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Abstract This present work has made a noteworthy attempt to demonstrate brief modeling of N -link manip-
ulator and subsequent modal characterization along with the determination of static deflection of a two-link
flexible manipulator with a payload. In addition, investigation of nonlinear phenomena of dynamic responses
under 3:1 internal resonance has also been accomplished considering geometric nonlinearities. An appropriate
and realistic dynamic modeling of the two-link manipulator taking into account of inertia coupling and geom-
etry compatibility between equations of motion and boundary conditions has been derived using the extended
Hamilton’s principle. The effect of parametric variation on system eigenfrequencies is well tabulated, and
the corresponding eigenspectrums are illustrated graphically. Further, the nonlinear phenomena of dynamic
solutions have been demonstrated by using MMS of second order for its statutory effect onto the system insta-
bility for the existence of S-N bifurcations. The effect of nonlinearities and various design parameters on the
dynamic responses and subsequent bifurcations for 3:1 internal resonance has also been demonstrated. The
outcome of the present work enables new understanding into the design criterion and performance limitation
of multi-link flexible robots.

Keywords Two-link manipulator · Static analysis · Modal identification · Internal resonance · Bifurcation ·
Stability

List of symbols

A Area of cross section of link (m2)
b Width of link (m)
E Young’s modulus of material of link (N/m2)
g Acceleration due to gravity (m/s2)
h Thickness of link (m)
I Moment of inertia of link (m4)
L Length of link (m)
m1 Mass at the end of link 1 (kg)
m2 Mass at the end of link 2 called payload (kg)
R Position vector of the end point on flexible link
s Position vector of general point on the flexible link
w(x, t) Transverse displacement of link

Subscripts 1 and 2 represent link 1 and link 2, respectively. Also, ()’ and (·) in the following discussion denote the differentiation
with respect to the space and time, respectively.

P. Kumar · B. Pratiher (B)
Indian Institute of Technology Jodhpur, Rajasthan 342037, India
E-mail: barun@iitj.ac.in

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-018-1472-9&domain=pdf


1202 P. Kumar, B. Pratiher

wL Transverse defection at the end of link
ρ Density of material of link (kg/m3)
θ Angular rotation of motor
β̄ Nondimensional eigenfrequency
αL Nondimensional length parameter
αm1 Nondimensional mass parameter
αm2 Nondimensional tip mass parameter
αM Nondimensional beam mass density parameter
Ω Eigenfrequency of the system
χ Flexural rigidity ratio
x̄ Nondimensional position coordinate.

1 Introduction

Since the last three decades, research in the field of robot kinematics has gained great interest among the
numerous researchers worldwide that is mainly due to the increase in the use of robotic manipulators in
various challenging fields of engineering and science like mining, aerospace, manufacturing by carrying
out the functions like assembling, space exploration, painting, spraying, grinding. Traditionally, the robot
manipulators have been designed by considering all members as rigid bodies and hence the dynamic equations
for rigid body model have been thoroughly derived to demonstrate its performance by many researchers. But
for the last decade, the researchers have focused their attention toward the flexible manipulator due to its
practical relevance. Low weight and flexibility of the links have been the major concern for the researchers
which has resulted in faster movement of the manipulators, which, in turn, has reduced the operating costs
of the system, better transportability and safer operation significantly. A number of researchers [1–5] have
studied and tried to solve the vibration problem of the single-link manipulator by improving their dynamic
models and considering different loading conditions. A brief description about the development of flexible
manipulators has been depicted here.

