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Abstract This paper dealswith the dynamics and control of underactuated nonholonomicmechanical systems.
It is shown in this investigation that the same analytical methods can be used for effectively solving both the
forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general
set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is
based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba
equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent
a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new
method recently discovered in the field of analytical dynamics and is associatedwith nonholonomicmechanical
systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical
experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed
approach considering as an illustrative example of a dynamic model a mobile robot.

Keywords Mechanical systems · Forward dynamics · Inverse dynamics · Holonomic and nonholonomic
constraints · Uderactuated robots · Udwadia–Kalaba equations · Underactuation Equivalence Principle

1 Introduction

This paper deals with the development of a unified method for solving the forward and inverse dynamic
problems of underactuatedmechanical systems constrained by a general set of holonomic and/or nonholonomic
constraints. In particular, the Udwadia–Kalaba equations and the Underactuation Equivalence Principle are
the principal analytical methods of interest for this investigation. The analytical method developed in this
work is applied to an unicycle-like mobile robot that is employed as a demonstrative example. In this section,
background materials containing a concise literature survey, the formulation of the problem of interest for
this study, the scope, the motivation, and the contributions of this investigation, and the organization of the
manuscript are provided.

1.1 Background and significance of this research work

In several areas of industrial engineering, the study of the mechanical behavior of dynamical systems charac-
terized by a nonlinear structure represents an important issue. This problem is particularly relevant in different
engineering applications in which the design of amachine or a mechanism represents almost always an approx-
imated solution affected by a certain degree of uncertainty [1,2]. As thoroughly discussed in the literature,
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appropriate analytical methods and computational procedures are required for the development of effective
control laws for influencing the dynamic evolution of a nonlinear dynamical model of a complex mechanical
system in order to obtain the desired performance [3]. In the development of effective control strategies for
a given mechanical system, the first step is to devise a reliable mathematical model of the dynamical sys-
tem capable of correctly capturing its intrinsic nonlinear physics [4]. Subsequently, the control design for the
nonlinear mechanical system under study can be performed using several analytical approaches and com-
putational methodologies that belong to the field of mechanical engineering [5,6]. In the development of a
new control system, it is important to note that the classical control methods based on the linearization of the
equations of motion of the mechanical system are not suitable for solving the control problem associated with
a nonlinear mechanical system [7,8]. Such methods involve a loss of information on the complex dynamic
behavior that a nonlinear system can experience and, therefore, these methods work properly only when the
time response of the mechanical system takes place around a fixed point of the state space or in the neigh-
borhood of a prescribed space trajectory. However, this is not the case for several machines and mechanisms
used in mechanical engineering applications in which a fully nonlinear dynamic behavior is found [9,10].
Therefore, in this general case, more complex control strategies are necessary for solving the nonlinear control
problem. A possible approach for obtaining the solution of this problem is based on the use of nonlinear
optimization techniques based on the adjoint method. The nonlinear optimization techniques which rely on the
adjoint approach, however, are complex to analytically formulate and numerically implement even in the case
of simple nonlinear mechanical systems. On the other hand, as discussed in the paper, an effective strategy for
solving this challenging problem is based on the inverse dynamic approach.

In recent years, the research on autonomous robots has gained a great attention because of its large potential
for solving practical problems in different areas of mechanical engineering such as, for example, transportation
and logistics, space investigation, ocean observation, military defense, monitoring of large civil infrastructures,
and unmanned exploration of hazardous and remote environments. Therefore, several control approaches were
developed in order to obtain the stabilization and the trajectory tracking control of mobile robots. Inmechanical
engineering, mobile robots are typically modeled as nonholonomic mechanical systems. These systems are
subjected to a certain degree of complexity in the analytical model and to a given degree of uncertainty in the
parameters that define the dynamical model. Typically, the unknown parameters of the dynamical model of a
mobile robot need to be identified by using system identification algorithms based on experimental data. In
order to address and solve the nonlinear control problem of mobile robots, several effective control approaches
have been presented in the literature. For example, the methods based on the state-dependent Riccati equation,
the feedback linearization method, the sliding mode control approach, and nonlinear control methods based
on the control Lyapunov function represent effective control approaches suitable for solving the nonlinear
control problem associated with a mechanical system subjected to a given set of holonomic constraints [11–
14]. Furthermore, additional examples of nonlinear control strategies successfully applied to the stabilization
and tracking control of mobile robots are based on the fuzzy control, adaptive control, neural network, and
robust control approaches [15–19]. However, all the methods mentioned before are based on nonstandard
approaches that cannot be equally applied in a straightforward manner to both holonomic and nonholonomic
mechanical systems. Also, these analytical and computational methods do not entirely take into account the
complex nonlinear effects of the underactuatedmechanicalmodels that describe the dynamics ofmobile robots.
In this paper, on the other hand, an effective control method based on an inverse dynamic approach suitable
for underactuated mechanical systems constrained by holonomic and/or nonholonomic algebraic equations is
presented.

1.2 Formulation and motivation of the problem of interest for this investigation

The fundamental motivation behind the development of this paper is to devise a unique method by which
the forward and inverse dynamic problems of underactuated mechanical systems constrained by holonomic
and/or nonholonomic constraints can be formulated and solved. In general, the mechanical systems encoun-
tered in industrial applications are dynamical systems which undergo large displacements and large reference
rotations [20,21]. In addition, a mechanical system can be unconstrained or constrained by holonomic and/or
nonholonomic constraints. For example, multibody mechanical systems are dynamical systems composed of
rigid and/or deformable bodies that are interconnected by intermediate mechanical components called kine-
matic joints [22–25]. While the methods of classical mechanics can be effectively used for modeling rigid
multibodymechanical systems, the mathematical description of rigid-flexible multibody systems needs the use
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of more advanced analytical techniques that combines the finite element method with the general principles
of classical mechanics such as, for instance, the D’Alembert–Lagrange principle of virtual work. The analysis
of the dynamic behavior of a flexible multibody system allows for finding the stability characteristics of the
dynamical system and can be employed for assessing the quality of the strain and stress fields of themechanical
components that play a fundamental role for the system structural integrity [26,27]. Multibody mechanical
systems can be mathematically described considering the differential-algebraic equations of motion of con-
strained mechanical systems, namely a set of differential equations that describe the dynamic evolution in time
coupled with a set of algebraic equations that mathematically represent the holonomic and/or nonholonomic
constraints. In the field of analytical dynamics, one of the main goals is to correctly derive the nonlinear
equations of motion which effectively describe the dynamic behavior of constrained mechanical systems [28–
30]. In particular, the equations of motion of a multibody mechanical system are typically represented with
a set of differential-algebraic equations (DAEs) because of the presence of the kinematic constraints which
interconnect the bodies of the dynamical system. Since the generalized constraint forces represent additional
unknown of the constrained dynamic problem that enters in the formulation of the equations of motion, there
are several effective methods for solving the forward dynamic problem of a mechanical system in conjunction
with the determination of the constraint reaction forces and moments. On the other hand, the dual problem is
represented by the inverse dynamic problem in which one needs to determine the control actions to impose
to a mechanical system in order to obtain the desired dynamic behavior as well as an acceptable dynamic
performance. In many engineering applications, the mathematical model that describes the mechanical system
to control is nonlinear, underactuated, and nonholonomic. Thus, the equations of motion form a nonlinear set
of DAEs in which the constraint equations are nonholonomic and the control actions are not applied to each
degree of freedom of the dynamical system because of practical limitations. The inverse dynamic problem for
nonlinear underactuated mechanical systems is, therefore, a challenging issue that is not fully solved yet.

The first challenge associated with the control problem of mechanical systems is the nonlinearity of
the equations of motion. While for linear mechanical systems there are numerous mathematical techniques
available in the literature for obtaining effective control laws, in the case of nonlinear systems there are only
special analytical methods which are suitable only for specific applications. More importantly, in general,
the analytical methods of the linear control do not work properly when applied to the linearization of the
equations of motion since the linearized equations fail to completely capture the essence of the dynamic
problem. The second important challenge is related to the underactuation property of the models of several
mechanical systems. Underactuated mechanical systems are mechanical systems in which the number of the
control actions is less than the number of the system degrees of freedom and, therefore, this class of dynamical
systems is particularly difficult to influence and control. The third challenge of interest for this investigation is
the presence of nonholonomic constraint equations, namely the nonlinear algebraic equations that involve the
system generalized coordinates, velocities, and accelerations which cannot be reconducted or integrated into
simple algebraic equations defined only in terms of the position coordinates. Thus, nonholonomic mechanical
systems are dynamical systems whose current configuration depends on the entire trajectory followed to reach
a given point of the configuration space, namely mechanical systems subjected to nonintegrable constraints
on generalized coordinates, velocities, accelerations [31]. In conclusion, nonlinearity, underactuation, and
nonholonomy represent crucial aspects which make the control problem of mechanical systems difficult to
solve [32]. These challenges are addressed in this investigation employing a simple inverse dynamic analytical
approach.

1.3 Scope and contribution of this study

In this paper, a general and effective method for solving the forward and inverse dynamic problems of mechan-
ical systems having an underactuated structure and subjected to holonomic and/or nonholonomic constraints is
proposed. The method developed in this work is based on the combinations of two analytical methods recently
developed in the field of classical mechanics, namely the central equations of constrained motion devised by
Udwadia and Kalaba as well as the Underactuation Equivalence Principle formulated for the first time by the
authors [33,34]. While the analytical approach to the dynamics of constrained mechanical systems developed
by Udwadia and Kalaba allows for solving forward and inverse dynamic problems in the same mathematical
framework, the Underactuation Equivalence Principle is used for extending the scope of application of the
central equations of constrained motion from fully actuated mechanical systems to underactuated mechani-
cal systems. Therefore, the Underactuation Equivalence Principle allows for mathematically formalizing the
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underactuation property of a mechanical system considering a particular set of nonholonomic constraints
defined at the acceleration level which produce a generalized constraint force vector identically equal to zero.
By using the Underactuation Equivalence Principle, one can demonstrate that the generalized acceleration
vector of an unconstrained mechanical system having an underactuated structure is equal to the generalized
acceleration vector of a mechanical system constrained by a set of nonholonomic constraints that mathemati-
cally represent the underactuation property of the dynamical system. By doing so, the inverse dynamic problem
of an underactuated mechanical system can be analytically formalized and numerically solved in the same
framework used for addressing the forward dynamic problems employing the Udwadia–Kalaba equations that
originate from the Gauss principle of least constraint [35]. As shown in the paper, the proposed method can
be used for analytically solving in an explicit manner the forward and inverse dynamic problems of a broad
family of nonlinear mechanical systems constrained by holonomic and/or nonholonomic constraints having
an underactuated structure. However, for some nonholonomic underactuated mechanical systems, it turns out
that an arbitrary set of generalized accelerations cannot be obtained by applying any vector of control actions
even considering the inverse dynamic approach developed in this research work. This important issue will be
addressed in detail in future investigations.

