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Abstract This paper presents an automatic fatigue crack propagation solution for particulate-reinforced com-
posites. In this solution, the Eshelby’s equivalent inclusion method is used to solve the elastic fields of a
two-dimensional plane containing multiple elliptical inclusions. Then the continuous distributed dislocations
in an infinite plane are adopted to model the multiple cracks in the plane containing multiple elliptical inclu-
sions. By combining the two methods, a system of singular integral equations can be formulated based on
the stress condition of the cracks. The stress intensity factor of each crack can be obtained by solving the
singular integral equations. The propagation of the cracks is studied based on the maximum circumferential
stress criterion. Numerical examples are presented to show the complicated changes in the stress intensity
factors and crack growth behaviors of the cracks affected by the inclusions.

Keywords Particulate-reinforced composites · Distributed dislocations · Inclusions · Crack propagation

List of symbols

a Half length of the crack
aI Half length of the I th crack
σ 0
ij Remote applied stress
KI , KII Mode I and mode II stress intensity factor
FI , FII Mode I and mode II non-dimensional stress intensity factor
Ninc Total number of the elliptical inclusions in the plane
C I
ijkl Elastic moduli of the I th inclusion

Gî ĵ k̂ Stress influence function in the local coordinates
θI Crack incline angle for the I th crack in the global coordinates
μ Shear modulus of the elastic plane
μi Shear modulus of the i th inclusion
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ν Poisson’s ratio
κ Kolosov’s constant
Sijkl,Gijkl Interior Eshelby’s tensor and exterior Eshelby’s tensor
X, Y Axes of the global coordinate system
�ai Crack growth increments
�amax Maximum value of the crack propagation length
m Fatigue propagation constant for the material
KIeq Effective stress intensity factor
∧
θc Crack turning angle
xtip, ytip Location of the crack tip in the local coordinate system

1 Introduction

The physical and mechanical properties of particulate-reinforced metal matrix composites have made them
attractive candidate materials for aerospace, automotive and numerous other applications. The crack problem
can unavoidably arise when the metal matrix composites structures are subjected to cyclic loadings. The
presence and propagation of the cracks can affect the mechanical properties of the metal matrix composites
and even lead to their eventual failure. It is essential to study the fatigue crack growth behavior of the metal
matrix composites considering the interaction of the particles and cracks.

The classic FEM is a typical numerical method to study the crack growth behavior in particulate-reinforced
materials. However, FEM is not a good choice to study the fatigue propagation problem. It requires the elements
edges to coincide with the cracks and remesh the structure in FEM after each crack’s extension.

Recently, the XFEM has been wildly used to simulate the crack growth in particulate-reinforced materials.
This method allows for the modeling of cracks to be independent of the finite element mesh. This advance
has provided a convenient computational tool for modeling crack growth. But the XFEM cannot reduce the
problem dimensions and simplify the input requirements.

Boundary integral method is an efficient way to solve the interaction between crack and inclusion [1–16].
However, most of the previous work of this method is limited to one inclusion and no crack growth simulation
is presented based on the solution. In this paper, some drawbacks in the existing numerical method mentioned
above are solved. A fully automatic fatigue crack growth simulation system for particulate-reinforcedmaterials
is developed based on the equivalent inclusion method and distributed dislocation method. The presented
mesh-free method can transform the two-dimensional problem to one-dimensional problem and study the
crack growth behavior when multiple inclusions are included.

2 Methodology

2.1 Problem formation

This study concerns an infinite two-dimensional plane containing multiple elliptical inclusions and kinked
cracks subjected to arbitrary remote loading σ 0

ij as shown in Fig. 1. There are totally Ninc elliptical inclusions

in the plane, and the i th elliptical inclusion has the elastic moduli C I
ijkl(i, j, k, l = 1, 2). There are totally Ncra

kinked cracks in the matrix, and the I th kinked crack contains nI branches. The cracks and inclusions may
have arbitrary orientations.

The problem shown in Fig. 1 can be decomposed into two additive subproblems based on the superposition
principle, as shown in Fig. 2.