Low [1] analytically formulated the equations of motion of mechanical manipulators with the elastic links
using Hamilton principle. Coleman [2] analyzed the vibration eigenfrequency of a flexible slewing beam
with a payload attached at one end using wave propagation method (WPM). The results showed that the
large frequencies are asymptotically identical to those for the clamped-free beam independent of the payload.
Hwang [3] numerically solved the system of loosely coupled dynamic equations expressed in terms of the
absolute, joint and elastic coordinates. Flexible 2-DOF double-pendulum and spatial manipulator systems have
been used as examples to demonstrate and verify the application of the computational procedures. Yuan [4]
derived the equations of motion for a hub-beam system using the Newton’s second law for the sake of retaining
the simple physical structure of the problem.A simple linear feedback lawhas also been obtained via Lyapunov-
typemethod. Poppelwell andChang [5] determined the natural frequencies of a single-link flexiblemanipulator
when the center of gravity of the payload does not coincide with manipulator end. Low and Vidyasagar [6]
derived the equations of motion for rigid and flexible links robot manipulators using Hamilton’s principle
resulting in nonlinear integro-differential equations. Also, performance of two-link manipulator considering
one rigid and other flexible link has been studied. Ower and Van De Vegte [7] used the Lagrangian dynamics
approach tomodel the planar motion of amanipulator consisting of two flexible links and two rotary joints. The
equations have been linearized and represented by a transfer matrix. Benati andMorro [8] derived the boundary
conditions along with the partial differential equations of motion for chain of flexible links by considering each
link as a continuous body.Matsuno et al. [9] studied the two-link flexiblemanipulators in contactwith constraint
surface and developed dynamic equations of joint angles, vibrations of flexible links and contact force. Zhang
et al. [10] derived a partial differential equation (PDE) model of flexible two-link manipulator and transformed
to a form appropriate for the development of stable control designs. Oakley and Cannon [11] developed the
dynamic equations for a general two-link manipulator including geometric offsets and concentrated inertias
using assumedmodemethod. Chiou and Shahinpoor [12] analyzed the stability limitations for force-controlled
two-link flexible manipulator and compared it with the model considering rigid body dynamics. The effect
of link flexibility, nonlinear effect due to discontinuous contact with environment and force sensor stiffness
on the stability has been explored. The assumed mode method has been used to study the dynamics of multi-
link flexible manipulator. Fung and Chang [13] derived equations of motions and corresponding boundary
conditions of nonlinearly constrained flexible manipulator with a tip mass for four flexible dynamic models,
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geometric offsets and concentrated inertias beam theories. Zhang and Liu [14] developed a PDE model for
a flexible two-link manipulator with a changeable payload at the free end. An adaptive boundary control
scheme has been proposed for the model for vibration suppression and simultaneous position regulation in
the presence of uncertain payload. Ahmed et al. [15] derived the dynamic modeling of a planar two-link
flexible manipulator based on closed-form equations of motion using Euler–Lagrange’s method along with
assumed mode method. The model considered structural damping, hub inertia and payload. Sato et al. [16]
derived the equations of motion of two-link manipulator in consideration of characteristics of driving source
and examined the measurement method for force of collision between link and object. The study concluded
that it is possible to absorb the impact force by active motion and the results have been compared with those
obtained experimentally. Sato et al. [17] derived the equation of motion and also analyzed theoretically and
experimentally investigated the dynamic characteristics of two-link system controller based on the trajectory
for saving energy. Ata et al. [18] investigated the effect of different sets of initial and boundary conditions on
the joint torques of two-link flexible manipulator. The elastic deflection for each link has been computed using
the assumed mode method for four modes of vibration. Simulation results have been presented to analyze the
effect of boundary conditions on the required hub torque for both the links. Abe and Hashimobo [19] proposed
a feedforward control technique for two flexible links attached to one motor to suppress residual vibrations
in a point-to-point motion. In this proposed method, an attempt was made to express the trajectory of the
joint angle using a combination of cycloidal and polynomial functions, which enables the easy generation of
a smooth motion. Lochan et al. [20] presented a survey on two-link manipulator based on the existing works
till 2016. The classification of manipulators has been done based on dynamic analyses, complexities involved
and control strategies used. It also mentions whether the work conducted is solely based on simulation or it has
been validated by experiments. Yang et al. [21] considered trajectory tracking control of a two-link flexible
manipulatormodel in space.Method of backstepping control has been used to design the controller of nonlinear
system. Tip trajectory synchronization of two identical two-link flexible manipulator has been presented by
Lochan et al. [22].A second-order PID terminal SMCcontrol technique has been used to evaluate the robustness
of the controller in the presence of payload variation. Assumed mode method has been used to model the two-
link flexible manipulator. Lochan et al. [23] designed a controller for two-link flexible manipulator to track
the chaotic signal in the presence of bounded disturbances and to regulate the tip deflection to its desired value
close to zero. It has been shown that the manipulator dynamics follow the desired trajectory with good tracking
performance in the presence of bounded disturbances. Lyapunov stability criterion has been used to achieve
the stability of the sliding surface and convergence of error dynamics. Pedro and Tshabalala [24] modeled a
two-link flexiblemanipulator using Lagrangian formulation, and then, actuator dynamics have been included to
improve its simulation of real-time control. It has been illustrated that the PID controllers are able to adequately
control tracking of the FRMs, though the vibration suppression and tracking performance has not been good
as that of the hybrid NNMPC/PID controller. Ding and Shen [25] demonstrated that assumed mode method
has a good accuracy to predict the displacement of the endpoint of the manipulator by comparing the results
obtained by assumed mode method and absolute nodal coordinate formulation. It has been concluded that the
AMM is not efficient for analyzing the strength of robotic manipulator. Pratiher and Dwivedy [26] usedmethod
of multiple scales to solve the temporal equation after discretization by Galerkin’s method. Pratiher [27] used
method ofmultiple scales as one of the perturbation techniques to derive a set of first-order ordinary differential
equations that govern the time variation of the amplitude and phase of the responses of a magneto-elastic beam
having prismatic harmonic joint.