The Udwadia–Kalaba equations can be used for obtaining in a closed form the generalized force vector
relative to a general set of holonomic and/or nonholonomic constraints leading to the solution of both the
forward and the inverse dynamic problems associated with fully actuated mechanical systems. The Under-
actuation Equivalence Principle, on the other hand, allows for extending the Udwadia–Kalaba approach to
underactuated mechanical systems by mathematically formulating the underactuation property of a dynamical
system as a set of nonholonomic constraints. The effectiveness of the inverse dynamic method developed in
this study is demonstrated by means of numerical experiments and is applied to the tracking control problem
of mobile robots. In the numerical example considered in this work, both holonomic and nonholonomic con-
straints are used in order to demonstrate the effectiveness of the method developed in this investigation. The
proposed method is applied to the forward and inverse dynamic problems of a simple nonlinear dynamical
system representing a benchmark problem in the field of nonlinear control for underactuated nonholonomic
mechanical systems. In particular, the unicycle-like mobile robot is used as a case study. In order to obtain an
effective control action based on the inverse dynamic approach, the unicycle-like mobile robot is subjected to
a set of holonomic constraint equations that allow for imposing the path and the time law of the mechanical
system. The pure rolling condition of the mobile robot, on the other hand, is modeled considering a set of
nonholonomic constraints at the velocity level. Furthermore, the underactuated structure of this mechanical
system is mathematically represented by using a set of nonholonomic constraints at the acceleration level. The
generalized constraint force vector representing the pure rolling constraint for the mobile robot is explicitly
calculated and an arbitrary trajectory for the robot center of mass compatible with the pure rolling constraint is
designed and implemented. First, the control laws which correspond to the designed trajectory are analytically
calculated. Subsequently, the control actions are validated by means of numerical experiments. The numerical
results obtained by means of dynamical simulations show that the nonlinear control laws designed using the
proposed approach are effectively capable of controlling the unicycle-like mobile robot, thereby demonstrating
the practical feasibility of the control approach developed in this work.

1.4 Organization of the paper

The remaining part of this manuscript is organized as follows. In Sect. 2, the analytical methods necessary
for the symbolic derivation and the computer implementation of the differential-algebraic equations of motion
of a general mechanical system constrained by holonomic and/or nonholonomic constraints are recalled and
the nonlinear control method developed in the paper is illustrated. In Sect. 3, an unicycle-like mobile robot is
employed as a simple case study for demonstrating the effectiveness of the inverse dynamic control approach
developed in the paper. In Sect. 4, the summary of the paper, the conclusions formulated in this investigation,
and the possible directions for future research work are reported.

2 Background materials and analytical methods

In this section, the mathematical background necessary for the analytical derivation and the computer imple-
mentation of the differential-algebraic equations of motion of a general mechanical system constrained by
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holonomic and/or nonholonomic constraints is recalled. Subsequently, the nonlinear control method devel-
oped in the paper is illustrated. To this end, the analytical formulation of the central equations of constrained
dynamics is presented and the Udwadia–Kalaba approach to the solution of the forward and inverse dynamic
problems for fully actuated mechanical systems is described in detail. Finally, the use of the Underactua-
tion Equivalence Principle for extending the Udwadia–Kalaba nonlinear control method from fully actuated
dynamical systems to underactuated mechanical systems is shown and the key steps of the null space method
for obtaining the underactuation nonholonomic constraints are discussed.

2.1 Method of Lagrange multipliers for holonomic and nonholonomic systems

In this section, the use of a general method based on the Lagrange multiplier technique for handling holonomic
as well as nonholonomic systems is described [36–38]. Considering a general nonlinear mechanical system,
the matrix form of the equations of motion obtained starting from the basic principles of classical mechanics
employing an analytical approach based on a redundant set of generalized coordinates can bewritten as follows:

Mq̈ = Qb + Qc (1)

where t is time, q ≡ q(t) denotes the vector that contains the system generalized coordinates, M ≡ M(q, t)
represents the system mass matrix, Qb ≡ Qb(q, q̇, t) identifies the total generalized force vector of the
body forces, and Qc ≡ Qc(q, q̇, t) stands for the total generalized force vector associated with the algebraic
constraints that limit the motion of the mechanical system. In general dynamic problems relative to constrained
mechanical systems, the generalized force vector associated with the algebraic constraints Qc is formed by a
set of additional unknowns which depend on the specific nature of the algebraic constraint equations imposed
on themechanical system. In analytical mechanics, the algebraic equations that model the nonlinear constraints
applied to a mechanical system can be distinguished into two categories, namely holonomic constraints and
nonholonomic constraints [39–41].While holonomic constraints are represented by a set of algebraic equations
defined at the position level, nonholonomic constraints can be defined at the velocity level as well as at the
acceleration level. Therefore, in general, the constraint equations are given by a set of algebraic equations
written in terms of the generalized coordinate vector q and its first and second time derivatives q̇ and q̈.
Although there is not a common agreement between the researchers within the applied mechanics community
on this definition [42–44], in classical mechanics the holonomic constraint equations are traditionally referred
to as integrable constraints since the corresponding algebraic equations can be integrated or simply rewritten
only in terms of the generalized coordinate vector q. By doing so, one can reduce the algebraic equations that
model holonomic constraints to the following simple form:

f = 0 (2)

where f ≡ f(q, t) represents a nonlinear constraint vector function of dimensionsn f defined only in terms of the
system generalized coordinate vector q. In engineering applications, typical examples of holonomic constraints
are the algebraic equations that model the geometric coupling between the kinematic pairs of the mechanical
joints of a multibody mechanical system. On the other hand, one can classify the nonholonomic constraints
as velocity nonholonomic constraints and acceleration nonholonomic constraints. The velocity nonholonomic
constraints are represented by algebraic equations defined in terms of the generalized coordinate vector q
and its first time derivative q̇. Thus, the algebraic equations that model the velocity nonholonomic constraints
assume the following general form:

g = 0 (3)

where g ≡ g(q, q̇, t) denotes a nonlinear constraint vector function of dimension ng defined only in terms
of the system generalized coordinate vector q and its first time derivative q̇. It is assumed that the vector
function g cannot be integrated or rewritten in terms of an equivalent vector function fg defined only in
terms of the generalized coordinate vector q. In applied mechanics, a common example of a nonholonomic
constraint defined at the velocity level is the pure rolling condition. Furthermore, the acceleration nonholonomic
constraints represent the most general form of constraint equations. As mentioned before, the acceleration
nonholonomic constraints are represented by algebraic equations defined in terms of the generalized coordinate
vector q and its first and second time derivatives q̇ and q̈. The algebraic equations that model the acceleration
nonholonomic constraints are given by:

h = 0 (4)
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where h ≡ h(q, q̇, q̈, t) identifies a nonlinear constraint vector function of dimension nh defined in terms
of the vectors q, q̇, and q̈. Even in this case, it is assumed that the vector function h cannot be integrated or
rewritten in terms of an equivalent vector function gh defined only in terms of the vectors q and q̇ as well as
an equivalent vector function fh defined only in terms of the generalized coordinate q. As discussed in this
section, an important example of an acceleration nonholonomic constraint is the underactuation property of
a mechanical system subjected to external control inputs. In general, a mechanical system can be subjected
to holonomic constraints as well as nonholonomic constraints defined at both the velocity and acceleration
levels. In this general case in which one has at the same time the algebraic equations (2), (3), and (4), the total
number of constraint equations nc is given by:

nc = n f + ng + nh (5)

Each set of constraint equations generates a generalized constraint force vector that represents an additional vec-
tor of unknown external forces. Therefore, the total generalized vector associated with the algebraic constraints
Qc can be obtained by summing the holonomic constraint generalized force vector, the velocity nonholonomic
constraints generalized force vector, and the acceleration constraint generalized force vector as follows:

Qc = Qc, f + Qc,g + Qc,h (6)

where Qc, f ≡ Qc, f (q, q̇, t) is the generalized constraint force vector associated with the set of holonomic
constraints defined by Eq. (2), Qc,g ≡ Qc,g(q, q̇, t) is the generalized constraint force vector relative to the
set of velocity nonholonomic constraints defined by Eq. (3), and Qc,h ≡ Qc,h(q, q̇, t) is the generalized
constraint force vector corresponding to the set of acceleration nonholonomic constraints defined by Eq. (4).
One can demonstrate that a simple analytical approach based on the Lagrange multiplier technique can be
used for writing the generalized force vector associated with the holonomic constraint equations as well as the
nonholonomic constraint equations [45]. To this end, one can write:

Qc, f = −fTq λ f , Qc,g = −gTq̇λg, Qc,h = −hT
q̈λh (7)

where λ f ≡ λ f (t) is the vector of Lagrange multipliers associated with the holonomic constraints equations,
λg ≡ λg(t) is the vector of Lagrangemultipliers relative to the velocity nonholonomic constraint equations, and
λh ≡ λh(t) is the vector of Lagrange multipliers corresponding to the acceleration nonholonomic constraint
equations, whereas fq = ∂f

∂q represents the Jacobian matrix of the holonomic constraint vector f computed

with respect to the generalized coordinate vector q, gq̇ = ∂g
∂q̇ represents the Jacobian matrix of the velocity

nonholonomic constraint vector g computed with respect to the generalized velocity vector q̇, and hq̈ = ∂h
∂q̈

represents the Jacobian matrix of the acceleration nonholonomic constraint vector h computed with respect
to the generalized acceleration vector q̈. The total generalized constraint force vector Qc can be expressed by
using the Lagrange multiplier technique as follows:

Qc = −fTq λ f − gTq̇λg − hT
q̈λh (8)

Consequently, the system equations of motion given by Eq. (1) can be rewritten by using the explicit
formulation of the total constraint generalized force vector as:

Mq̈ = Qb − fTq λ f − gTq̇λg − hT
q̈λh (9)

The equations of motion of a mechanical system constrained by a general set of algebraic equations and
modeled using the redundant coordinate approach form a set of n ordinary differential equations that involve
n+nc unknown quantities represented by the generalized coordinate vector q aswell as the vectors of Lagrange
multipliers λ f , λg , and λh . Therefore, it is apparent that the nc algebraic equations that model the holonomic
and nonholonomic constraints given by Eqs. (2), (3), and (4) are necessary for closing this mathematical
problem. Considering the coupling between the differential equations of motion and the algebraic constraint
equations, one can write the following system of DAEs which describe the dynamic behavior of a mechanical
system constrained by a general set of algebraic constraints:

⎧
⎪⎪⎨

⎪⎪⎩

Mq̈ = Qb − fTq λ f − gTq̇λg − hT
q̈λh

f = 0
g = 0
h = 0

(10)
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where the following general set of the initial conditions is assumed:

{
q(0) = q0
q̇(0) = p0

(11)

The set of DAEs that form the dynamic equations (10) together with the corresponding set of the initial
conditions (11) constitute the general form of the fundamental problem of constrained motion [46].

