction expressions from Table 1 are shown in Fig. 2. Fully compressible material (i.e.
ν = 0) and incompressible material (i.e. ν = 0.5) are considered in Fig. 2a, b, respectively. Similar study was
conducted by Burns [18] where dependency of Poisson’s ratio on helical spring stiffness was evaluated.

Simple Wood deflection correction largely deviates from rest of the curves as reported in [2], although it
is included here for the sake of completeness. It is interesting to note that for ν = 0.0 curves are somewhat
scattered for small spring indices C . However, for ν = 0.5 the curves based on the theory of elasticity (A/G,
C/T and Göhner) uniformly converge to lower values while the rest of the curves converge to higher values.

By using appropriate vibration terminology [i.e. obtained displacement amplitudes from Eq. (4)] and
considering appropriate spring stress and displacement factors with embedded von Mises distortion energy
criterion, Basquin’s equation and number of cycles Nf can according to [2] finally be explicitly written as

Nf =
(
Sa
S′
f

) 1
B ⇒ Nf (Ω) =

[√
3
Kτ

Kδ

G

C2nπd

|x02 (Ω)|
S′
f

] 1
B

. (21a, b)

The benefit of simple Eq. (21b) is that it is not obligatory to explicitly define force amplitude F0 acting on
spring k3 (i.e. mass m2). In the next chapter, FEM is employed for alternative Kδ and Kτ identification.

4 Finite element method helical spring displacement and stress analysis

In this chapter, spring stiffness and stress corrections are determined numerically by employing FEM-based
software suite Abaqus [40]. Analytical/empirical solutions and referent relations for various deflection and
stress correction factors from Table 1 are benchmarked and verified.

Table 2 shows example spring parameters used in this parametric evaluation. Mean coil diameter D is fixed
at referent value D = 50mm, and spring wire diameter d is varied in steps of 	d = 3mm in order to obtain
discrete numerical values for different spring indices C . For simplicity and computational efficiency, only one
active coil is used (i.e. n = 1). Spring pitch l is parameterized with relation l = 2 ·d , analogue to the analytical
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Table 2 Helical spring geometric and material parametric properties

D (mm) d (mm) n (–) l (mm) E (GPa) ν (–)

50 2–17 1 2·d 200 0–0.5

(a) (b)

-10.857

-1.943 -0.252

1.921

-0.041 -0.003
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Fig. 3 Abaqus computational model, n = 1, C = 50/17, ν = 0.0: a RPs (A, B) definition, b convergence study

model. Young’s modulus denotes standard steel material properties. However, Poisson’s ratio value is varied
from 0 − 0.5 in order to test the robustness and wide applicability of benchmarked displacement and stress
correction factors.

Abaqus computational model consists of structured 3D second-order 20 node hexahedron continuum
elements C3D20R FE mesh. The chosen mesh employs reduced integration and shows superior performance
compared to first-order elements, due to additional nodes on mid-sides of finite element [40]. Structured mesh
is enabled by partitioning 3D spring geometry accordingly. Preliminary analysis is defined as linear and quasi-
static (i.e. time is dimensionless). Convergence study/mesh sensitivity check is performed beforehand, and it is
found that eight second-order hexahedron elements per spring thickness (i.e. wire diameter d) give sufficiently
accurate results for analysed linear deflection/stress class of problems.

Figure 3a shows the FEM model with the fully defined RPs A and B and kinematic couplings with
highlighted surfaces. BCs are defined through two reference points (RPs) A and B, analogue to Fig. 1b. The
moving-pinned and fixed-pinned conditions are assumed as they comply with open-coil analytical assumption
where the pitch angle α 	=0 [1,2]. Full definition of BCs is: B(u, v, w, ϕy = 0) and A(u, w = 0). RPs A
and B are coupled to belonging spring sides (i.e. outer highlighted surfaces) through kinematic attachment
of type distributing. The imposed kinematic attachment allows for deformation of the connecting surfaces
by using uniform weighting factors [40], i.e. surfaces coupled with RPs are still freely deformable. Special
care is needed with employing such kinematic relations in the vicinity of high stress gradient locations since
forcing additional rotational DOFs on otherwise 3-DOF per node continuumFEmesh can result with numerical
anomalies and stress singularities in some cases.

Furthermore, referent FE model mesh convergence is reported in Fig. 3b. The convergence of model
with zero Poisson’s ratio (i.e. fully compressible material) is denoted herein. However, similar convergence
behaviour is observed for arbitrary value of ν = 0−0.5 which is hence not separately displayed.