2.2 Distributed dislocation method

The distributed dislocation method is employed to solve the subproblem shown in Fig. 2b. The kinked cracks
can bemodeled by continuous distributed edge dislocations as shown in Fig. 3. It ismore convenient to calculate
the stress intensity factors of the cracks later if we create the local coordinate set for each crack branch as
shown in Fig. 4. As we can see from Fig. 4, the I th local coordinate system is fixed at the center of the I th
crack branch. The X̂ and Ŷ axes are on the crack line and vertical to the crack line, respectively.
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Fig. 1 An infinite plane containing multiple elliptical inclusions and kinked cracks subjected to arbitrary remote loading

Consider that there is an edge dislocation located at (ξ̂J , 0) on the J th crack branch with the unknown
Burgers vector (bx̂ (ξ̂J , 0), bŷ(ξ̂J , 0)). A point located at (x̂ I , 0) on the I th crack branch will have an induced
stress field by the edge dislocation which can be expressed as follows [19,20]:

⎡
⎢⎢⎣

σ̂ I J
x̂ x̂ (x̂ I ,0)

σ̂ I J
ŷ ŷ (x̂ I ,0)

σ̂ I J
x̂ ŷ (x̂ I ,0)

⎤
⎥⎥⎦ = 2μ

π(κ + 1)

⎡
⎣
Gx̂x̂ x̂ (x̂ I , 0; x̂ J , 0) Gŷx̂ x̂ (x̂ J , 0; x̂ J , 0)
Gx̂ ŷ ŷ(x̂ I , 0; x̂ J , 0) Gŷŷ ŷ(x̂ J , 0; x̂ J , 0)
Gx̂x̂ ŷ(x̂ I , 0; x̂ J , 0) Gŷx̂ ŷ(x̂ J , 0; x̂ J , 0)

⎤
⎦

[
bx̂ (x̂ J , 0)
bŷ(x̂ J , 0)

]
(1)

whereμ is the shearmodulus of the plane, ν is Poisson’s ratio, κ isMuskhelishvili’s constant: κ=(3−ν)/(1+ν)
for plane stress case, κ = 3− 4ν for plane strain case. Here Gîĵk̂ is defined as the stress influence function and
can be calculated by the following equations,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Gxxx =
(

− 1
r21

)(
1 + 2x21

r21

)
; Gyxx =

(
− x1

r21

) (
1 − 2x21

r21

)

Gxyy =
(

− x1
r21

) (
1 − 2x21

r21

)
; Gyyy =

(
− 1

r21

)(
3 − 2x21

r21

)

Gxxy =
(

− x1
r21

) (
1 − 2x21

r21

)
; Gyxy =

(
− 1

r21

)(
1 − 2x21

r21

)
(2)

where r2 = x21 + y21 , x1 = x − ξ, y1 = y − η.
⎡
⎢⎣
GI J

x̂ x̂ x̂ (x̂ I , 0; ξ̂J , 0) GI J
ŷx̂ x̂ (x̂ I , 0; ξ̂J , 0)

GI J
x̂ ŷ ŷ(x̂ I , 0; ξ̂J , 0) GI J

ŷ ŷ ŷ(x̂ I , 0; ξ̂J , 0)

GI J
x̂ x̂ ŷ(x̂ I , 0; ξ̂J , 0) GI J

ŷx̂ ŷ(x̂ I , 0; ξ̂J , 0)

⎤
⎥⎦

=
⎡
⎣
cos2 θI sin2 θI sin 2θI
sin2 θI cos2 θI − sin 2θI− sin 2θI

2
sin 2θI

2 cos 2θI

⎤
⎦

⎡
⎢⎣
GI J

xxx(x̂ I , 0; ξ̂J , 0) GI J
yxx(x̂ I , 0; ξ̂J , 0)

GI J
xyy(x̂ I , 0; ξ̂J , 0) GIJ

yyy(x̂ I , 0; ξ̂J , 0)
GI J

xxy(x̂ I , 0; ξ̂J , 0) GIJ
yxy(x̂ I , 0; ξ̂J , 0)

⎤
⎥⎦

[
cos θJ − sin θJ
sin θJ cos θJ

]
(3)
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Fig. 2 Decomposition of the original problem: a an infinite plane containingmultiple kinked cracks, b an infinite plane containing
multiple elliptical inclusions

where θI and θJ are the crack incline angles in the global coordinates for the I th crack branch and the J th
crack branch, respectively.