2.2 Central equations of constrained motion

In this subsection, the principal aspects of the analytical formulation of the central equations of constrained
motion are presented. The central equations of constrained dynamics allow for obtaining an analytical solution
to the fundamental problem of constrainedmotion (10). These equations are also calledUdwadia–Kalaba equa-
tions since Udwadia and Kalaba originally solved the fundamental problem of constrained motion employing
the Gauss principle of least constraint in conjunction with advanced linear algebra techniques [47]. Accord-
ing to the Gauss principle of least constraint, the motion of a mechanical system constrained by algebraic
equations occurs at each instant of time following a trajectory that corresponds to the minimum deviation
between the generalized acceleration vector of the constrained system and the generalized acceleration vector
of the unconstrained system [48]. In the case of both unconstrained and constrained mechanical systems, it
can be proved that the Gauss principle of least constraint is one of the basic principles of classical mechanics
that is fully equivalent to the well-known D’Alembert–Lagrange principle of virtual work combined with the
Lagrange multiplier techniques [49]. As shown in this section, the Udwadia–Kalaba equations are obtained
starting from the Gauss principle of least constraint and make use of the mathematical concept borrowed from
the numerical linear algebra called the Moore–Penrose pseudoinverse matrix [50]. In particular, the solution
of the fundamental problem of constrained dynamics based on the Uwdadia–Kalaba equations leads to the
central equations of constrained dynamics and allows for explicitly calculating in a closed form the generalized
acceleration vector q̈ and the vector of Lagrange multipliers λ of a mechanical system constrained by a general
set of holonomic and/or nonholonomic constraints [51]. Without loss of generality, this method is based on the
assumption that the acceleration nonholonomic constraints are nonlinear functions of the generalized coordi-
nate and velocity vectors q and q̇ but, at the same time, linear functions of the generalized acceleration vector q̈.
Considering this fundamental hypothesis, one can rewrite the general form of the acceleration nonholonomic
constraint equations h as follows:

h = Ah q̈ − bh = 0 (12)

where Ah ≡ Ah(q, q̇, t) is a nh × n constraint Jacobian matrix and bh ≡ bh(q, q̇, t) is a constraint quadratic
velocity vector of dimension nh both associated with the acceleration nonholonomic constraint equations. On
the other hand, in order to be able towrite the general form of the central equations of constrained dynamics, one
needs to express the holonomic constraint defined at the position level given by Eq. (2) and the nonholonomic
constraints defined at the velocity level given by Eq. (3) in a standard form expressed at the acceleration level
that corresponds to the index-one form of the differential-algebraic equations of motion of the mechanical
system. To this end, the computation of the second time derivative of the holonomic constraint equations (2)
leads to:

f̈ = A f q̈ − b f = 0 (13)

where A f ≡ A f (q, q̇, t) is a n f × n constraint Jacobian matrix and b f ≡ b f (q, q̇, t) is a constraint quadratic
velocity vector of dimension n f both associated with the holonomic constraint equations that are, respectively,
given by:

A f = fq, b f = −(
fqq̇

)

qq̇ − 2fqt q̇ − ft t (14)

where the partial derivatives that appear in the previous equation are, respectively, defined as
(
fqq̇

)

q = ∂(fqq̇)
∂q ,

fqt = ∂2f
∂q∂t , and ft t = ∂2f

∂t2
. Following an analogous mathematical procedure, the computation of the first time

derivative of the velocity nonholonomic constraint equations (3) leads to:

ġ = Agq̈ − bg = 0 (15)
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where Ag ≡ Ag(q, q̇, t) is a ng × n constraint Jacobian matrix and bg ≡ bg(q, q̇, t) is a constraint quadratic
velocity vector of dimension ng both associated with the velocity nonholonomic constraint equations that are,
respectively, defined as:

Ag = gq̇, bg = −gqq̇ − gt (16)

where the partial derivatives that appear in the previous equations are, respectively, given by gq̇ = ∂g
∂q̇ , gq = ∂g

∂q ,

and gt = ∂g
∂t . Considering the standard index-one form of the constraint equations, one obtains a set of

holonomic and nonholonomic algebraic constraints that is nonlinear in terms of the generalized coordinate
and velocity vectors q and q̇ as well as linear in terms of the generalized acceleration vector q̈. Therefore, one
can assemble the holonomic and nonholonomic constraint equations in a compact matrix form given by:

Aq̈ = b (17)

where A ≡ A(q, q, t) is a nc × n constraint Jacobian matrix and b ≡ b(q, q̇, t) is a constraint quadratic
velocity vector of dimension nc both associated with the holonomic and nonholonomic constraint equations
that are, respectively, defined considering the following assembly of constraint matrices and vectors:

A =
⎡

⎣
A f
Ag
Ah

⎤

⎦ , b =
⎡

⎣
b f
bg
bh

⎤

⎦ (18)

Considering the standard form of the holonomic and nonholonomic constraint equations (17), one can
express the fundamental problem of constrained motion (10) in the following index-one form:

{
Mq̈ = Qb − ATλ

Aq̈ = b (19)

where λ ≡ λ(t) is the total vector of Lagrange multipliers associated with the holonomic and nonholonomic
constraint equations that can be assembled to yield:

λ =
⎡

⎣
λ f
λg
λh

⎤

⎦ (20)

By doing so, one canwrite the total vector of constraint equationsQc in terms of the total vector of Lagrange
multipliers λ employing the Jacobian matrix of the constraint equations A as follows:

Qc = −ATλ (21)

One can demonstrate that the Udwadia–Kalaba equations represent the analytical solution of the funda-
mental problem of constrained motion written in the standard index-one form (19). The analytical solution
of the mathematical problem given by Eq. (19) is also referred to as the central equations of constrained
dynamics [52]. The Udwadia–Kalaba equations lead to the following closed-form solution for the generalized
acceleration vector q̈ and for the vector of the Lagrange multipliers λ associated with a mechanical system
constrained by a general set of holonomic and nonholonomic constraints:

{
q̈ = ab + ac
λ = −Fe (22)

where ab ≡ ab(q, q̇, t) is a vector of dimension n that represents the generalized acceleration of themechanical
system in the absence of constraint equations, ac ≡ ac(q, q̇, t) is a vector of dimension n that represents the
generalized acceleration of themechanical system induced by the presence of holonomic and/or nonholonomic
constraint equations, F ≡ F(q, q̇, t) is a nc × nc matrix referred to as the constraint feedback matrix which
models the effect of the holonomic and/or nonholonomic constraints as a nonlinear feedback force field, and
e ≡ e(q, q̇, t) is an acceleration error vector of dimension nc which quantifies the violation of the constraint
equations at the acceleration level obtained considering the generalized acceleration vector in the absence of
constraint equations. The physical interpretation of these matrix and vector quantities can be described as
follows. The generalized acceleration vector ab is referred to as the unconstrained generalized acceleration
vector since it represents the generalized acceleration vector obtained in the absence of algebraic constraints.
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Without loss of generality, one can assume that the system mass matrix has a full rank rank(M) = n [53].
Therefore, the unconstrained generalized acceleration vector ab can be easily calculated as follows:

ab = M−1Qb (23)

The acceleration error vector e, on the other hand, can be simply obtained by introducing the unconstrained
generalized acceleration vector ab into the constraint equations defined at the acceleration level as follows:

e = b − Aab (24)

Thus, the acceleration error vector e analytically quantifies the deviation between the ideal unconstrained
generalized acceleration vector ab and the actual constrained generalized acceleration vector q̈. As mentioned
before, the constraint feedback matrix F is a nonlinear matrix function that allows for writing the vector of
Lagrange multipliers λ as the matrix product of the constraint feedback matrix F and the acceleration error
vector e. It can be demonstrated that the constraint feedback matrix F can be explicitly computed in the
following manner:

F = K+, K = AM−1AT (25)

where K ≡ K(q, q̇, t) is a nc ×nc matrix which defines the structure of mechanical system constrained by the
holonomic and/or nonholonomic algebraic constraints and K+ indicates the Moore–Penrose pseudoinverse
matrix of the matrix K [54]. In particular, the matrix K is referred to as the kinetic matrix corresponding to
the constrained mechanical system. In fact, one can simply observe that the essence of the dynamic behavior
of the constrained mechanical system under consideration is embedded in the kinetic matrix K. On the other
hand, in the computation of the constraint feedback matrix F, it is important to note that the Moore–Penrose
pseudoinverse matrix coincides with the regular inverse when there are no kinetic singularities as well as no
redundant constraints equations. Therefore, in this case the rank of the kinetic matrix is full and is given by
rank(K) = nc. This is the case when both the mass matrix and the Jacobian matrix have full rank, namely
rank(M) = n and rank(A) = nc. Moreover, the constraint feedback matrix F allows for expressing the
constraint generalized force vector Qc in the following analytical form:

Qc = −ATλ = ATFe = ATK+ (b − Aab)

= AT
(
AM−1AT

)+ (
b − AM−1Qb

) (26)

Consequently, the generalized acceleration vector induced by the presence of the algebraic constraints ac
can be readily obtained as:

ac = M−1Qc (27)

The explicit calculation of the generalized constraint forces Qc and the generalized acceleration vector
relative to the algebraic constraints ac represents the most important analytical results obtained considering
the central equations of constrained dynamics (22) associated with the fundamental problem of constrained
motion (19).