As shown in Fig. 3a, relatively thick spring of small index C = D/d = 50/17 with sufficiently large pitch
angle α is chosen as the representative model for convergence check. Arbitrary large force F0 is acting on RP
A. Displacement of RP A and maximum von Mises equivalent stress of the entire spring model are measured.
Monotonous and quick convergence is observed in Fig. 3b. As expected, the deflections convergemuch quicker
compared to calculated stresses. The relative error Erel is defined as a difference between two successivemeshes
where every next mesh is considered as a referent solution and the previous mesh is a measured numerical
solution, i.e. Equation Erel = (x(i+1)/xi − 1) · 100% holds. Since for this case analytical solution is unknown,
more convenient term is still relative difference rather than relative error. Spring deflections and stresses are
divided with nominal analytical deflection and stress solutions from Eq. (17) in order to obtain adequate
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Fig. 4 Abaqus C3D20R normalized results: a deflection δynorm, b equivalent stress σeqv(HMH)norm
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Fig. 5 Analytical and FEM correction factors, fully compressible, ν = 0.0: a deflection correction Kδ , b stress correction Kτ

correction factors. Figure 4 shows Abaqus normalized deflection and stress results, respectively, for referent
converged FE mesh.

Linear displacement field and relatively uniform, singularity-free stress field are observed through entire
spring in Fig. 4. Homogeneity of the numerical stress field also implies that appropriate BCs are enforced
in the model, and therefore, no stress singularities due to kinematic constraints or BCs occurred. It is also
interesting to note the shift of the spring neutral line further away from the Y axis in Fig. 4b, also reported
in [2]. As already observed by Timoshenko [8] and Wahl [1], maximum shear stress τmax and corresponding
equivalent von Mises stress σeqv(HMH),max can be consequently observed at the inner side of the spring coil.
That also agrees with Abaqus results in Fig. 4b. Thus, potential crack initiation location is uniformly identified
nearest to the spring Y axis. As stress field is homogenous through entire isolated one coil numerical spring,
the terminology of stress correction is favourable compared to stress concentration. The beneficiary effects of
using relatively coarse and efficient but converged FE mesh needs to be highlighted.

Next, six parametric Abaqusmodels similar to one discussed beforehand are defined with regard to Table 2.
The spring pitch l = 2 · d and incremental steps of 	d = 3mm are applied. Eight FEs are used per spring
thickness for obtaining accurate results according to Fig. 3b convergence guideline. Figures 5, 6 and 7 show
comparison of selected best matching continuous analytical results and Abaqus results for six discrete C
values (C = 50/2; 50/5; 50/8; 50/11; 50/14; 50/17) and three different values of Poisson’s ratio (ν =
0; 0.3; 0.5). Considered analytical expressions for deflection correction are: A/G, Shigley, Göhner, C/T and
T/C. Furthermore, Wahl, Bergsträsser, Göhner and A/G stress correction analytical expressions are taken
into account. Wahl stress correction is for this analysis considered to be Poisson’s ratio ν dependent, i.e.
Wahl = Wahl(ν) [2], as presented in Figs. 5, 6 and 7 legends. Vertical lines (Clower and Cupper) denote
practical spring index C limits. Circle markers represent Abaqus discrete results.
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Fig. 6 Analytical and FEM correction factors, compressible, ν = 0.3: a deflection correction Kδ , b stress correction Kτ
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Fig. 7 Analytical and FEM correction factors, incompressible, ν = 0.5: a deflection correction Kδ , b stress correction Kτ

For Poisson’s ratio ν = 0 (i.e. fully compressible material), the best correlation with FEM displacement is
observed for A/G. Shigley and T/C overestimate while Göhner and C/T slightly underestimate FEM results.
From the series of conducted analyses, it can be concluded that all authors show very similar results regarding
obtained stress corrections and slightly underestimate FEM.

At the second test case, Poisson’s ratio ν = 0.3 (i.e. compressible material). The best agreement with
displacements obtained via FEM is still observed for A/G. Shigley and T/C overestimate FEM even more
compared to ν = 0.0 test case. Considering the stress correction, Wahl now agrees rather closely with FEM.
However, all the other authors still somewhat underestimate FEM.

Finally, for Poisson’s ratio ν = 0.5 (i.e. perfectly incompressible material) the best agreement with the
FEM displacements is again reported for A/G. Shigley and T/C now overestimate FEM results much more
compared to previous two cases. However, Göhner and C/T for all ν values constantly provide rather similar
results compared to both A/G and FEM. Regarding stress correction factors, it is notable that for this test case
Wahl somewhat overestimates FEM. Furthermore, all other authors continue to underestimate FEM, but Wahl
is still closest to the FEM solution.

Considering this parametric analysis, A/G (Kδ,A/G) deflection correction expression shows the best overall
agreement with Abaqus model. Even though Göhner and C/T slightly underestimate the deflection, they can
still be considered as a “reserve” or “backup” referent solution. Wahl (Kτ,Wahl) stress correction expression
agrees excellently with Abaqus model for ν = 0.3 while Bergsträsser, Göhner and A/G constantly somewhat
underestimate the stress field. However, they give almost identical mutual results. Based on the conducted
numerical investigation, the currently adopted deflection and stress correction factors are

Kδ,Ancker Goodier(A/G) = 1 − 3

16C2 + 3 + ν

2 (1 + ν)
tan2 (α) , Kτ,Wahl = 4C − 1

4C − 4
+ 0.615

C
. (22a, b)
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Fig. 8 Analytical and numerical correction factors, ν = 0−0.5: a deflection correction Kδ , b stress correction Kτ
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Fig. 9 Analytical and numerical correction factors relative difference Erel comparison, ν = 0−0.5: a deflection correction
difference Erel(Kδ,A/G), b stress correction difference Erel(Kτ,Wahl)