Considering all the kinked cracks are modeled by edge dislocations, so the induced stresses for (x̂ I ,0) on
the I th crack branch due to all the dislocations can be calculated by the principle of superposition,

⎡
⎢⎢⎣

σ̂ I
x̂x̂(x̂ I , 0)

σ̂ I
ŷŷ(x̂ I , 0)

σ̂ I
x̂ŷ(x̂ I , 0)

⎤
⎥⎥⎦ = 2μ

π(κ + 1)

M∑
J=1

∫ aJ

−aJ

⎡
⎢⎢⎣
GI J

x̂x̂x̂(x̂ I , 0; ξ̂J , 0) GI J
ŷx̂x̂(x̂ I , 0; ξ̂J , 0)

GIJ
x̂ŷŷ(x̂I , 0; ξ̂J , 0) GIJ

ŷŷŷ(x̂ I , 0; ξ̂J , 0)

GIJ
x̂x̂ŷ(x̂ I , 0; ξ̂J , 0) GIJ

ŷx̂ŷ(x̂ I , 0; ξ̂J , 0)

⎤
⎥⎥⎦

[
Bx̂ (ξ̂J , 0)
Bŷ(ξ̂J , 0)

]
d ξ̂J (4)
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Fig. 3 Modeling the cracks by distributed dislocations

Fig. 4 Local coordinate system for the I th crack branch

where Bx̂ (ξ̂J ) = dbx̂ (ξ̂J )/d ξ̂J , Bŷ(ξ̂J ) = dbŷ(ξ̂J )/d ξ̂J are the density functions for the distributed disloca-

tions along the J th crack, aJ is the half crack length of the J th, M = ∑Ncra
i=1 i ∗ nI is the total number of crack

branches shown in Fig. 1.

2.3 Equivalent inclusion method

Firstly, an infinite plane containing an elliptical inclusion is considered as shown in Fig. 5. The elastic moduli
of the inclusion are the same as the matrix. If the inclusion is subjected to a uniform eigenstrain ε∗

kl, there will
be disturbance strain ε′

ij in the inclusion and outside the inclusion, respectively. If the global coordinate system
is fixed at the center of the inclusion, then for an arbitrary point located at (x, y) either in the inclusion or
outside the inclusion, the disturbance strain ε′

ij can be calculated by the following equation [17,18],

ε′
i j = Ki jkl ε

∗
kl (5)
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Fig. 5 Eigenstrain in an elliptical inclusion

Fig. 6 Equivalent inclusion method for multiple elliptical inclusions

where Kijkl =
{
Sijkl if x2

a2
+ y2

b2
≤ 1

Gijkl if x2

a2
+ y2

b2
> 1

, Sijkl is the interior Eshelby’s tensor andGijkl is the exterior Eshelby’s

tensor .

The problem shown in Fig. 2b can be solved by the equivalent inclusion method as shown in Fig. 6. Based
on the equivalent inclusion method, a inhomogeneous inclusion can be equivalent to a homogeneous inclusion
with the same elastic moduli as the matrix plus an unknown eigenstrain ε∗

kl.
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Fig. 7 An infinite plane containing four elliptical inclusions and two kinked cracks subjected to remote loading

Based on the equivalency condition at the center of I th inclusion, according to the Hooke’s law, in the I th
inclusion,

σ 0
ij + σ ′

ij = C1
ijkl

(
ε0kl + ε′

kl − ε
∗(I )
kl

)
(6)

where σ 0
ij and ε0kl are the elastic stress and strain caused by the remote applied stress, respectively, ε′

ij is the
disturbance strain caused by the eigenstrain ε∗

kl in all inclusions which can be calculated by the following
equation,

ε′
i j =

Ni∑
p=1

K p
i jkl ε

∗(p)
kl (7)

where K p
ijkl =

{
S p
ijkl if p = I

G p
ijkl if p �= I

, S p
ijkl and Gp

ijkl are the Eshelby’s tensor for the pth inclusion. By applying

the equivalency condition for all the inclusions, the ε∗
kl in each inclusion can be readily obtained. Then the

stress for any point in the matrix can be calculated as follows:

σ T
ij = σ 0

ij + σ ′
ij = Cijkl

(
ε0ij + ε′

ij

)
(8)

where the disturbance strain ε′
ij =

Ni∑
I=1

G(I )
ijklε

∗(I )
kl .