2.3 Udwadia–Kalaba equations for solving forward and inverse dynamic problems

In this subsection, the use of the Udwadia–Kalaba approach to the solution of the forward and inverse dynamic
problems for fully actuated mechanical systems is described. As discussed in this section, the central equations
of constrained dynamics are an effective method for calculating the generalized acceleration vector of a
mechanical system constrained by a general set of holonomic and/or nonholonomic algebraic equations and,
at the same time, the corresponding constraint generalized force vector. To this end, Eqs. (22) and (26) can be
used. In particular, one can define the following block matrix:

C =
[

M
A

]

(28)

whereC ≡ C(q, q̇, t) is a (n+nc)×nmatrix that is referred to as constraint controlmatrix.One can demonstrate
that a necessary and sufficient condition for obtaining in a closed form the analytical solution provided by the
Udwadia–Kalaba equations is that the constraint control matrix C must have a full rank [55]. For a mechanical
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system, the forward dynamic problem consists in calculating the motion of the components that form the
mechanical system starting from the initial conditions of the system state and assuming the external forces as
known data [56]. However, in forward dynamic problems, the constraint forces are additional unknowns. By
using the central equations of constrained dynamics (22), one can obtain in a closed form the systemgeneralized
acceleration vector and the generalized force vector associated with the algebraic constraints. By doing so,
one can transform the equations of motion of a constrained mechanical system associated with the forward
dynamic problem from a set of DAEs into a set of ODEs. On the other hand, the inverse dynamic problem
associated with a mechanical system consists in determining the additional external forces and moments that
serve as control actions in order to force the mechanical system to follow an assigned trajectory starting
from a known set of initial conditions and considering as known physical quantities also the external forces
applied to the dynamical system [57]. For this purpose, the Udwadia–Kalaba equations can still be employed
by devising a virtual set of holonomic constraints as shown in the paper. Considering the central equations
of constrained dynamics, one can also determine the generalized control forces that constrain the system to
follow a prescribed pathwith an assigned time law. In particular, in theUdwadia–Kalaba approach to the inverse
dynamic problems, the constrained equations do not correspond to mechanical joints acting on the dynamical
system and can be assumed to be virtual constraints that must be satisfied by the dynamical evolution of the
mechanical system. Therefore, the vector of generalized constrained forces can be interpreted as a vector of
generalized control actions which can be effectively used in order to force the system to follow a preassigned
path with a given time law. At the end of the implementation of this analytical process, one can always recover
the control forces and moments that serve as the actual control inputs starting from the generalized constraint
control force vector obtained employing the Udwadia–Kalaba inverse dynamic method. The implementation
of this important analytical method is discussed in detail in the paper.

2.4 Underactuation nonholonomic constraints

In this subsection, a general and effective method for explicitly determining the set of nonholonomic con-
straint equations defined at the acceleration level and associated with the underactuation property of a general
mechanical system is presented. In particular, the use of the Underactuation Equivalence Principle for extend-
ing the Udwadia–Kalaba nonlinear control method from fully actuated dynamical systems to underactuated
mechanical system is described in detail in this subsection. By doing so, the application of theUdwadia–Kalaba
approach to the solution of the inverse dynamic problems for underactuated mechanical systems is illustrated.
As discussed in this subsection, the Udwadia–Kalaba equations can be effectively used for solving both for-
ward and inverse dynamic problems associated with nonlinear mechanical systems constrained by holonomic
and/or nonholonomic constraints. For this purpose, consider the following analytic form of the equations of
motion:

Mq̈ = Qb + Buu (29)

where Bu ≡ Bu(q, t) is a n × nu influence matrix associated with the control inputs and u ≡ u(t) is the
vector of control actions having dimension nu . In particular, the transpose of the input influence matrix Bu
has dimensions nu × n and is denoted with BT

u . In order to obtain the nonholonomic constraint equations at
the acceleration level that mathematically describe the underactuation property of the mechanical system of
interest, the null space of the matrix BT

u can be employed for eliminating from the equations of motion the
terms associated with the generalized force vector of control actions Qu = Buu. For this purpose, one can
write:

Nu = ker(BT
u ) (30)

where Nu ≡ Nu(q, t) is a n × mu matrix that defines the kernel of the matrix BT
u and the scalar quantity

mu = n − nu identifies the degree of underactuation of the mechanical system under examination. Since the
columns of the matrix Nu span the null space of the matrix BT

u , one can write:

BT
uNu = O[nu×mu ] ⇔ NT

uBu = O[mu×nu ] (31)

where O[nu×mu ] and O[mu×nu ] represent zero matrices having dimensions nu ×mu and mu × nu , respectively.
It follows that:

NT
uBuu = 0[mu ] (32)

where 0[mu ] denotes a zero vector of dimension mu . Consequently, the general form of the nonholonomic
constraint equations defined at the acceleration level and associated with the underactuated structure of the
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dynamical system at hand can be readily obtained by multiplying the system equations of motion by the
transpose of the kernel matrix Nu . Thus, one can write:

NT
uMq̈ = NT

uQb (33)

which leads to:
h = Ah q̈ − bh = 0[mu ] (34)

where Ah ≡ Ah(q, q̇, t) and bh ≡ bh(q, q̇, t) are matrix and vector quantities, respectively, of dimensions
mu×n andmu that define the structure of the nonholonomic constraint vectorh representing the underactuation
property of the mechanical system. These matrix and vector quantities are, respectively, given by:

Ah = NT
uM, bh = NT

uQb (35)

Considering the definition of the underactuation nonholonomic constraints based on the null space
approach, one obtains:

e = b − Aab = NT
uQb − NT

uMM−1Qb = 0 (36)

and
λ = −Fe = 0 ⇒ Qc = −ATλ = 0 (37)

where:
K = AM−1AT = NT

uMM−1MTNu = NT
uMNu (38)

and
F = K+ = (

NT
uMNu

)+
(39)

It is, therefore, apparent that the underactuation nonholonomic constraint equations lead to an constraint
generalized force vector that is identically equal to the zero vector, which is consistent with the Underactuation
Equivalence Principle [58–61]. By using the analytical approach developed in this subsection, one can system-
atically formulate the acceleration-level nonholonomic constraint equations associated with an underactuated
mechanical system mathematically described by a nonlinear set of ordinary differential equations.

3 Numerical results and discussion

In this section, a simple case study is analyzed in order to demonstrate the effectiveness of the control method
based on the inverse dynamic approach developed in the paper. The case study considered herein as the
demonstrative example is an unicycle-like mobile robot. First, a description of the demonstrative example is
provided in this section. Then, the equations of motion and the generalized constraint forces associated with the
nonholonomic constraints of the unicycle-like mobile robot are symbolically derived by using the analytical
methods of classical mechanics and the fundamental equations of constrained motion. Subsequently, a general
parametric form of the path of the unicycle-like mobile robot is designed and the tracking problem associated
with the desired time law is solved employing the Udwadia–Kalaba method. Finally, a set of dynamical
simulations is performed in the MATLAB computational environment for verifying the effectiveness of the
tracking controller designed by using the methodological approach developed in the paper. To this end, the
numerical results obtained by means of numerical experiments are discussed.

3.1 Description of the demonstrative example

In this subsection, a description of the case study considered as a demonstrative example is reported. The system
under study is a wheeled mobile robot shown in Fig. 1. Assuming that the wheeled robot is a rigid body, this
planar mechanical system can be modeled as a unicycle-like mobile robot having n = 3 degrees of freedom
subjected only to nc,r = 1 nonholonomic constraint equation. The nonholonomic constraint considered for
the mobile robot is the pure rolling condition which does not restrict the configuration space of the mechanical
system. In particular, one can assume as the translational generalized coordinates of the mobile robot the
abscissa and the ordinate of the robot center of mass G, which are, respectively, denoted with x ≡ x(t) and
y ≡ y(t) and are measured with respect to an inertial frame of reference, whereas the orientation angle relative
to the robot sagittal plane denoted with θ ≡ θ(t) and measured with respect to the horizontal axis of the global
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Fig. 1 Unicycle-like mobile robot

Table 1 Numerical parameters of the unicycle-like mobile robot dynamic model

Descriptions Symbols Data (units)

Half length of the axle track L 0.15 (m)
Half width of the robot chassis H 0.25 (m)
Radius of the wheels R 0.025 (m)
Robot mass m 3 (kg)
Robot moment of inertia Izz 0.0625 (kg × m2)
Viscous damping coefficient σ 0.1 (kg/s)

reference frame can be used as the rotational generalized coordinate of the mobile robot. As shown in Fig. 1,
the radius of the wheels the robot is denoted with R, while L and H denote, respectively, half the length of
the axle track and half the width of the robot chassis. The mass of the robot is denoted with m and its moment
of inertia relative to the axis passing through its center of mass G and orthogonal to the plane of the chassis is
denoted with Izz . Furthermore, in order to take into account the dissipative phenomena which occur during the
motion of the wheeled robot, a linear dissipative force field characterized by a viscous damping coefficient σ is
considered in the dynamical model of the mechanical system. Additionally, in order to consistently perform the
dynamic analysis, the time evolution of the mobile robot is calculated starting from a set of initial conditions,
respectively, given by: {

x(0) = x0, y(0) = y0, θ(0) = θ0
ẋ(0) = u0, ẏ(0) = v0, θ̇ (0) = ω0

(40)

where x0 is the initial horizontal displacement, y0 is the initial vertical displacement, θ0 is the initial angular
displacement, u0 is the initial horizontal velocity, v0 is the initial vertical velocity, and ω0 is the initial angular
velocity. The numerical data used for the parameters that describe the mechanical model of the unicycle-like
mobile robot are reported in Table 1.

3.2 Derivation of the equations of motion

In this subsection, the equations ofmotion of the unicycle-likemobile robot are analytically derived by using the
methods of classical mechanics. As mentioned before, the geometric configuration of this mechanical system
is completely described by a set of n = 3 independent parameters. To this end, the generalized coordinates of
the mobile robot can be grouped into a configuration vector denoted with q ≡ q(t) and given by:

q =
⎡

⎣
x
y
θ

⎤

⎦ (41)
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By using the methods of analytical mechanics such as, for example, the D’Alembert–Lagrange principle
of virtual work [62], one can readily obtain the equations of motion of the mobile robot written in a compact
matrix form as follows:

Mq̈ = Qσ (42)

where M ≡ M(q, t) represents the system mass matrix and Qσ ≡ Qσ (q̇, t) denotes the generalized force
vector associated with the dissipative terms acting on the mechanical system. For the unicycle-like mobile
robot used as a demonstrative example, these vector and matrix quantities can be, respectively, expressed as
follows:

M =
⎡

⎣
m 0 0
0 m 0
0 0 Izz

⎤

⎦ , Qσ =
⎡

⎣
−σ ẋ
−σ ẏ
0

⎤

⎦ (43)

The system equations of motion given by Eq. (42) represent a set of n = 3 ordinary differential equations
which requires a set of 2n = 6 initial conditions which are, respectively, denoted in a matrix form as q(0) = q0
and q̇(0) = p0. The set of initial conditions for the unicycle-like mobile robot can be explicitly written as:

q0 =
⎡

⎣
x0
y0
θ0

⎤

⎦ , p0 =
⎡

⎣
u0
v0
ω0

⎤

⎦ (44)

For the forward and inverse dynamic problem under study, the initial conditions (44) are assumed as a
set of input data. However, it is important to note that, when a tracking controller is applied on the dynamic
model of the unicycle-like mobile robot, the initial conditions must be consistent with the path and the time
law imposed on the mechanical system.