By inspecting Wahl expression from Eq. (22b), it should be noted that pitch angle α is not considered
and kw = 0.615 is hard-coded. Although, Wahl results still apparently show the all-around best agreement
with FEM compared to solutions from other authors. Wahl correction is further examined. For comparison
purpose, Poisson’s ratio influence on deflection correction is summarized in Fig. 8a where differences are
clearly visible, especially for lower spring indices C . Analytical A/G and numerical deflection correction
solutions agree very well for all tested parametric cases. However, almost insignificant sensitivity of Poisson’s
ratio influence on Abaqus numerical stress correction can be detected by inspecting Fig. 8b. Thus, Eq. (22b)
with fixed kw = 0.615 (i.e. Wahl original solution) is adopted as approximate stress correction for further
analyses.

In conclusion, both numerical and analytical (i.e. A/G) Kδ diminish with rising Poisson’s ratio, even though
numerical Kτ insignificantly rises with rising of Poisson’s ratio for small α. That fact justifies excluding
Poisson’s ratio influence in further stress correction. Figure 9 correlates with Fig. 8 by denoting relative
differences between analytical (A/G,Wahl) andnumerical solutions for all given cases.Relative error/difference
Erel is well below |1|% for all shown parametric values. Largest differences in stress correction are observed
for fully incompressible material (i.e. ν = 0.5), especially for very high and low spring indices C presented
in Fig. 9b.

Figure 10a shows relative difference between Wahl stress correction factors by varying Poisson’s ratio ν.
In order to check the relative differences for the other stress correction candidates (i.e. Bergsträsser, Göhner
and A/G), they are contrasted to Wahl. The corresponding results are denoted in Fig. 10b. While comparing
the obtained results (see Fig. 10b), the relative difference smaller than 2% is observed in most regions for
practical C limits. Since much smaller relative difference < |1|% is achieved for FEM and Wahl comparison
(see Fig. 9b), the selection of the Wahl stress correction factor is verified. The Wahl stress correction factor
outperforms all the other authors based on the FEM results obtained herein.
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Fig. 11 Analytical and numerical 1D and 3D correction factors comparison, ν = 0.3, α = 0: a deflection correction Kδ ,
b stress correction Kτ

Finally, one specific case is used as a definitive benchmark for correction factors by setting the pitch
angle α = 0, analogue to the study conducted in [13]. Steel Poisson’s ratio ν = 0.3 is considered. A/G (i.e.
Eq. (22a)) is again employed against Abaqus C3D20R solution. Derived T/C Eq. [2] is also evoked in order to
contrast it with AbaqusB32 Timoshenko-based second-order beam elements. B32 FEs are formulated as shear
flexible with quadratic interpolation [40]. It is interesting to compare these analytical and numerical solutions
since Abaqus also uses Cowper [2] correction, according to [40]. From the analytical and numerical 1D and
3D correction factors, comparison (Fig. 11a) can be seen that A/G solution again follows Abaqus C3D20R
(Abq,3D in legend) solution closely and that T/C derived solution matches Abaqus B32 (Abq,1D in legend)
solution almost perfectly. For higher spring index C values, all analytical and numerical correction factors
tend to unity. However, two concurrent solutions completely diverge for small spring indices C . Analytical
and numerical 3D model even show concordant below unity trend. Analytical T/C solution is apparently
correctly derived according to the thick beam theory [2] as it agrees with the corresponding Timoshenko beam
FE element solution. However, T/C solution should not be used in the context of approximating real, thick
cylindrical springs with small indices C because it overestimates the spring compliance. The trends reported
in Fig. 2 already suggested aforementioned. Additionally, Fig. 11b demonstrates that beam elements (Abq,1D
in legend) expectedly cannot capture stress correction because the value constantly remains at unity for any
C value. Interestingly, numerical values for zero pitch angle (Abq,3D in legend, triangle symbol) now lie in
between Wahl and A/G stress correction factors which implies that Wahl stress correction solution may be
overly conservative when pitch angle α ≈ 0.

In summary, setting ν = 0 underestimates the numerical stresses while setting ν = 0.5 somewhat overes-
timates the numerical stresses considering generalized Wahl equation from Table 1. By setting ν = 0, Wahl
yields almost identical results to A/G, Göhner and Bergsträsser stress correction factors as demonstrated in
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Fig. 5b. Keeping in mind that smaller spring index C results with larger stresses and deflections, the question
of larger pitch angle α influence still remains unanswered.