For a point located at (x̂ I , 0) on the I th crack branch shown in Fig. 4, the stress induced by the inclusions
and applied loading can be calculated by transforming the stress components from global coordinate system
to the local coordinate system of the I th crack by Mohr transformation,

⎡
⎢⎢⎣

σ̂ T
x̂x̂(x̂I , 0)

σ̂ T
ŷŷ(x̂ I , 0)

σ̂ T
x̂ŷ(x̂ I , 0)

⎤
⎥⎥⎦ =

⎡
⎣
cos2 θI sin2 θI sin 2θI
sin2 θI cos2 θI − sin 2θ
− sin θI cos θI sin θI cos θ cos 2θ

⎤
⎦

⎡
⎢⎣

σ T
xx(x̂ I , 0)

σ T
yy(x̂ I , 0)

σ T
xy(x̂ I , 0)

⎤
⎥⎦ (9)
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(a) Finite element method 

2.500E-1
3.877E-1
5.254E-1
6.631E-1
8.008E-1
9.385E-1
1.076E0
1.214E0
1.352E0
1.489E0
1.627E0
1.765E0
1.902E0
2.040E0

(b) Presented method 

Fig. 8 σ22 for μ1/μ = 10.0 for the problem in Fig. 7 without cracks
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Fig. 9 Effects of μ1/μ on stress intensity factor for example 1

where θI is the crack incline angles in the global coordinates for the I th crack branch.

2.4 Governing integral equations

For a point located at (x̂ I , 0) on the I th crack branch, the stress is a addition of the above two solutions of
stress distribution, σ̂ I

î ĵ
and σ̂ T

î ĵ
. Based on the stress traction condition that the normal and shear stresses along

the crack faces must be zero, the following equations can be obtained,

[
σ̂ I
ŷŷ(x̂ I , 0)

σ̂ I
x̂ŷ(x̂ I , 0)

]
+

[
σ̂ T
ŷŷ(x̂ I , 0)

σ̂ T
x̂ŷ(x̂ I , 0)

]
=

[
0
0

]
(10)

2.5 Numerical solution

The Gauss–Chebyshev quadrature method is employed to solve the above integral equations. The integral for
the J th crack branch [−aJ , aJ ] needs to be normalized over by the following transform firstly [19,20],

{
ξ̂J = ξ̂J (ŝJ ) = aJ ŝJ
x̂ I = x̂ I (t̂I ) = aI t̂I

(11)

Now, Eq. (9) can be converted to the following equation,

[
σ I
ŷŷ(x̂ I (t̂I ), 0)

σ I
x̂ŷ(x̂ I (t̂I ), 0)

]
+

[
σ T
ŷŷ(x̂ I (t̂I ), 0)

σ T
x̂ŷ(x̂ I (t̂I ), 0)

]
=

[
0
0

]
(12)

The dislocation density functions for the I th crack are chosen to be decomposed in the form,

[
Bx̂ (ξ̂I (ŝI ))

Bŷ(ξ̂I (ŝI ))

]
= 1√

1 − ŝ2I

[
φ I
x̂ (ŝI )

φ I
ŷ (ŝI )

]
(13)

whereφi
x̂ (ŝi ) andφi

ŷ(ŝi ) are the newunknown functions to be determined and−1 ≤ ŝi ≤ 1 is a non-dimensional
parameter along I th crack branch.
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START

Input the model 

Computation by the 
 presented method 

SIF calculation 
KI, KII 

Crack turning angle: 
Crack growth increment: a

Determination of the next crack configuration 

I-th step Nmax

END

YES

NO 

Fig. 10 Flowchart of the crack propagation simulation by the presented method

( )n
tipy

( )n
tipx

( 1)na

1n

c

Fig. 11 Crack propagation in the local coordinate system of the crack for the n + 1 step
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Fig. 12 An infinite plane containing four circular inclusions and two parallel cracks subjected to remote loading

Fig. 13 Fatigue growth paths for case 1

The W integration points imposed on the I th crack branch and W − 1 collocation points are denoted by
ŝ Ii , (i = 1, 2, ...W ) and t̂ Ik , (k = 1, 2, ...W − 1), respectively.