From the existing literature, it is evident that till date, most of the existing works emphasize on the
evaluation of dynamic performances and system design focusing on single-link flexible manipulator under
different loading and application conditions. However, for a two-link manipulator, most of the researchers
have laid their attention only on the derivation of dynamic modeling. There has been an almost trivial study
to apprehend the modal characterization of a flexible two-link manipulator system which is very essential for
vibration point of view.

On this foundation, the present paper goes few steps ahead to demonstrate the modal characterization and
derivation of static deflection along with the investigation of nonlinear response of a two-link flexible robot
manipulator with a payload. The present model is more accurate in the sense that it takes into account the
geometric compatibility arising in the equations ofmotion and theboundary conditions alongwith the geometric
nonlinearities due to axial stretching of the links. The primary contribution of this paper is to investigate the
effect of parametric variation on the system eigenfrequencies and eigenspectrums of the system which has
yet not been explored. Further, the influence of various design parameters on the nonlinear characteristics
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and system instability with bifurcations of two-link manipulator is investigated for the case of 3:1 internal
resonance arising due to inertial coupling between the links.

To the best of author’s knowledge, no study has yet been carried out to explore the similar outcomes
those are presented here. Further, this work furnishes a better image of structural design based on vibration
phenomenon: a prerequisite for designing a flexible manipulator, and hence, offers a noteworthy contribution
toward the development and design of flexible two-link manipulator.

2 Mathematical model and solution procedures

A schematic diagram of a flexible two-link manipulator incorporating payload is shown in Fig. 1. A brief
procedure to model N -link manipulator is presented considering the stretching effect and gravitational forces
acting on the beam and masses in addition to bending deformation of the system. Here, first link is fixed at
one end and attached to the motor on the other end, while second link is attached to the first motor from one
end and carrying the second motor on the other, thus forming a chain of N links with a payload mass the end
of the N th link. The motor and the payload mass at the end of the link are considered as concentrated mass.
Let (X, Y ) represent the global coordinate system with

(
X̂ , Ŷ

)
as the unit vectors. Here,

(
x̂N , ŷN

)
are the

orthogonal unit vectors of the moving coordinate system attached with N th link. The links are modeled based
on Euler–Bernoulli beam element neglecting the effect of rotary inertia and shear deformation. The elastic
deformation wN (x, t) is assumed to be small as compared to the length of the links. The relations between the
unit vectors of inertial and moving coordinate system for the both the links are given as.

[
x̂1
ŷ1

]
=

[
cθ1 sθ1
−sθ1 cθ1

] [
X̂
Ŷ

]
,

[
x̂2
ŷ2

]
=

⎡

⎣
c
(
θ1 + w

′
1L + θ2

)
s
(
θ1 + w

′
1L + θ2

)

−s
(
θ1 + w

′
1L + θ2

)
c
(
θ1 + w

′
1L + θ2

)

⎤

⎦
[
X̂
Ŷ

]
,

[
x̂N
ŷN

]
=

⎡

⎢
⎢
⎣

c

(
N∑

i=1

(
θi + w′

(i−1)L

))
s

(
N∑

i=1

(
θi + w

′
(i−1)L

))

−s

(
N∑

1

(
θi + w

′
(i−1)L

))
c

(
N∑

i=1

(
θi + w

′
(i−1)L

))