A/G model is now firmly adopted for deflection correction. Furthermore, Wahl approximate model with
fixed kw = 0.615 is finally adopted for stress correction although it is a bit deficient according to performed
parametric investigation. However, the advantage of the Wahl equation is that it best coincides with the cur-
rent FEM solutions which embody relatively small, but nonzero pitch angle α. The main concern is whether
the linear numerical solution should be considered as a referent one, compared to other available analyti-
cal/empirical/approximate models. In order to obtain objective/nonbiased numerical results, alternate linear
FEM solver Catia, Elfini [42] is also employed for double checking of Abaqus computational accuracy, ana-
logue to method used in [39]. Catia Elfini solver matches Abaqus numerical results rather closely for both 3D
continuum solution and 1D Timoshenko beam-based solution. Thus, it is not separately shown, nor further dis-
cussed in detail. Moreover, it reassures about the accuracy of both adopted approximate correction factors and
Abaqus detailed computational model. The implied correct choice of employing A/G for deflection correction
and Wahl for stress correction used in previously published results [2] is confirmed.

5 Example: inerter-based isolator helical spring vibration fatigue optimization study

In this chapter, vibration optimization and fatigue analysis are performed on a general 2-DOF system shown
in Fig. 1a. Table 3 shows parameters used in the isolator optimization process example. While following
recommendations given in [2], the system is detuned (i.e. m2k1 	= m1k3) and the spring k2 is compliant
compared to springs k1,3.

The mass parameter value is chosen as m0 = 100kg and spring stiffness k0 is yet to be determined from
helical spring parameters proposed in Table 4. Material parameters (E , ν, S′

f and B) of the spring in this
example are chosen in such way to represent physical elastic and fatigue properties of regular, common steel,
adopted from [2].

Diameters D and d are chosen so C = D/d = 50/17 ≈ 2.941 in order to provide a very small spring
index. However, such small spring indexC results with a relatively large stress correction factor whichmakes it
a convenient fatigue benchmark. The idealmassless springs are considered for simplicity and straightforward-
ness. Spring stiffness is calculated according to introduced Eq. (17a) where KδF0 = k0δnom. Obtained 2-DOF
key values/factors and optimized parameters are listed in Table 5. Equations (12–16) are used in the process of
optimization. Velocity amplitude optimization results are taken from [2]. Some differences in obtained param-
eters with regard to optimization criterion are observed. Hence, it will be interesting to observe the impact of
those differences to fatigue life assessment.

Figure 12 shows contour-plotted normalized results of the optimization process with regard to Table 5 for
the prescribed parameters defined in Tables 3 and 4. The minimum (i.e. optimum H2) indices IH2norm are
represented as diamond markers. The contours of displacement-based optimization (Fig. 12a) and velocity-
based optimization (Fig. 12b) are rather similar as expected from the results denoted in Table 5. Darker contours
in both plots imply regions of higherH2 index (i.e. undesired effect). Dash-dotted curved lines denote implicit
plots of function c2 when b2 	=0, i.e. Eqs. (12) and (15), respectively. Circles at the bottom of the both
figures correspond to the optimized damping case copt when b2 = 0, defined in Eqs. (14) and (16). Finally,
diamond markers denote the position of both optimized damping copt2 and inertance b2 simultaneously from
Eq. (13a, b) and previously omitted equations for the velocity-based optimization due to extensive length [2,35].

Table 3 Example 2-DOF vibration isolation system parameters [2]

m1 (kg) m2 (kg) k1 (N/mm) k2 (N/mm) k3 (N/mm) F0 (kN)

m0 2·m0 k0 k0/10 k0 1

Table 4 Example helical spring of stiffness k0 geometric and material properties [2]

D (mm) d (mm) n (–) l (mm) E (GPa) ν (–) S′
f (MPa) B (–)

50 17 1 2·d 200 0.3 925 −0.1
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(a) (b)

Fig. 12 Mass m2 normalizedH2 index IH2norm: a displacement index IH2norm(x0), b velocity index IH2norm(v0)

Table 5 Example 2-DOF vibration isolation system referent values and optimized parameters

C = D/d (–) α (◦) k0 (N/mm) Displacement amplitude opt.H2(x0) Velocity amplitude opt.H2(v0)

copt (Ns/m) bopt (kg) copt2 (Ns/m) copt (Ns/m) bopt (kg) copt2 (Ns/m)

2.941 12.213 6 190.746 3 185.270 15.000 927.268 3 047.314 13.701 934.329

Table 6 Example 2-DOF vibration isolation system numerical values and relative difference comparison

Method Kδ (–) Erel (%) Kτ (–) Erel (%)

Analytical 1.037789623 −0.365 1.595594406 −0.097
Abaqus 1.04159154 1.597138873

Consequently, diamond markers are located at the lightest region centre as they represent the global minimum
of the displacement and velocity-based functions from Eq. (9).

The upper limit of the plots is defined as b2max = 2bopt. Furthermore, bow and arrow-like shapes outline the
contours. Implicit functions from Eqs. (12) and (15) denote dashed-dotted bow while horizontal dashed lines
b2 = bopt denote arrow and vertical dashed lines connecting circle with down-pointing triangle shown at the
top with the corresponding coordinates �(copt, 2bopt) denote string. Similarly shaped contour optimization
diagrams are reported in [2,35]. In conclusion, dash-dotted bow curve connects all three markers: circle,
diamond and triangle.