ŝi = cos

(
2i − 1

2W
π

)
, t̂k = cos

(
k

W
π

)
(14)

We need to mention that the stress σ̂ T
î ĵ

(t̂ Ik , 0) calculated by the equivalent inclusion method is a determined

value for any given integration point imposed on the crack line. So Eq. (11) can be rewritten as the following
equation,
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Fig. 14 Stress intensity factor of crack tip A for case 1

− 2μ

π(κ + 1)

M∑
J=1

aJ

∫ aJ

−aJ

⎡
⎣GI J

x̂ŷŷ(x̂ I (t̂
I
k ), 0; ξ̂J (ŝ Ji ), 0) GI J

ŷŷŷ(x̂ I (t̂
I
k ), 0; ξ̂J (ŝ Ji ), 0)

GI J
x̂x̂ŷ(x̂ I (t̂

I
k ), 0; ξ̂J (ŝ Ji ), 0) GI J

ŷx̂ŷ(x̂ I (t̂
I
k ), 0; ξ̂J (ŝ Ji ), 0)

⎤
⎦

[
φ J
x̂ (ŝ Ji )

φ J
ŷ (ŝ Ji )

]

=
[

σ̂ T
ŷŷ(t̂

I
k , 0)

σ̂ T
x̂ŷ(t̂

I
k , 0)

]
(15)

Besides, based on the connection conditions at the kinks [17,20], the following two extra equations for the
i th kink on the I th kinked crack can be obtained,

cos θ I
i φ

I (i)
x̂i

(+1) − sin θ I
i φ

I (i)
ŷi

(+1) = cos θ I
i+1φ

I (i+1)
x̂i+1

(+1) − sin θ I
i+1φ

I (i+1)
ŷi+1

(+1)

sin θ I
i φ

I (i)
x̂i

(+1) + cos θ I
i φ

I (i)
ŷi

(+1) = sin θ I
i+1φ

I (i+1)
x̂i+1

(+1) + cos θ I
i+1φ

(i+1)
ŷi+1

(+1) (16)

where I = 1, ..., Ncra; i = 1, .., nI − 1, Ncra is the total number of the kinked cracks and nI is the number of
branches of the I th kinked crack.

According to the nothingness of the summation of the dislocation from all the crack branches, another two
extra equations can be developed [17,20],

nI∑
i=1

[
ai cos θ I

i

W

W∑
i=1

φ
I (i)
x̂ (ŝi ) − ai sin θ I

i

W

W∑
i=1

φ
I (i)
ŷ (ŝi )

]
= 0

nI∑
i=1

[
ai sin θ I

i

W

W∑
i=1

φi
x̂ (ŝi ) + ai sin θ I

i

W

W∑
i=1

φ
I (i)
ŷ (ŝi )

]
= 0 (17)

φ(+1), φ(−1) can be calculated by a standard procedure as,

φ(+1) =
M∑
i=1

sin((2i − 1)(2M − 1)π/(4M))

sin((2i − 1)/(4M))
φ(si )

φ(−1) =
M∑
i=1

sin((2i − 1)(2M − 1)π/(4M))

sin((2i − 1)/(4M))
φ(sM+1−i ) (18)
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Fig. 15 Fatigue growth paths for case 2 (red line)

By solving Eqs. (15–18), the stress intensity factor for the I th kinked crack can be calculated as,

(
K−

I

)I = −
√

πaI
1

2μ

κ + 1

(
φ1
ŷ1

(−1)
)I

,
(
K−

I I

)I = −√
πa1

2μ

κ + 1

(
φ1
x̂1

(−1)
)I

(
K+

I

)I = −
√

πaI
nI

2μ

κ + 1

(
φnI
ŷnI

(+1)
)I

,
(
K+

I I

)I = −√
πanI

2μ

κ + 1

(
φnI
x̂nI

(+1)
)I

(19)

where (K−
I )I and (K−

I I )
I representmode I andmode II stress intensity factors of the left crack tip for I th kinked

crack, and a1 is the half crack length of the first crack branch for I th kinked crack. Similarly, (K+
I )I , (K+

I I )
I

represent mode I and mode II stress intensity factors of the right crack tip for the I th kinked crack, and am is
the half crack length of the last crack branch for I th kinked crack.

3 Verification of the presented method

In order to verify the accuracy of the presented method, the problem shown in Fig. 7 is solved by the presented
method and the finite element method. Plane strain condition is assumed in this example.