3.3 Enforcement of the pure rolling constraint

In this subsection, the generalized force vector that describes the action of the pure rolling nonholonomic
constraint on the unicycle-like mobile robot is analytically derived employing the Udwadia–Kalaba approach.
To this end, one can assume that the dynamic model of the unicycle-like mobile robot is subjected to the
pure rolling constraint which can be mathematically modeled considering a single nonholonomic algebraic
constraint equation. In particular, when the pure rolling constraint is imposed on the mechanical system, an
additional vector of generalized forces appears in the formulation of the equations of motion. This generalized
force vector is denoted with Qr ≡ Qr (q, q̇, t) and is necessary for forcing the mobile robot to satisfy the non-
holonomic constraint equation. Considering the effect of the nonholonomic constraint equation that describes
the pure rolling condition, the system equations of motion assume the following mathematical form:

Mq̈ = Qσ + Qr (45)

where the generalized constraint force vector Qr associated with the pure rolling constraint can be explicitly
calculated by using the central equations of constrained dynamics and considering the nonholonomic constraint
equation which represents the pure rolling condition of the wheeled robot. The pure rolling constraint is
a nonholonomic constraint equation defined at the velocity level which is identified by the scalar function
gr ≡ gr (q, q̇, t). The scalar function gr is used in order to mathematically represent the physical property
that the velocity vector vG relative to the center of mass G of the mobile robot must be parallel to the sagittal
plane of the mechanical system. Consequently, the pure rolling constraint condition can be represented using
the following algebraic equation:

gr = 0 (46)

where the constraint function gr is explicitly defined as:

gr = vTGj = − sin(θ)ẋ + cos(θ)ẏ (47)

where vG is the absolute velocity of the robot center of mass and j is the unit vector associated with the
vertical axis of the body-fixed reference frame expressed with respect to the global reference system that are,
respectively, given by:

vG =
[
ẋ
ẏ

]

, j =
[− sin(θ)

cos(θ)

]

(48)



682 C. M. Pappalardo, D. Guida

In order to be able to use the fundamental equations of constrained motion given by Eq. (22), the nonholo-
nomic constraint equation relative to the pure rolling condition (46) must be represented in the standard form
described by Eq. (17). In order to achieve this goal, one can readily compute the time derivative of the pure
rolling constraint to yield:

Ar q̈ = br (49)

where Ar ≡ Ar (q, t) and br ≡ br (q, q̇, t), respectively, represent the constraint matrix and the constraint
vector corresponding to the pure rolling condition which can be readily obtained by computing the time
derivative of the constraint Eq. (46). These matrix and vector quantities are defined as:

Ar = [− sin(θ) cos(θ) 0
]
, br = cos(θ)θ̇ ẋ + sin(θ)θ̇ ẏ (50)

Since system mass matrix has a full rank rank(M) = 3 and the rank of the constraint matrix rank(Ar ) = 1
is equal to the number of the constraint equations representing the pure rolling nc,r = 1, the generalized
constraint force vector Qr which satisfies the pure rolling condition can be explicitly computed by using
Eq. (26) to yield:

Qr =
⎡

⎣
−m sin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)
m cos(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)

0

⎤

⎦ (51)

The generalized force vector Qr is a vector of generalized constraint forces which identifies the force fields
generated by the nonholonomic constraint equation of the pure rolling condition given by Eq. (46). Since in
this process the constraint force vector Qr has been explicitly determined employing the central equations of
constrained dynamics and, on the other hand, it is well-known that the drift of the algebraic equations at the
velocity level is of minor entity, the system equations of motion associated with the unicycle-like mobile robot
can be directly solved by using an explicit numerical integration method without considering the algebraic
constraint equation corresponding to the pure rolling condition [63,64]. Therefore, the method based on the
Udwadia–Kalaba equations allows for transforming the equations of motion of a mechanical system subjected
to a set of nonholonomic constraints from a nonlinear set of DAEs to a nonlinear system of ODEs.

3.4 Motion planning

In this subsection, a general trajectory for the configuration vector of the unicycle-like mobile robot is designed
in a parametric form by solving a simple motion planning problem. In general, the motion planning represents
an important problem associated with the nonlinear control problem of mechanical systems. In the case of
mobile robots, the problem of motion planning is also referred to as the navigation problem and is represented
by the process of generating the desired motion subdividing the autonomous navigation problem into simple
separate tasks, thereby obtaining the desired state trajectory by also avoiding the contact between the mobile
robot and the obstacles found in the external environment. To this end, the motion planning problem for the
unicycle-like mobile robot consists of designing a trajectory which satisfies the pure rolling constraint and,
if necessary, a set of boundary conditions. Employing a parametric approach, this challenging problem can
be subdivided into two independent subproblems: (a) the design of an appropriate path r ≡ r(s) and (b) the
design of an adequate time law s ≡ s(t) associated with the desired path. In particular, the time law s can
be analytically derived by calculating the arc length parameter along the path r. However, since it is well-
known that only in few cases the calculation of the arc length parameter s provides a closed-form formula
for the solution of the line integral, the path r can be more conveniently redefined using another parametric
representation r ≡ r(γ ) based on the curve parameter γ ≡ γ (t) which represents a general dimensionless
parameter. Furthermore, the parameter γ can be assumed to be an arbitrary function of time t in order to
identify the time evolution of a generic point P on the parametric curve r and, therefore, it serves for defining
the desired time law. On the other hand, one can always recover the arc length parameter s from the analytical
representation of the parametric curve r defined in terms of the dimensionless parameter γ . For this purpose,
in a two-dimensional space, the arc length parameter s can be computed using the parametric representation
of the curve considered as follows:

s =
∫ γ

0

√

(ξ ′)2 + (η′)2d γ̄ (52)
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where ξ ≡ ξ(γ ) and η ≡ η(γ ), respectively, denote the abscissa and the ordinate of a generic point on the
parametric path r identified by the parameter γ and the prime symbol stands for the derivative of the scalar
terms computed with respect to the parameter γ , respectively, given by ξ ′ = dξ

/
dγ and η′ = dη

/
dγ . Thus,

one can explicitly write:

r =
[

ξ
η

]

(53)

It is important to note that, while the desired path r must satisfy the constraint equations imposed on the
mechanical system, including the pure rolling nonholonomic constraint (46) and, if needed, some boundary
conditions that serve to better define the geometric shape of the path, the curve parameter γ associated with
the time law can be designed as an arbitrary function of time which requires to satisfy only the given initial
conditions (44). For the problem at hand, an effective method suitable for the design of the path r in a
general parametric form can be employed considering the following analytical steps. First, a continuous path r
composed of the parametric functions ξ and η is selected for the center of massG of the mobile robot. By doing
so, the first and the second time derivatives of the parametric path (53) can be readily calculated considering
a general expression of the curve parameter γ associated with the time law to yield:

ṙ =
[

ξ̇
η̇

]

=
[

ξ ′γ̇
η′γ̇

]

, r̈ =
[

ξ̈
η̈

]

=
[

ξ ′′γ̇ 2 + ξ ′γ̈
η′′γ̇ 2 + η′γ̈

]

(54)

where the second derivatives with respect to the curve parameter are, respectively, defined as ξ ′′ = d2ξ
/
dγ 2

and η′′ = d2η
/
dγ 2. Subsequently, when the pure rolling nonholonomic constraint (46) is applied on the

mechanical system, the imposition of the designed path r automatically forces the orientation angle of the
mobile robot to follow a prescribed law defined as ϕ ≡ ϕ(γ ). The definition of the prescribed law ϕ for the
orientation angle keeps the consistency between the pure rolling nonholonomic constraint and the desired
path designed in the process of the motion planning. Therefore, the prescribed parametric representation of the
orientation angle ϕ of the mobile robot can be indirectly derived from the pure rolling nonholonomic constraint
equation (46) to yield:

t = r′

‖r′‖ = 1
√

(ξ ′)2 + (η′)2

[
ξ ′
η′

]

⇒ tan(ϕ) = η′

ξ ′ ⇔ ϕ = arctan(
η′

ξ ′ ) (55)

where t ≡ t(γ ) is a unit vector that is tangent to the curve vector r. Using this analytical approach, the
prescribed representation of the path (53) and of the orientation angle (55) both designed in a parametric form
are consistent with the pure rolling nonholonomic constraint (46). Furthermore, one can easily compute the
first and the second time derivatives of the prescribed orientation parameter ϕ for the mobile robot as follows:

ϕ = arctan(
η′

ξ ′ ) ⇒ ϕ̇ = γ̇
ξ ′η′′ − ξ ′′η′

(ξ ′)2 + (η′)2
(56)

and

ϕ̈ =
((

ξ ′)2 + (
η′)2

)−2 (
−(

η′)2 (
η′ξ ′′γ̈ + γ̇ 2

(−2ξ ′′η′′ + η′ξ ′′′))

− (
ξ ′)2 (

η′ξ ′′γ̈ + γ̇ 2
(
2ξ ′′η′′ + η′ξ ′′′)) + ξ ′3 (

η′′γ̈ + γ̇ 2η′′′)

+ ξ ′η′
(
η′η′′γ̈ + γ̇ 2

(
2
(
ξ ′′)2 − 2

(
η′′)2 + η′η′′′

)))
(57)

It is worth to note that the second time derivatives (54) and (57) of the prescribed path r̈ and orientation
parameter ϕ̈ are necessary for calculating the control actionswhich force themobile robot to follow the designed
path r in conjunction with the scalar function γ that serves as a time law without violating the nonholonomic
constraint equation associated with the pure rolling condition (46).
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3.5 Tracking controller design

In this subsection, a nonlinear controller capable of tracking the path and the time lawdevised in the design phase
for the motion planning is developed. To this end, the underactuated structure of the unicycle-like mobile robot
is considered. The unicycle-like mobile robot is controlled using two motors which provide the control torques
u1 ≡ u1(t) and u2 ≡ u2(t) applied, respectively, on the right and left wheels. In the equations of motion, the
introduction of the control inputs u1 and u2 produces a generalized force vector denoted with Qu ≡ Qu(q, t)
corresponding to the external control actions. Therefore, the matrix form of the system equations of motion
becomes:

Mq̈ = Qσ + Qr + Qu (58)

where the generalized force vectorQu relative to the external control actions can be readily obtained employing
the D’Alembert–Lagrange principle of virtual work and considering the underactuated structure of the wheeled
robot as follows:

Qu =

⎡

⎢
⎢
⎣

(u1 + u2)
cos(θ)

R

(u1 + u2)
sin(θ)
R

(u1 − u2)
L
R

⎤

⎥
⎥
⎦ ⇔ Qu = Buu (59)

where Bu ≡ Bu(q, t) is an input influence matrix of dimensions n × nu and u ≡ u(t) is a control input vector
of dimension nu = 2 which are, respectively, defined as:

Bu =

⎡

⎢
⎢
⎣

cos(θ)
R

cos(θ)
R

sin(θ)
R

sin(θ)
R

L
R − L

R

⎤

⎥
⎥
⎦ , u =

[
u1
u2

]

(60)

It is apparent that the system under study is an underactuated mechanical system because the rank of the
input influence matrix rank(Bu) = 2 is lower than the number of system degrees of freedom n = 3. In order
to obtain a more convenient representation of the generalized force vector Qu associated with the external
control actions u, the following linear transformation of variables can be applied:

{
v1 = u1 + u2
v2 = u1 − u2

⇔
[

v1
v2

]

=
[
1 1
1 −1

] [
u1
u2

]

⇔ v = Bv,uu (61)

where v1 ≡ v1(t) and v2 ≡ v2(t) are two new control inputs which, respectively, represent a generalized force
acting on the robot center of mass G collocated along its sagittal plane and a generalized moment applied at
the robot center of mass G and acting orthogonally to the robot axles, while v ≡ v(t) is a new input vector
and Bv,u is a constant transformation matrix which are, respectively, given by:

v =
[

v1
v2

]

, Bv,u =
[
1 1
1 −1

]

(62)

By using the transformation of the control variables, the generalized vector relative to the control actions
Qu can be easily rewritten as follows:

Qu = Buu = BuB−1
v,uv =

⎡

⎢
⎢
⎣

v1
cos(θ)

R

v1
sin(θ)
R

v2
L
R

⎤

⎥
⎥
⎦ (63)

Furthermore, considering the definition of the new vector of control inputs v, the generalized vector
associated with the external control actions Qu can be expressed as a linear function of the vector of control
inputs v as follows:

Qu = Bvv, Bv = BuB−1
v,u =

⎡

⎢
⎢
⎣

cos(θ)
R 0

sin(θ)
R 0

0 L
R

⎤

⎥
⎥
⎦ (64)
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where Bv ≡ Bv(q, t) is a new input influence matrix of dimensions n × nu . On the other hand, one can readily
write the inverse relationship between the old input vector u and the new input vector v as:

{
u1 = 1

2 (v1 + v2)

u2 = 1
2 (v1 − v2)

⇔
[
u1
u2

]

= 1

2

[
1 1
1 −1

] [
v1
v2

]

⇔ u = Bu,vv (65)

where Bu,v is a constant transformation matrix given by:

Bu,v = B−1
v,u = 1

2

[
1 1
1 −1

]

(66)

The alternative representation of the generalized force vector associatedwith the control actionsQu in terms
of the new vector of control inputs v allows for obtaining a straightforward formulation of the underactuation
requirement as a nonholonomic constraint equation at the acceleration level considering the Underactuation
Equivalence Principle. To this end, the nonholonomic constraint equation associated with the underactuated
structure of the mobile robot can be written in terms of system generalized coordinates as follows:

ht = 0 (67)

where the scalar function ht ≡ ht (q, q̇, q̈, t) represents a constraint function formulated at the acceleration
levelwhich can be analytically obtained considering the structure of the equations ofmotion of the unicycle-like
mobile robot as follows:

ht = M1,1q̈1+M1,2q̈2+M1,3q̈3−Qb,1

B1,1
v

−M2,1q̈1+M2,2q̈2M2,3q̈3−Qb,2

B2,1
v

(68)

where Qb ≡ Qb(q, q̇, t) denotes the total generalized force vector applied on the mobile robot defined as:

Qb = Qσ + Qr =
⎡

⎣
−σ ẋ − m sin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)
−σ ẏ + m cos(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)

0

⎤

⎦ (69)

Equation (68) yields the following nonholonomic constraint equation formulated at the acceleration level:

R
cos(θ)

mẍ − R
sin(θ)

mÿ − R
cos(θ)

(−σ ẋ − m sin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)
)

+ R
sin(θ)

(−σ ẏ + m cos(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)
) = 0

(70)

This algebraic equation is a nonholonomic constraint equation which is linear in the generalized accelera-
tions, involves all the systemgeneralized coordinates, and reproduces the underactuation requirement expressed
in a dynamic form.

An alternative procedure for obtaining the nonholonomic constraint equation defined at the acceleration
level that represents the underactuation property of the unicycle-like mobile robot given by Eq. (70) is based
on the use of the null space method. In this case, one can readily compute the degree of underactuation of the
mobile robot as mu = n − nu = 3 − 2 = 1. Furthermore, in order to use this alternative approach, one can
write the transpose of the actuator influence matrix Bu as follows:

BT
u =

[ cos(θ)
R

sin(θ)
R

L
R

cos(θ)
R

sin(θ)
R − L

R

]

(71)

It can be easily proved that:

nu = ker(BT
u ) =

⎡

⎣
− tan(θ)

1
0

⎤

⎦ (72)

where nu ≡ nu(q, t) is a vector of dimension n associated with the kernel of the matrix BT
u . In fact, one can

readily verify that:

BT
unu =

[ cos(θ)
R

sin(θ)
R

L
R

cos(θ)
R

sin(θ)
R − L

R

]⎡

⎣
− tan(θ)

1
0

⎤

⎦ =
[
0
0

]

(73)
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or

nT
uBu = [− tan(θ) 1 0

]

⎡

⎢
⎢
⎣

cos(θ)
R

cos(θ)
R

sin(θ)
R

sin(θ)
R

L
R − L

R

⎤

⎥
⎥
⎦ = [

0 0
]

(74)

By using the analytical method based on the null space approach, the following equivalent form of the
nonholonomic constraint equation relative to the underactuation requirement of the unicycle-like mobile robot
can be obtained:

ht = nT
u (Mq̈ − Qb − Buu)

= [− tan(θ) 1 0
]

⎡

⎣
mẍ
m ÿ
mθ̈

⎤

⎦

− [− tan(θ) 1 0
]

⎡

⎣
−m sin(θ)θ̇ (ẋ cos(θ) + ẏ sin(θ)) − σ ẋ
m cos(θ)θ̇ (ẋ cos(θ) + ẏ sin(θ)) − σ ẏ

0

⎤

⎦

= − tan(θ)mẍ + mÿ + mθ̇ (− tan(θ) sin(θ) − cos(θ)) (ẋ cos(θ) + ẏ sin(θ))
− tan(θ)σ ẋ + σ ẏ = 0

(75)

where it is apparent that Eq. (75) is equivalent to Eq. (70).
In order to design a tracking controller consistent with the underactuation nonholonomic constraint by

using the fundamental equations of constrained dynamics, the desired trajectory for the mobile robot must be
imposed on the mechanical system as a set of holonomic constraint equations given by:

ft = 0 (76)

where the vector function associated with the holonomic constraints denoted with ft ≡ ft (q, t) is defined as:

ft =
[
x − ξ
θ − ϕ

]

(77)

where ξ andϕ represent the prescribed laws, respectively, defined for the abscissa of the center ofmassG and for
the orientation angle of the mobile robot which were designed in the phase of the motion planning considering
Eqs. (53) and (55). In order to use the analytical results arising from the central equations of constrained
motion given by Eqs. (22) and (26) for deriving the tracking controller, the nonholonomic constraint equation
for the underactuation requirement (67) and the holonomic constraint equations associated with the prescribed
trajectory (76) must be represented in the standard matrix form as follows:

At q̈ = bt (78)

where At ≡ At (q, t) and bt ≡ bt (q, q̇, t), respectively, represent the constraint matrix and the constraint
vector corresponding to the underactuation constraint combined with the desired trajectory which can be
readily obtained by calculating the second time derivative of the holonomic constraint equations defined by
Eq. (76). By doing so, one obtains:

At =
⎡

⎣

mR
cos(θ)

− mR
sin(θ)

0
1 0 0
0 0 1

⎤

⎦ (79)

and

bt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R
cos(θ)

(−σ ẋ − m sin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)
) +

− R
sin(θ)

(−σ ẏ + m cos(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)
)

ξ̈

ϕ̈

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(80)
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Since system mass matrix has full rank rank(M) = 3 and the rank of the constraint matrix rank(At ) = 3 is
equal to the number of constraint equations representing the underactuation constraint as well as the prescribed
trajectory nc,t = 3, the generalized force vector associated with the control action Qt which satisfies the
imposed holonomic and nonholonomic constraints can be explicitly computed by using Eq. (26) to yield:

Qt =
⎡

⎣
σ ẋ + msin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ) + mξ̈

tan(θ)
(
σ ẋ + msin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ) + mξ̈

)

Izz ϕ̈

⎤

⎦ (81)

or equivalently:

Qt =
⎡

⎣
a1,t

tan(θ)a1,t
a2,t

⎤

⎦ (82)

where, as expected, a1,t ≡ a1,t (q, q̇, t) and a2,t ≡ a2,t (q, q̇, t) represent the two effective control actions
applied to the unicycle-likemobile robot that results from the imposition of the prescribed trajectory constraints
combined with the underactuation nonholonomic constraint. The tracking control actions a1,t and a2,t are,
respectively, given by: {

a1,t = σ ẋ + msin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ) + mξ̈
a2,t = Izz ϕ̈

(83)

It is noteworthy to emphasize the point that the structure of the underactuation constraint equation given
by Eq. (67) prevents to impose directly as the trajectory constraints the abscissa ξ and, at the same time, the
ordinate η of the system center of mass G otherwise the constraint matrix given by Eq. (79) would not have
a full rank. On the other hand, an arbitrary trajectory can still be imposed indirectly to the mobile robot by
setting a prescribed abscissa ξ , or a prescribed ordinate η, and a prescribed orientation angle ϕ as the holonomic
constraint equations associated with the prescribed trajectory. In order to obtain the control inputs associated
with the nonlinear tracking controller given by Eq. (81), one can write:

Bvvt = Qt (84)

where vt ≡ vt (q, q̇, t) represents the vector of control inputs associated with the tracking controller. By doing
so, the generalized control inputs v1,t ≡ v1,t (q, q̇, t) and v2,t ≡ v2,t (q, q̇, t) that form the control vector vt
corresponding to the nonlinear tracking controller defined by Eq. (81) can be readily obtained as follows:

⎧
⎪⎨

⎪⎩

v1,t = Qt,1

B1,1
v

= Qt,2

B2,1
v

= R
cos(θ)

(
σ ẋ + msin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ) + mξ̈

)

v2,t = Qt,3

B3,2
v

= R
L Izz ϕ̈

(85)

or equivalently: ⎧
⎨

⎩

v1,t = R sec(θ)a1,t

v2,t = R
L a2,t

(86)

As mentioned before, the actual control torques u1,t ≡ u1,t (q, q̇, t) and u2,t ≡ u2,t (q, q̇, t), which serve
to practically implement the nonlinear tracking controller on the unicycle-like mobile robot, can be derived by
using the following inverse change of variables:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1,t = v1,t+v2,t
2

= R
2 cos(θ)

(
σ ẋ + msin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ) + mξ̈

) + R
2L Izz ϕ̈

u2,t = v1,t−v2,t
2

= R
2 cos(θ)

(
σ ẋ + msin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ) + mξ̈

) − R
2L Izz ϕ̈

(87)

or equivalently: ⎧
⎨

⎩

u1,t = R
2 sec(θ)a1,t + R

2L a2,t

u2,t = R
2 sec(θ)a1,t − R

2L a2,t
(88)
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The analytical expressions of the control torques represent the nonlinear force fields associated with the
tracking control inputs which force the mechanical system to follow an arbitrary path r according to a general
time law γ as discussed in the previous subsection.

3.6 Dynamical simulations

In this subsection, the numerical results of a set of dynamical simulations are reported in order to demonstrate
the feasibility of the nonlinear control approach developed for the unicycle-like mobile robot. To this end, the
effectiveness of the tracking controller given by Eq. (88) proposed in the previous subsection is verified by
means of numerical experiments performed by using a MATLAB computer code developed by the authors. In
particular, two different trajectories are considered in this subsection, namely an elliptical path having a linear
time law and an eight-shaped path having a parabolic time law. Since the generalized force vector associated
with the holonomic andnonholonomic constraints and the generalized force vector associatedwith the nonlinear
control action can be analytically calculated as demonstrated by Eqs. (51) and (59), one can use an explicit
numerical integration method in order to march forward the numerical solution of the equations of motion
on the discrete time grid. For this purpose, the computational algorithm used for performing the numerical
simulations is the well-known fourth-order explicit Runge–Kutta method. In the numerical integration scheme
based on the Runge–Kutta algorithm, a constant time step equal to Δt = 5 × 10−3 (s) is used and a time
interval equal to T = 5 (s) is considered.

In order to clarify the computer implementation of the Runge–Kutta numerical algorithm applied to the
dynamic problem at hand, consider the following general structure of the equations of motion:

Mq̈ = Q, Q = Qb + Qu (89)

where M ≡ M(q, t) represents the dynamical system mass matrix and Q ≡ Q(q, q̇, t) denotes the total vector
of generalized forces acting on the mechanical system. If the dynamic problem is properly formulated, namely
if the mass matrix M has a full rank, one can readily obtain the system generalized acceleration vector q̈ by
solving a system of linear equations as follows:

q̈ = M−1Q (90)

On the other hand, one can assume the following general definition of the system state vector associated
with the system state-space representation:

z =
[

q
q̇

]

(91)

where z ≡ z(t) indicates the state vector of the mechanical system having dimension 2n. By doing so, one
can transform the original system of n second-order differential equations into the following system of 2n
first-order differential equations:

ż = N, N =
[

q̇
q̈

]

(92)

where N ≡ N(z, t) is a vector having dimension 2n which represents the system state function. When the
classical fourth-order Runge–Kutta method with a constant step size is used for obtaining a numerical solution
of the equations of motion, the time axis is discretized from the initial time t = 0 to the final time t = T
considering an equally spaced sequence of time instants given by:

t i = iΔt, i = 0, 1, 2, . . . , N (93)

where Δt represents the constant time step used in the numerical algorithm, i is an integer number associated
to the current time instant, and N = T

/
Δt is an integer number. Similarly, the numerical solution associated

with the current time instant t i is denoted with zi ≈ z(t i ). This numerical solution can be obtained at each
time step by performing a time marching starting from the given set of initial conditions z(t0) = z0. One can
prove that the fundamental formula of the explicit fourth-order Runge–Kutta scheme can be concisely written
as follows:

zi+1 = zi + 1

6
Δt

(
zi1 + 2zi2 + 2zi3 + zi4

)
(94)
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Fig. 2 Time law associated with the first state trajectory

where zi is the numerical solution at the current time step, zi+1 denotes the numerical solution at the next time
step, whereas zi1, zi2, zi3, and zi4 represent the four partial stage solutions of the Runge–Kutta method which
are, respectively, defined as: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi1 = N(zi , t i )

zi2 = N(zi + 1
2zi1, t

i + 1
2Δt)

zi3 = N(zi + 1
2zi2, t

i + 1
2Δt)

zi4 = N(zi + zi3, t
i + Δt)

(95)

From the previous equations, it is apparent that the classical Runge–Kutta scheme requires four function calls
for the computation of the numerical solution at each time step of the time grid.

The first trajectory considered in this subsection is an elliptical path having a linear time law. For simplicity,
the first state trajectory is labeled with the number 1. Therefore, the path r1 ≡ r1(t) is an elliptical curve having
an abscissa ξ1 ≡ ξ1(γ1) and an ordinate η1 ≡ η1(γ1) characterized by a linear time law γ1 ≡ γ1(t). The
elliptical path of the first trajectory can be analytically described employing the following parametric form:

{
ξ1 = C1 + a1 cos(γ1)
η1 = D1 + b1 sin(γ1)

(96)

where the constant parameters that appear in Eq. (96) are, respectively, given by C1 = 0 (m), D1 = 0 (m),
a1 = 1.5 (m), and b1 = 0.5 (m). The linear time law of the first trajectory is defined as:

γ1 = β1t + δ1 (97)

where the constant parameters that appear in Eq. (97) are, respectively, given by β1 = 2 (1
/
s) and δ1 = 0 (−).

The time law described by Eq. (97) is represented in Fig. 2. Furthermore, the set of initial conditions used for
the first state trajectory is reported in Table 2. In Fig. 3a, the longitudinal control force associated with the first
state trajectory v11 is shown, while the angular control moment relative to the same trajectory v12 is represented
in Fig. 3b. Figure 3c, d, respectively, represent the right and left control actions u11 and u12 relative to the first

state trajectory associated with the elliptical path and the linear time law. Figure 4a, b, respectively, represent
the horizontal displacement x1 and the vertical displacement y1 of the center of mass G of the unicycle-like
mobile robot resulting from the implementation of the nonlinear tracking controller associated with the first
trajectory, while Fig. 4c represents the corresponding angular displacement θ1. Figure 4d represents the actual
elliptical path followed by the mobile robot.

The second trajectory considered in this subsection is an eight-shaped path having a quadratic time law.
For simplicity, the second-state trajectory is labeled with the number 2. Therefore, the path r2 ≡ r2(t) is an
eight-shaped curve having an abscissa ξ2 ≡ ξ2(γ2) and an ordinate η2 ≡ η2(γ2) characterized by a quadratic
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Fig. 3 Control actions associated with the first state trajectory. a Longitudinal control force, b angular control moment, c right
control torque, d left control torque

time law γ2 ≡ γ2(t). The eight-shaped path of the second trajectory can be analytically described employing
the following parametric form:

{
ξ2 = C2 + a2 cos(2πγ2)
η2 = D2 + b2 sin(4πγ2)

(98)

where the constant parameters that appear in Eq. (98) are, respectively, given by C2 = 0 (m), D2 = 0 (m),
a2 = 2 (m), and b2 = 1 (m). The quadratic time law of the second trajectory is defined as:

γ2 = 1

2
α2t

2 + β2t + δ2 (99)

where the constant parameters that appear in Eq. (99) are, respectively, given by α2 = −0.15 (1
/
s2), β2 =

−0.01 (1
/
s), and δ2 = 0 (−). The time law described by Eq. (99) is represented in Fig. 5. Furthermore, the

set of initial conditions used for the second-state trajectory is reported in Table 3. In Fig. 6a, the longitudinal
control force associated with the second-state trajectory v21 is shown, while the angular control moment relative
to the same trajectory v22 is represented in Fig. 6b. Figure 6c, d, respectively, represent the right and left control
actions u21 and u

2
2 relative to the second-state trajectory associated with the eight-shaped path and the quadratic

time law. Figure 7a, b, respectively, represent the horizontal displacement x2 and the vertical displacement y2
of the center of mass G of the unicycle-like mobile robot resulting from the implementation of the nonlinear
tracking controller associated with the second trajectory, while Fig. 7c represents the corresponding angular
displacement θ2. Figure 7d represents the actual eight-shaped path followed by the mobile robot.
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Fig. 4 Configuration vector associated with the first state trajectory. a Horizontal displacement, b vertical displacement, c angular
displacement, d planar path
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Fig. 5 Time law associated with the second state trajectory

3.7 Discussion of the numerical results

In this subsection, a brief discussion on the set of numerical results found by means of numerical experiments
is provided. As shown in the previous subsection, for both the state trajectories considered, the computer
implementation of the proposed control laws resulting from the combination of the designed paths with the
designed time laws leads to a consistent set of numerical results for the dynamic behavior of the unicycle-
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Fig. 6 Control actions associated with the second state trajectory. a Longitudinal control force, b angular control moment, c right
control torque, d left control torque

Table 2 Initial conditions of the first state trajectory

Descriptions Symbols Data (units)

Initial horizontal displacement x0 1.5 (m)
Initial vertical displacement y0 0 (m)
Initial angular displacement θ0 −1.5708 (rad)
Initial horizontal velocity u0 0 (m/s)
Initial vertical velocity v0 1 (m/s)
Initial angular velocity ω0 6 (rad/s)

Table 3 Initial conditions of the second state trajectory

Descriptions Symbols Data (units)

Initial horizontal displacement x0 2 (m)
Initial vertical displacement y0 0 (m)
Initial angular displacement θ0 −1.5708 (rad)
Initial horizontal velocity u0 0 (m/s)
Initial vertical velocity v0 −0.1257 (m/s)
Initial angular velocity ω0 −0.0628 (rad/s)
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Fig. 7 Configuration vector associated with the second state trajectory. a Horizontal displacement, b vertical displacement, c
angular displacement, d planar path

like mobile robot. However, because of the numerical approximations, the actual state trajectories are always
affected by a small numerical error and, therefore, deviate from the desired state trajectories. In order to
quantify the numerical errors that appear in the actual state trajectories when compared to the desired state
trajectories, one can use the root-mean-square (RMS) deviations between these two trajectories. To this end,
one can write:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xRMS =
√