Next, the analytical and numerical quasi-static results are compared for the displacement and stress cor-
rection. Results are shown in Table 6 with the corresponding maximum relative difference Erel,max < 0.4%.

Although only minor discrepancies are observed for this static benchmark case, it should be noted that
the vibration fatigue study conducted in the further investigation depends exponentially (Basquin) on both
displacement and stress simultaneously as witnessed from structure of Eq. (21). Thus, special considerations
are taken into account in the following.

With that in mind, two separate Abaqus vibration fatigue models are defined. First model is simplified
and denotes closely Fig. 1a. Instead of real continuum helical spring k3 analogue to Fig. 1b, a single 3D
C3D8R first-order hexahedron continuum element with reduced integration is employed. It is acting as a
simple truss/rod connector element which serves as both equivalent stiffness and fatigue stress concentrator. In
order to approximate the real 3D spring presented in Fig. 1b, an equivalent ideal spring is defined by matching
both stiffness k0 and equivalent stress σeqv(HMH),max of the original spring which are prescribed as equal. This
is performed in order to verify proposed dynamic procedure regardless of the chosen deflection and the stress
correction accuracy. For pure normal axial load, stiffness and stress equations for truss can be, respectively,
written as
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(a) (b) (c) (d)

Fig. 13 2-DOF Abaqus isolator FE models: a ideal scheme, b real scheme, c ideal screenshot, d real screenshot

ktruss ≡ k0 = AtrussEtruss

l
,

∣∣∣σeqv(HMH),max

∣∣∣ ≡ |σ0n| = k0
Atruss

|x02| , (23a, b)

where Atruss = a2truss is truss axial quadratic surface area and Etruss is an equivalent Young’s modulus of the
truss. Since stress is uniaxial, equivalent stress amplitude σeqv(HMH) according to von Mises is equal to normal
stress amplitude σ0n. Thus, the truss equivalent parameters follow from equalling Eqs. (23a, b) with previously
established stiffness and stress relations for helical spring which consider both deflection and stress correction
factors i.e.

ktrue ≡ k0 = 1

Kδ

Gd

8C3n
,

∣∣∣σeqv(HMH),max

∣∣∣ = √
3Kτ |τnom| = √

3
Kτ

Kδ

G

C2nπd
|x02| . (24a, b)

Solving for the two unknowns from Eqs. (23–24) yields Etruss ≈ 15075.385MPa and atruss ≈ 3.737mm.
Ideal and real Abaqus isolator FE models are shown in Fig. 13. The model schematics are denoted in Fig. 13a,
b, while Fig. 13c, d illustrates actual Abaqus FE model screenshots.

In Abaqus, springs k1,2 and dashpot c2 are utilized through SpringA andDashpotA FEs, respectively. They
add axial spring/dashpot between the two nodes whose line of action is the line joining the two nodes [40].
Abaqus does not yet possess ideal inerter functionalitywhich is similar to ideal spring/dashpot. Hence, analogue
to Smith original rack and pinion inerter concept [4] the required optimum inertance bopt is utilized alternatively
by defining discrete dynamic inertia moment JO and using embedded Abaqus *Equation functionality. The
imposed feature ties relative nodal displacement between masses m1 and m2 to rotation of inertia JO through
custom created relation

runit = 1 m ⇒ r · ϕz (JO)︸ ︷︷ ︸
DOF6

− y1 (m1)︸ ︷︷ ︸
DOF2

+ y2 (m2)︸ ︷︷ ︸
DOF2

= 0, (25)

where nodal displacement y is measured in metres and nodal rotation ϕz is measured in radians. Equation (25)
implies that if using SI units, one metre relative displacement between masses m1 and m2 yields one radian
rotation of JO. If the relative displacement between the two terminals (i.e. masses m1 and m2) is zero, no
rotation occurs and inerter does not contribute to functionality of the isolator. Consequently, dynamic moment
of inertia JO in current configuration serves as an ideal inerter whose inertia characteristics can be calculated
according to a simple expression

JO = bopt · r2unit. (26)

By adopting convenient unit radius runit = 1m, dynamic moment of inertia for the displacement-based opti-
mization is JO = 15 kgm2 and JO ≈ 13.701 kgm2 for the velocity-based optimization (Table 5). Moreover,
it can be concluded that JO ∝ bopt and stated that Eqs. (25, 26) are exact for both small and large rotation
effects.