An infinite plane containing four elliptical inclusions and two kinked cracks is subjected to a remote
uniform tensile stress σ 0

22 in the y direction. The arrangements of the inclusions and cracks are shown in Fig. 7.
The non-dimensional stress intensity factors for crack tip A and B in Fig. 7 are defined as,

FI(A) = KI(A)/(σ0
√

πa), FII(A) = KII(A)/(σ0
√

πa) FI(B) = KI(B)/(σ0
√

πa)

The shear modulus ratio of the inclusion and the matrix μ1/μ is selected to be 0, 0.2, 0.5, 0.8, 1, 2, 5 and
10, respectively. The variations of the non-dimensional stress intensity factors FI(A), FII(A) and FI(B) withμ1/μ
calculated by the presented method and the finite element method are studied here. As we can see from part
2 in this paper, to obtain the accurate solution of the cracks problem by the distributed dislocation method, it
is important to make sure the stress distribution σ̂ T

ŷ ŷ obtained by the equivalent inclusion method for the same
problem without cracks is accurate enough. So Fig. 8 shows the stress distributions in the y direction (σ22) for
the problem shown in Fig. 7 without the two kinked cracks for μ1/μ = 10 by the presented method and the
finite element method. As we can see from Fig. 8, the results obtained by the two methods agree very well with
each other and this shows the correctness of the equivalent inclusion method to solve the multiple inclusions
problems.

Figure 9 shows the variations of the non-dimensional stress intensity factors FI(A), FII(A) and FI(B) with
μ1/μ of the presented method and the finite element method. As shown in Fig. 9, the maximum difference of
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Fig. 16 Stress intensity factor of crack tip A for case 2

Fig. 17 Fatigue growth paths for case 3 (red line)

the dimensionless SIF of the two methods is less than 4% when μ1/μ = 0, and for other cases, the difference
of the dimensionless SIFs is less than 1%.

4 Fatigue cracks propagation simulation

The fatigue cracks propagation behavior can be discretized into a number of incremental steps by extending
the crack tip to a new position based on linear fracture mechanics. The procedure of the presented method is
shown in Fig. 10. There are three major steps in the simulation. The first one is inputting the information of the
model to be analyzed, such as inclusions, cracks and loads. The second one is calculating the problem by the
presented method. The third one is determination of the crack propagation increment and turning angle by the
crack growth criterion which will be introduced later. After the three major steps, the new model is generated
according to the updated crack propagation configuration by the increment and turning angle. Then a fully
automatic crack growth simulation system is realized.
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5 Crack propagation criterion

The key point of the multiple cracks propagation simulation is to determine the crack growth increments �ai

and different crack turning angle
∧
θ
n+1

c for crack tip i based on the calculated stress intensity factors.

(1) Growth increments �ai
The wildly known Paris’ law can be used to determine crack growth increment �a. The crack propagation
length of each crack tip can be calculated by the following equation for multiple cracks:

�ai = �amax

(
�Ki

Ieq

�Ki
Ieq,max

)m

(20)

where �ai is the propagation length of the ith crack tip, �amax is the maximum value of the crack propagation
length corresponding to the crack tip with the largest �KIeq, m is the fatigue propagation constant for the
material. Ki

Ieq is the effective stress intensity factor which can be calculated by

KIeq = KI cos
3 θc

2
− 3KII cos

2 θc

2
sin

θc

2
(21)

(2) Crack turning angle

The maximum circumferential stress criterion is adopted to determine the crack propagation turning angle
∧
θc

shown in Fig. 11.
∧
θc = 2 arctan

−2KII

KI +
√
K 2

I + 8K 2
II

(22)

In Fig. 11, x (n)
tip , y(n)

tip represent the location of the crack tip in the local coordinate system of the crack,

respectively, after n steps’ propagation, �a(n+1),
∧
θ
n+1

c represent the crack propagation length and the crack
propagation turning angle for the n + 1 step.