1
N

N∑

n=1
(x(tn) − ξ(tn))2

yRMS =
√

1
N

N∑

n=1
(y(tn) − η(tn))2

(100)

where xRMS and yRMS, respectively, denote the RMS deviation of the horizontal and vertical displacements,
tn is the discrete time, x and y, respectively, identify the horizontal and vertical displacements of the robot
center of mass that result from the dynamic analysis, while ξ and η, respectively, represent the horizontal and
vertical displacements of the robot center of mass that are considered in the reference trajectory. Table 4 shows
the RMS deviations of the numerical solution obtained for the elliptical path combined with the linear time
law, whereas Table 5 shows the RMS deviations of the numerical solution obtained for the eight-shaped path
combined with the quadratic time law. The numerical data reported in Tables 4 and 5 demonstrate that only
a small numerical error affects the actual state trajectories and, therefore, the numerical results found in this
section are geometrically correct.
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Table 4 RMS deviations with respect to the first state trajectory

Descriptions Symbols Data (units)

Horizontal displacement root-mean-square deviation xRMS 1.996 × 10−11 (m)
Vertical displacement root-mean-square deviation yRMS 3.440 × 10−5 (m)

Table 5 RMS deviations with respect to the second state trajectory

Descriptions Symbols Data (units)

Horizontal displacement root-mean-square deviation xRMS 1.532 × 10−10 (m)

Vertical displacement root-mean-square deviation yRMS 1.551 × 10−5 (m)

4 Summary, conclusions, and future directions of research

The focus of the research of the authors is on the development of analytical, computational, and experimental
methods for the analysis and the synthesis of machines, mechanisms, and structures. For this purpose, the main
research objective of the authors is to successfully carry out the dynamic analysis of multibody systems, to
effectively devise control algorithms suitable for controlling nonlinear dynamical systems, and to efficiently
perform the experimental identification of the structural parameters of mechanical systems [65–70]. In order
to accomplish these challenging goals, the mathematical methods of three interrelated scientific disciplines are
employed, namely multibody dynamics, nonlinear control, and system identification. In this paper, on the other
hand, the forward and inverse dynamic problems associated with underactuated nonholonomic mechanical
systems are addressed and solved in the same computational framework and employing a seamless dynamical
approach. To this end, the fundamental equations of constrained motion, also known as Udwadia–Kalaba
equations, are effectively used in conjunction with a newmethod of classical mechanics called Underactuation
Equivalence Principle. As shown in this investigation, the method developed in the paper can be effectively
applied to a wide category of underactuated mechanical systems that are constrained by holonomic and/or
nonholonomic algebraic equations.

In analytical dynamics, a mechanical system is called nonholonomic when it is subjected to nonholonomic
constraints. A set of algebraic equations involving the system generalized coordinates and their time deriva-
tives is referred to as nonholonomic constraints when it is formulated at the velocity and/or at the acceleration
levels and it is not integrable or amenable to be rewritten at the position level. Furthermore, in the field of
nonlinear control, a mechanical system is said to be underactuated when the number of the effective control
inputs, namely the control forces and the control moments, is lower than the number of the system degrees
of freedom, which is given by the number of generalized coordinates minus the number of independent holo-
nomic constraint equations. In general, underactuated nonholonomic mechanical systems represent a class
of dynamical systems that is challenging to mathematically describe and to precisely control. The Udwadia–
Kalaba equations, on the other hand, represent an effective analytical method recently discovered in the field
of classical mechanics. This method is capable of deriving in a closed form the generalized accelerations of
mechanical systems constrained by holonomic and/or nonholonomic constraints together with the correspond-
ing analytical form of the generalized constraint forces. The Udwadia–Kalaba equations are also referred to
as fundamental equations of constrained motion, or central equations of constrained dynamics, since they
provide important mathematical results in this field. Thus, the fundamental equations of constrained dynamics
represent an effective mathematical tool capable of solving the forward dynamic problem of holonomic and/or
nonholonomic mechanical systems. The Udwadia–Kalaba approach can be used to predict the motion of a
mechanical system governed by ordinary differential equations coupled with algebraic equations formulated
at the position, velocity, and acceleration levels. As thoroughly discussed in the paper, the Udwadia–Kalaba
equations can also be employed for effectively solving inverse dynamics problems, namely to find the gener-
alized control forces and control moments that correspond to a prescribed trajectory for a given mechanical
system. Following the Uwdadia–Kalaba approach to the solution of inverse dynamic problems, the constraint
equations can be considered as the mathematical representation of the desired behavior of the mechanical
system under study and the central equations of constrained motion can be interpreted as the closed-form solu-
tion of the inverse dynamic problem for fully actuated mechanical systems. As shown in this investigation, by
introducing an additional mathematical method called Underactuation Equivalence Principle, the effectiveness
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of the Udwadia–Kalaba equations can be extended from fully actuated mechanical systems to underactuated
mechanical systems.

While the nonlinear control problem of fully actuatedmultibodymechanical systems represents a relatively
less complex task, the problem of the trajectory tracking for underactuated multibody mechanical systems is
much more challenging and represents still an open issue. Underactuated dynamical systems are mechanical
systems characterized by a set of control actions that cannot span all the system degrees of freedom. Therefore,
the main idea behind the development of this paper is the application of the Underactuation Equivalence
Principle to the fundamental equations of constrainedmotion.TheUnderactuationEquivalencePrinciple allows
for mathematically representing the underactuation property of a given mechanical system as a particular set
of nonholonomic constraint equations. By doing so, one can readily find a set of nonlinear control actions
for an underactuated mechanical system subjected to a general system of algebraic constraints. The analytical
method developed in this paper is validated by means of numerical experiments. To this end, a demonstrative
example of an underactuated nonholonomic mechanical system that serves as a benchmark problem in the
field of nonlinear control is employed. For this purpose, the nonlinear tracking problem corresponding to
a given path and time law of a unicycle-like mobile robot is considered. The unicycle-like mobile robot is
a nonlinear nonholonomic mechanical system that serves as a simple benchmark problem for testing the
effectiveness of new nonlinear control algorithms. The numerical results analyzed in the paper demonstrated
that the proposed method can effectively solve the forward and inverse dynamic problems for a large class of
underactuated nonholonomic mechanical systems. However, for certain nonholonomic mechanical systems,
there is a particular set of generalized accelerations that cannot be altered by the implementation of any vector
of control inputs even employing the inverse dynamic approach developed in this paper, as will be demonstrated
in future investigations.

The main contributions of this investigation can be summarized as follows. First, the general form of the
equations of motion of a mechanical system subjected to an arbitrary set of constraint equations is obtained.
For this purpose, holonomic as well as nonholonomic constraint equations are taken into account. The structure
of the nonholonomic constraint equations considered in this work is quite general and can be expressed at both
the velocity and the acceleration levels. Considering the general form of the equations of motion mentioned
before, the generalized force vector associated with the algebraic constraints is explicitly obtained in the paper
by using the Uwdadia–Kalaba equations, a fundamental analytical tool of classical mechanics. In particular, an
alternative form of the Uwdadia–Kalaba equations suitable for modeling rigid multibody mechanical systems
is employed in this investigation. Subsequently, an analytical method based on the use of the Uwdadia–Kalaba
equations is employed for solving the forward and the inverse dynamic problems of nonlinear mechanical
systems in the same computational framework. This method is extended from fully actuated mechanical
systems to underactuated mechanical systems by introducing an analytical method called Underactuation
Equivalence Principle. The basic idea behind this new method of analytical mechanics is discussed in detail in
the paper. Furthermore, a computational approach based on the use of null space of the actuator influencematrix
is introduced in this paper in order to obtain in a general and systematic manner the nonholonomic constraint
equations associated with the Underactuation Equivalence Principle. The analytical developments presented
in this investigation are verified by means of numerical experiments. In particular, the numerical example
considered in the paper is a simple benchmark problem used in robotics for the developments of new nonlinear
control algorithms. The benchmark problem considered in this work is the tracking control of an unicycle-like
mobile robot. The unicycle-like mobile robot is a simple example of a nonlinear mechanical system subjected
to a nonholonomic constraint equation represented by the pure rolling condition. Therefore, this example can
effectively serve for illustrating the use of the Udwadia–Kalaba equations for solving both forward and inverse
dynamic problems. The equations of motion of the unicycle-like mobile robot are analytically derived in the
paper and a computational approach based on the classical explicit fourth-order Runge–Kutta method with a
constant step size is developed in this investigation in order to be able to simulate the dynamic behavior of the
mechanical system at hand. Finally, a general analytical approach is developed for constructing two examples
of state trajectories of the unicycle-likemobile robot in which both the path and the time law of themobile robot
are specified by the user in accordance with the system initial conditions and the system nonlinear constraint
equations. The numerical experiments performed in this work show that the state trajectories designed using
the proposed approach are effectively imposed on the mobile robot by using the inverse dynamic method
developed in the paper, thereby verifying the consistency and the effectiveness of the analytical developments
carried out in this research study.

There are several viable directions of research that will be explored in future investigations. First, the effec-
tiveness of the combined use of the Udwadia–Kalaba method with the Underactuation Equivalence Principle
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could be tested in the case of more complex dynamical systems such as, for example, multibody mechani-
cal systems. Furthermore, one could try to verify the effectiveness of the proposed approach in the case of
incomplete information on the system state and when the dynamical system is affected by an external source
of an uncontrollable noise. For this purpose, an extended Kalman filter could be designed and used as a state
observer. For a nonlinear dynamical system, the use of a state observer serves to construct an estimation of
the system state necessary for the implementation of the nonlinear control law calculated by combining the
Udwadia–Kalaba equations with the Underactuation Equivalence Principle. Another promising direction for
future research works could be the use of the proposed method for computing a set of feedforward control
actions in conjunction with a standard feedback controller designed employing, for instance, the pole place-
ment technique or the optimal control method. To this end, the design of a feedback control action based on
a linear dynamic model developed considering small perturbations of the equations of motion could improve
the robustness of the solution of the inverse dynamic problem devised employing the nonlinear control method
developed in the paper. Also, future researchworkwill be devoted to the investigation of themethodsmentioned
before in order to improve the performance and the range of applicability of the inverse dynamic approach
developed in this investigation.
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