In Abaqus, Lánczos method is used as eigensolver. Steady-state dynamics, Direct Step is employed for
obtaining linear response in frequency domain analogue to direct method Eq. (4). In order to obtain sufficient
visual resolution of results, 500 equally spaced discrete frequency steps per analysis are requested. First,
velocity-based optimization results from [2] and Sect. 2.1 are taken into account. Figure 14 denotes comparison
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Fig. 15 Spring k3 stress amplitudes |Sa(k3)| comparison: a optimal damping, b optimal damping and inertance

of the analytical and Abaqus ideal models from Eq. (23a, b) for mass m2 displacement amplitudes. Two
extreme cases are taken under consideration. The first case includes super-optimal extremely high damping
csup = 100 · copt. It effectively locks the isolator and produces new resonance Ωa (Fig. 14a) from Eq. (11b).
The second test case sets zero damping c2 = 0 and considers optimal inertance b2 = bopt which unveils
anti-resonance ΩA (Fig. 14b) from Eq. (11a). Since damping c2 in Fig. 14b is prescribed to zero, responses
at natural frequencies tend to infinity at eigenvalues obtained from Eq. (10). All desired effects, previously
derived analytically [2,35], are successfully captured by FEM solutions. Abaqus ideal and real models yield
almost the same displacement amplitudes results. Hence, they are purposely not distinguished here.

Figure 15 shows comparison of analytical, Abaqus ideal and Abaqus real models for spring k3 stress
amplitudes in fatigue nomenclature |Sa(k3)|. Optimum damping copt and inertance bopt parameters for the
velocity-based optimization from Table 5 are considered. A very good agreement is observed between all
models. Thus, the correct numerical inerter implementations and approximately correct displacement and stress
correction factors adoption for analytical calculations is strongly implied. There is virtually no discrepancy
noted between analytical and Abaqus ideal models.

Fe-Safe [41] software suite is further employed with von Mises criterion evoked for fatigue analysis. The
converged FEM complex nodal stress amplitudes from Abaqus are taken into account for the most destructive
frequency (i.e. first natural frequency where Ω = ωn1(bopt)). Custom created Fe-Safe material S − N (i.e.
Stress amplitude–No. of cycles to fatigue) curve [2,41] is definedwith respect to parameters S′

f and B (Basquin)
from Table 4. The entire ideal and real FE spring models are analysed. Figure 16 shows the final results of
performed HCF real spring analysis for the velocity-based optimization, analogue to [2]. Explicit Basquin’s
curve Sa = S′

f · (Nf)
B is superimposed and shown as inclined dashed line in Fig. 16. The presented curve is

ranged from 103–107 fatigue life cycles.
Figure 16b shows particular vibration fatigue life results of real spring, post-processed inAbaqus. Analogue

to analytical solution [1,2,8], the shortest fatigue life is expected on the inner-coil side of spring numerical
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Fig. 16 Real spring k3 fatigue life: a number of cycles to failure Nf (k3), b Abaqus/Fe-Safe Nf (k3)(log)

Table 7 Vibration fatigue optimization study analytical and numerical results comparison for c2 = copt2 and b2 = bopt

Method ωn1 (s−1) Erel (%) ωn2 (s−1) Erel (%) |x02(ωn1)| (mm) Erel (%) Sa(ωn1) (MPa) Erel (%) Nf (ωn1)| (–) Erel (%)

Analytical 178.373 – 244.852 – 0.524 – 232.281 – 1,002,949 –
Abaqus/ideal 178.373 0.000 244.852 0.000 0.524 0.000 232.281 0.000 1,002,945 0.000
Abaqus/real 178.076 0.167 244.852 0.000 0.522 0.368 230.998 0.556 1,060,086 −5.390

model. Abaqus/Fe-Safe LOGLife legend shows homogenous life field scaled according to expression [41]

(Nf)LOGLife−Repeats = log10 (Nf) ⇔ Nf = 10(Nf )LOGLife−Repeats, (27a, b)

where actual minimum number of cycles Nf compared to analytical results is shown in Table 7. These results
correspond to the velocity-based optimization study conducted in [2]. Rigid benchmark method is adopted
herein. All the results are compared for analytically calculated natural frequencies ωn1(Anlt).

By comparing analytical and Abaqus ideal model, the difference Erel ≈ 0.000% can be observed for all
quantities. With regard to number of cycles Nf , only negligible numerical rounding error occurred. However,
some minor discrepancies can be observed while comparing analytical and Abaqus realmodel. It is necessary
to emphasize that smaller differences are noted in Table 6 for the displacement and stress correction factors
if compared to differences observed in Table 7 for displacement |x02(ωn1)| and stress |Sa(ωn1)| amplitudes,
respectively. In conclusion, it is important to point out that these are a cumulative consequence of mismatch
between the fundamental natural frequency ωn1 obtained analytically and numerically.

The results for the stress amplitude Sa(ωn1) reported in Table 7 differ by only∼0.556%; however, difference
is magnified in fatigue analysis to considerably larger∼ |5.390|%. This is due to the fact that Eq. (21) presents
exponential relation where small differences in stress yield with much larger dissipation for general fatigue
analysis results. By taking into account stress amplitude Sa(ωn1) ≈ 230.998MPa computed by Abaqus,
difference between hand calculated fatigue from Eq. (21a) and the one from FE complex nodal stress and
Fe-Safe results now completely vanishes, i.e. falls to Erel ≈ 0.000%. Hence, only analytical computational
error lies in the helical spring adopted displacement and stress approximate correction factors (i.e. Kδ,A/G and
Kτ,Wahl). As a final consequence, analytical results are now on the safety side and provide more conservative
approximate fatigue life assessment compared to FEM.