6 Numerical examples

A numerical example of crack growth in particulate-reinforced material is presented in this section. Figure 12
shows an infinite plane containing four circular inclusions and two parallel cracks under cyclic stress (σmax

0 =
1MPa, σmin

0 = 0MPa). In this study, the Poisson’s ratios ν of the plane and inclusions are all selected to be
0.3. Four cases are studied in this example:

Case 1: μ2/μ1 = 1;μ3/μ1 = 1;μ4/μ1 = 1;μ5/μ1 = 1
In this case, this problem is equal to an isotropic plane containing two parallel cracks. The number of integration
points used for cracks are fixed at 20. Figure 13 shows the crack growth paths, and Fig. 14 shows the change
in the stress intensity factor of crack tip A with the increase in the crack growth steps.

As we can see from Fig. 13, without the effects of the inclusion, the interaction between the two cracks
makes them grow away from each other. KI increases with the growth of the crack and KII keeps being a small
value close to 0.

In the following cases, the results obtained in this case are selected to be a reference case in order to study
the effects of the inclusions.

Case 2: μ2/μ1 = 100;μ3/μ1 = 100;μ4/μ1 = 100;μ5/μ1 = 100
In this case, similarly, Fig. 15 shows the crack growth paths and Fig. 16 shows the change in the stress intensity
factor of crack tip A with the increase in the crack growth steps.

We need to note that the red lines in Fig. 15 are the crack growth paths for this case and the dark lines are
the crack growth paths in case 1. As we can see from Figs. 15 and 16, due to the interaction between the two
cracks, they still grow away from each other in this case. However, since the shear modulus of the inclusion is
higher than the matrix, the stress intensity factors in this case are lower than those of case 1 which is known
as the shielding effect. And the shielding effects force the cracks grow away from the inclusions and decrease
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Fig. 18 Stress intensity factor of crack tip A for case 3

Fig. 19 Fatigue growth paths for case 4 (red line)

the crack growth rates of the cracks. It is very obvious in Fig. 15 that the two cracks are closer with each other
and the cracks are shorter after 20 steps compared with case 1.

Case 3: μ2/μ1 = 0;μ3/μ1 = 0;μ4/μ1 = 0;μ5/μ1 = 0
Figure 17 shows the crack growth paths, and Fig. 18 shows the change in the stress intensity factor of crack
tip A with the increase in the crack growth steps for this case.

Figure 17 shows that the crack growth paths in this case are totally different from those of case 2. The shear
modulus of the inclusion is much lower than the matrix, so the cracks propagate toward the inclusions and
the cracks are much longer after 20 steps compared with case 1. However, the change in the stress intensity
factors is complicated. At the beginning, the stress intensity factors in this case are higher than those of case
1 and this is called the amplifying effect of the soft inclusion. With the increase in the growth of the cracks,
due to the attracting effects of the inclusions, the growing directions of the cracks change a lot and the cracks
are far from being parallel to the X axis of the plane as the beginning. So the KI decreases and the absolute
value of KII increases. When the cracks pass the inclusions totally, the crack paths get straight again and the
KI increases gradually and finally became higher than that of case 1.
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Fig. 20 Stress intensity factor of crack tip A for case 4
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Fig. 21 Stress intensity factor of crack tip C for case 4

Case 4: μ2/μ1 = 100;μ3/μ1 = 100;μ4/μ1 = 0;μ5/μ1 = 0
Figure 19 shows the crack growth paths. Figures 20 and 21 show the change in the stress intensity factor of
crack tip A and C with the increase in the crack growth steps, respectively, for this case.

As we can see from those figures, the crack growth paths of CD and the stress intensity factors of cracks
tips C and D are similar to those of case 3. However, the situation for crack AB is totally different. With the
increase in the cracks, the stress intensity factor of crack tip A decreases and gets to 0 quickly and the crack
stops propagating due to the effects of the inclusions.

7 Conclusion

In this paper, a numerical method based on the equivalent inclusion method and distributed dislocation method
is presented to simulate the fatigue crack growth in particulate-reinforced composite materials. The numerical
examples show that the crack growth is very complicated and is affected greatly by the shear modulus ratio of
the inclusions and matrix. The presented method is a very effective way to study the fatigue crack growth life
of the particulate-reinforced composite materials structures.