⎤

⎥
⎥
⎦

[
X̂
Ŷ

]

Here, s and c stand for sine and cosine, respectively. The end point (R) and the general point (s) on the flexible
links are given, respectively, as:

R1 = L1 x̂1 + w1L ŷ1, R2 = R1 + L2 x̂2 + w2L ŷ2, . . . , RN = RN−1 + LN x̂N + wNL ŷN (1)

s1 = (x) x̂1 + (y + w1) ŷ1, s2 = R1 + (x) x̂2 + (y + w2) ŷ2, . . . , sN = R(N−1) + (x) x̂N + (y + wN ) ŷN
(2)

Here, (x, y) denotes the undeformed position of an arbitrary point on the link.
Total kinetic energy T of the system is given by:

T =
N∑

i=1

⎛

⎝(1/2)mi Ṙ
T
i Ṙi + (1/2)

Li∫

0

ρi ṡ
T
i ṡidx

⎞

⎠ (3)

Total potential energy U of the system is given by:

U = U1 +U2 +U3 +U4

U1 =
N∑

i=1

(1/2)

Li∫

0

Ei Ii
(
w

′′
i

)2
dx, U2 =

N∑

i=1

(1/2)

Li∫

0

Ei Ai

(
(1/2) w

′2
i

)2
dx

U3 =
N∑

i=1

L i∫

0

ρi g

⎛

⎜⎜
⎜⎜
⎝

w(i−1)L + x cos

(
i∑

j=1

(
θ j + w

′
( j−1)L

)
)

+

(y + wi ) sin

(
i∑

j=1

(
θ j + w

′
( j−1)L

))

⎞

⎟⎟
⎟⎟
⎠
dx,
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Fig. 1 A schematic diagram of planar two-link flexible robotic manipulator in deflected configuration

U4 = mig

(

w(i−1)L + Licos

(
N∑

i=1

(
θi + w

′
(i−1)L

))

+ wiLsin

(
N∑

i=1

(
θi + w

′
(i−1)L

)))

(4)

Here, U1,U2,U3 andU4 represent the elastic strain energy, energy due to axial stretching, potential energy of
the link and potential energy of masses at the end of the link, respectively.

3 Dynamic modeling

The equations of motion and associated boundary conditions for the two-link flexible manipulator are modeled
in this section from Eqs. (3–4) by exploiting extended Hamilton’s principle between two time stages which
can be expressed mathematically as:

2∑

1

t2∫

t1

δ (TN−UN ) dt = 0, δ(t1) = δ(t2) = 0. (5)

Substituting Eqs. (1–4) in Eq. (5), and carrying out mathematical procedures as explained in [13], the following
governing equations of motion and the boundary conditions of the system can be obtained for both the links.

ρ1A1
(
ẅ1 + x θ̈1−w1θ̇

2
1 + g

) + E1 I1w
′′ ′′
1 −E1A1

(
(3/2) w

′2
1 w

′′
1

)
= 0 (6)

w1(0, t) = 0, w
′
1(0, t) = 0

L2∫

0

ρ2A2

⎛

⎜⎜
⎜
⎝

xẅ2 + x2ẅ
′
1L + x2θ̈1 + x2θ̈2

+g
(
x sin

(
θ2 + w

′
1L

)
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(
θ2 + w

′
1L

))

+2w2ẇ2θ̇1 + 2w2ẇ2θ̇2 + 2w2ẇ2ẇ
′
1L

−w2
2θ̈1 + w2

2θ̈2 + w2
2ẅ

′
1L

⎞

⎟⎟
⎟
⎠
dx + E1 I1w

′′
1L

+m2

⎛

⎜⎜
⎝

L2ẅ2L + L2
2ẅ′

1L + L2
2θ̈2 + L2

2θ̈1

+g

⎛

⎝
L2sin

(
θ2 + w

′
1L

)

−w2Lcos
(
θ2 + w

′
1L

)

⎞

⎠−2w2Lẇ2L

⎞

⎟⎟
⎠ = 0
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(m1 + m2)
(
ẅ1L + L1θ̈1 + g−w1Lθ̇21

) +
L2∫

0

ρ2A2
(
ẅ1L + L1θ̈1 + g−w1Lθ̇21

)
dx−E1 I1w

′′′
1L

+E2 I2w
′′′
2 (0, t) + E1A1

(
(1/2) w

′3
1L

)
= 0 (7)