In the following, four specific optimized cases are considered regarding Table 5. The displacement-based
optimization parameters with (bopt) and without inerter (b0), and the velocity-based optimization parameters
with (bopt) and without inerter (b0) are taken into account. Comparison of analytical and FEM results is shown
in Table 8. Influence of inerter on circular natural frequencies is presented, and it can be observed that due
to the added apparent mass—frequencies diminish. Results are reported for the most destructive, e.g. first
resonant excitation frequency where Ω = ωn1(Anlt).

Very good agreement is generally observed in Table 8. Analogue to results denoted in Table 7, Abaqus
ideal spring results show almost no relative error compared to analytical solution with the exception of small
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Table 8 Vibration fatigue displacement and velocity optimization study analytical and numerical result comparison

Method Displacement amplitude optimizationH2(x0) Velocity amplitude optimizationH2(v0)

Ω (s−1) Erel (%) Nf (Ω) (–) Erel (%) Ω (s−1) Erel (%) Nf (Ω) (–) Erel (%)

Analytical ωn1b0 183.017 – 170,956 – ωn1b0 183.017 – 134,540 –
Abaqus/ideal 183.017 0.000 170,963 −0.004 183.017 0.000 134,544 −0.003
Abaqus/real 182.714 0.166 160,733 6.361 182.714 0.166 126,690 6.196
Analytical ωn1bopt 177.885 – 3,669,242 – ωn1bopt 178.373 – 1,002,949 –
Abaqus/ideal 177.885 0.000 3,669,457 −0.006 178.373 0.000 1,002,945 0.000
Abaqus/real 177.588 0.167 3,870,106 −5.190 178.076 0.167 1,060,086 −5.390

(a) (b)

Fig. 17 Spring k3 number of cycles to fatigue failure Nf (k3): a 1/Nf (Ω) FRFs, b Nf (ωn1(Anlt))

fatigue life assessment errors attributed to numerical rounding. Taking into account Abaqus real spring results,
natural frequencies always seem to be a bit lower compared to analytical solution. Larger discrepancies are
observed for fatigue calculation as a result of mismatch. If the inerter is present in the isolator, analytical results
yield with more conservative fatigue life assessment compared to FEM. However, excluding the inerter from
the isolator leads to less conservative analytical fatigue results compared to FEM.

Results are recapitulated and visually presented in Fig. 17. Inverse number of cycles to fatigue as a function
of circular excitation frequency is shown in Fig. 17a for all four cases. The small rectangular detail represents
range of response for near-resonant conditions. This detail also implies that the highest 1/Nf FRF peaks
correspond to the lowest fatigue life. Labels copt2 in legend imply both optimum damping and optimum
inertance bopt. Cases without inerter and with optimum damping (i.e. copt(x0) and copt(v0)) almost cannot
be visually distinguished, except near resonance conditions as shown in rectangular detail. Improvements are
observed for optimum damping copt2 and inertance bopt, compared to only optimum damping copt on almost all
frequencies, except in the vicinity of the second natural frequencyωn2bopt. Bar chart shown in Fig. 17b denotes
the most conservative criterion (i.e. number of cycles in resonant conditions) which corresponds to Table 8.
It is organized as follows: bars are aligned so that the highest number of achieved life cycles is positioned far
left and the lowest number of cycles is positioned right. The line dashing and colour definition of the FRFs
(Fig. 17a) corresponds to line dashing and colour of bars (Fig. 17b).

As expected, displacement-based optimization criterionH2(x0) yields general further improvement com-
pared to velocity-based criterion H2(v0) previously proposed in [2]. This is true for the test cases with and
without inerter. Moreover, by inspecting results from Table 8 and Fig. 17b, improvements are much more
pronounced for the displacement-based optimization compared to velocity-based optimization when utilizing
combined optimumdamping copt2 and inertance bopt. For the velocity-based optimization, over 1million cycles
are achieved [2]. However, for herein proposed displacement (i.e. fatigue)-based optimization, over 3.5 times
more cycles are achieved. It can be considered as further substantial improvement. Thus, for shown family of
vibration isolation systems it is justifiable to include inerter in the isolator and perform displacement-based
optimization analysis if stress of coupling elastic components is of crucial importance.

It can finally be concluded that spring correction factors used in the context of this study and embedded
in the analytical method provide sufficiently correct approximate solution compared to FEM. However, it
should be noted that this direct dynamic stiffness analytical method provides for more transparent solution
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and computationally inexpensive model. That is especially evident when compared to direct FEM solution. If
the real spring model is considered for the range denoted in Fig. 15, computational process takes considerable
amount of time on high-end PC desktop computer. At first glance, relatively simple FEM model is utilized.
However, due to complex real spring geometry and many additional kinematic relations, the incremental
numerical process in frequency domain tends to get saturated and rather slow. This only includes Abaqus
complex stress direct computation, where Fe-Safe takes additional/considerable CPU time for PSD-based
fatigue life calculation. Moreover, analytical expressions derived and used throughout this investigation are
approximately true even for continuous systems with distributed mass across the spring with the assumption
that ratios between spring mass to primary and secondary mass are small. This makes proposed analytical
method more appealing and time effective for this class of systems.