754 J. Zhang et al.

Acknowledgements This work was financially supported by National Natural Science Foundation of China (Nos. 51674200,
20873999) and Natural Science Foundation of Guangdong Province (No. 2018A030313430) and innovation and strong school
engineering Foundation of Guangdong Province (Nos. 2017KQNCX201, 2016KQNCX169).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Dundurs, J., Mura, T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12, 177–89
(1964)

2. Tamate, O.: The effect of a circular inclusion on the stresses around a line crack in a sheet under tension. Int. J. Fract. 4,
257–65 (1968)

3. Erdogan, F., Gupta, G.D., Ratwani, M.: Interaction between a circular inclusion and an arbitrarily oriented crack. ASME J.
Appl. Mech. 41, 1007–11 (1974)

4. Li, Z., Chen, Q.: Crack-inclusion interaction for mode I crack analyzed by Eshelby equivalent inclusion method. Int. J. Fract.
118, 29–40 (2002)

5. Yang, Lihong, Chen, Qiang, Li, Zhonghua: Crack-inclusion interaction for mode II crack analyzed by Eshelby equivalent
inclusion method. Int. J. Eng. Fract. Mech. 71, 1421–1433 (2004)

6. Dong, C.Y., Lo, S.H., Cheung, Y.K.: Interaction between coated inclusions and cracks in an infinite isotropic elastic medium.
Int. J. Eng. Anal. Bound. Elem. 27, 871–884 (2003)

7. Tao, F., Tang, R.: The crack-inclusion interaction for the horizontal contact and analysis of singular for the horizontal contact.
Appl. Math. Mech. 22, 547–556 (2001). (English Edition)

8. Xiao, Z.M.: A penny-shaped crack above the pole of a spherical inhomogeneity. Mech. Mater. 25, 263–272 (1997)
9. Cheeseman, B.A., Santare,M.H.: The interaction of a curved crackwith a circular elastic inclusion. Int. J. Fract. 103, 259–277

(2000)
10. Shodja, H.M., Rad, I.Z., Soheilifard, R.: Interacting cracks and ellipsoidal inhomogeneities by the equivalent inclusion

method. J. Mech. Phys. Solids 51, 945–960 (2003)
11. Tao, Y.S., Fang, Q.H., Zeng, X.: Influence of dislocation on interaction between a crack and a circular inhomogeneity. Int.

J. Mech. Sci. 80, 47–53 (2014)
12. Zhou, K., Wei, R., Bi, G.: Semi-analytic solution of multiple inhomogeneous inclusions and cracks in an infinite space. Int.

J. Comput. Methods 12, 1550002-1–20 (2015)
13. Zhang, J., Zhan, Q., Huang, Q.: Interaction between cracks and a circular inclusion in a finite plate with the distributed

dislocation method. Arch. Appl. Mech. 83, 861–873 (2013)
14. Fan, M., Xiao, Z.M., Luo, J.: Application of cohesive zone model in crack propagation analysis in multiphase composite

materials. Mech. Adv. Mater. Struct. 24, 1109–1115 (2017)
15. Zhang, Y.M., Zhang, W.G., Fan, M., Xiao, Z.M.: On the interaction between a full craze and a near-by circular inclusion in

glassy polymers. Eng. Fail. Anal. 79, 441–454 (2017)
16. Zhang, Y.M., Zhang, W.G., Fan, M., Xiao, Z.M.: Stress investigation on a cracked craze interacting with a nearby circular

inclusion in polymer composites. Acta Mech. 228, 1213–1228 (2017)
17. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Dordrecht (1987)
18. Jin, X., Keer, L.M.,Wang, Q.: A closed-form solution of the exterior-point Eshelby tensor for an elliptic cylindrical inclusion.

J. Appl. Mech. 78, 999–1009 (2011)
19. Hills, D.A., Kelly, P.A., Dai, D.N., Korsunsky, A.M.: Solution of Crack Problems-the Distributed Dislocation. Kluwer

Academic Publishers, Dordrecht (1996)
20. Jin, X.: Analysis of Some Two Dimensional Problems Containing Cracks and Holes. Northwestern university, Evanston

(2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Fatigue crack growth simulation in particulate-reinforced composites by the equivalent inclusion method and distributed dislocation method
	Abstract
	1 Introduction
	2 Methodology
	2.1 Problem formation
	2.2 Distributed dislocation method
	2.3 Equivalent inclusion method
	2.4 Governing integral equations
	2.5 Numerical solution

	3 Verification of the presented method
	4 Fatigue cracks propagation simulation
	5 Crack propagation criterion
	6 Numerical examples
	7 Conclusion
	Acknowledgements
	References