Considering that pitch angle in this study is defined through relation l = 2 · d and α = arctan[l/(πD)],
it would be logical to further investigate the influence of arbitrary large pitch angle α on deflection and stress
correction. The future study notably applies to further testing of Wahl approximate stress correction factor in
detail as it does not contain the pitch angle in its formulation, compared to, for example, A/G. On the other
hand, it is reassuring that Wahl currently demonstrates the highest accuracy compared to FEM for a wide
variety of tested parameters. Additionally, the method proposed in this work could find its applicability on
other types of springs used in suspension systems (e.g. leaf springs) [1,43]. Automobile leaf spring can act
as both road shock absorber and carrier of lateral loads [1]. Thus, it could prove beneficiary to examine the
effects of including both helical and leaf spring in conjunction with inerter in the isolator. Moreover, simplified
analytical leaf spring vibration fatigue model analogue to one proposed in the scope of this investigation may
be established.

6 Conclusion

A novel cylindrical helical spring solely displacement-based (i.e. vibration fatigue-based) H2 optimization
method for inerter-based vibration isolation system is presented in this paper. The analysed spring couples
receiving body (i.e. mass that needs to be isolated from vibrations) to the fixed ground. The optimization
method is based on the previous findings which imply that the stresses in the spring are directly proportional
to spring maximum displacement amplitudes. Power spectral density principle in the broadband frequency
domain is employed for spring life assessment and complementedwith the direct inversion of dynamic stiffness
matrix method. The efficiency of the proposed method is studied on a two degree-of-freedom system which
represents reduced-order model of a potentially much more complex general dynamic system. Results are
compared to previous study which was based on broadband minimization of the specific kinetic energy as a
vibration optimization criterion. Substantial improvement regarding prolonging spring high-cycle fatigue life
is observed by utilizing currently proposed method.

Two types of referent isolators are studied throughout the paper. First referent isolator incorporates optimal
inerter and optimal viscous damping, while the second one contains only the optimal damping (i.e. inerter is
excluded). Based on the previous research, it is confirmed that simultaneous optimization of isolator damper
and inerter connected in parallel convincingly outperforms any isolator configuration that contains only damper
(i.e. systemwithout inerter). Furthermore, in the scope of this work it is additionally reported that displacement-
based optimization always outperforms kinetic energy (i.e. velocity-based) optimization if the ground-coupling
spring fatigue life of the receiving body is a primary optimization criterion objective.

Spring deflection and stress correction factors from the referent literature are benchmarked versus finite
elementmethod. Previously derived approximate Timoshenko/Cowper displacement correction factor based on
the strength of materials principles assumption, thick shear-deformable Timoshenko beam theory and enriched
with Cowper shear correction is set to test against finite element method. It is found that proposed deflection
correction factor matches excellently with the beam-based finite element solution. However, the obtained
results are completely divergent compared to theory of elasticity based on approximate Ancker and Goodier
solution and complementary continuum finite element method solution alike. Thus, it can be concluded that
beam-based theory is not appropriate and should not be used for helical spring calculation, especially for small
spring indices. The most convenient correction factors are adopted for further vibration fatigue study based on
benchmark comparison results. Ancker and Goodier factor is confidently adopted for the spring displacement
correction, while for the spring stress correction, Wahl factor is conditionally adopted. Despite the fact that
some discrepancies and inconsistencies were found in the formulation of the Wahl stress correction factor,
the parametric analyses and comparisons with numerical solutions have apparently shown the best agreement
with adopted Wahl stress correction solution.
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Previously introduced simplified analytical method for calculating cylindrical spring high-cycle fatigue
life is verified herein by comparing the analytical and finite element method results. The proposed method
employs von Mises energy criterion for shear-governed biaxial proportional stress and Basquin’s relation. The
only reported discrepancies between the analytical and numerical methods are related to adopted approximate
displacement and stress correction factors. Otherwise excellent agreement is noted between the two employed
methods.

Furthermore, the optimum inertance concept is integrated into finite element-based numerical solution
by following the original rack and pinion analogy taken from Smith. Moreover, an excellent agreement with
analytical solution is reported. The novel inerter-induced effects (e.g. anti-resonance of the receiving body and
reduction in natural frequencies) are successfully reproduced within finite element-based solution.

The future work regarding investigation presented herein will be to further study the influence of much
larger spring pitch angles on the displacement and stress fields. Consequently, a more general correction
models could be developed with the aim to capture both small spring index and large pitch angle effects
simultaneously. Finally, the alternate ways of implementing the both ideal inerter (e.g. massless) and real
inerter into a more general and robust finite element-based solution will be investigated. In the future, possible
benefits of additionally including the leaf spring in the inerter-based isolator with regard to absorbing shocks
and carrying lateral load could be studied.
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