ρ2A2

(
ẅ1 + xẅ

′
1L + x θ̈1 + x θ̈2 + g sin

(
θ2 + w

′
1L

)
−w2θ̇

2
1

−w2θ̇
2
2−w2ẇ

′2
1L−2θ̇1θ̇2v2−2θ̇2w2ẇ

′
2L + 2θ̇1w2ẇ

′
2L

)

+ E2 I2w
′′ ′′
2 −E2A2

(
(3/2) w

′2
2 w

′′
2

)
= 0

(8)

w2 (0, t) = 0, w
′
2 (0, t) = 0, E2 I2w

′′
2 (L2, t) = 0

m2

(
ẅ2L + L2ẅ

′
1L + L2θ̈1 + L2θ̈2−2w2Lθ̇2ẇ

′
1L−w2Lẇ

′2
1L−w2Lθ̇21

−w2Lθ̇22−2w2Lθ̇1θ̇2−g sin
(
θ2 + w

′
1L

)
−2w2Lθ̇1ẇ

′
1L

)

−E2 I2w
′′′
2L

+E2A2

(
(1/2) w

′
2L

3) = 0 (9)

Equations (7–9) have been obtained by comparing the coefficients of δ (w1), δ
(
w

′
1L

)
, δ (w1L), δ (w2), δ

(
w′
2L

)

and δ (w2L), respectively, on both sides of Eq. (5).

3.1 Free vibration analysis

Variable separationmethod has been used to discretize the deflection functionswhich are the explicit function of
space and time and expressed as w1 (x, t) = ∑n

i=1 W
1
i (x) cos (Ωi t) and w2 (x, t) = ∑n

i=1 W
2
i (x) cos (Ωi t).

Here, W 1
i (x), W 2

i (x) are the corresponding ith mode of eigenfunction for links 1 and 2, respectively, and
cos (Ωi t) is the timemodulation for a unknown ithmodeof eigenfrequencyΩi of thewhole system.Substitution
in Eqs. (6–9) results in the equations governing the mode shape of the system along with the corresponding
boundary conditions. The solution of the equations of motion gives the eigenfunction for both the links in the
following form:

Wn
1 (x) = Bn

1 sin
(
βnx

) + B2cos
(
βnx

) + Bn
3 sinh

(
βnx

) + Bn
4 cosh

(
βnx

)
(10)

Wn
2 (x) = Cn

1 sin
(
μβnx

) + Cn
2 cos

(
μβnx

) + Cn
3 sinh

(
μβnx

) + Cn
4 cosh

(
μβnx

)−Wn′
1 (L1) x (11)

Here, unknown (Bn
1 · · · Bn

4 ,Cn
1 · · ·Cn

4 , ) are the integration constants for nth mode of vibration and can be
obtained by substituting Eqs. (10) and (11) into the boundary conditions that result a set of five algebraic equa-
tions in five unknown in terms of characteristics exponent (β̄) and the following nondimensional parameters.

β4 = ρ1A1Ω
2/E1 I1, χ = E2 I2/E1 I1, αM = ρ2A2/ρ1A1, μ

4 = αM/χ, β̄ = βL1,

αL = L2/L1, αm1 = m1/ρ1A1L1, αm2 = m2/ρ1A1L1, and δ = μαL. (12)

[
K

(
βn)] =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 Kn
13 Kn

14 Kn
15

0 0 Kn
23 Kn

24 Kn
25

Kn
11 Kn

12 Kn
33 0 Kn

35

Kn
41 Kn

42 Kn
43 0 Kn

45

Kn
51 Kn

52 Kn
53 Kn

54 Kn
55

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢⎢
⎢⎢
⎢
⎣

Bn
1

Bn
2

Cn
1

Cn
2

Cn
3

⎤

⎥
⎥⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎣

0
0
0
0
0

⎤

⎥⎥
⎥
⎦

(13)

The elements of the above matrix are expressed below:

Kn
13 = αm2 β̄

nsin
(
δβ̄n)−χμ3cos

(
δβ̄n) , Kn

14 = αm2 β̄
n (cos

(
δβ̄n)−cosh

(
δβ̄n))

+χμ3 (sin
(
δβ̄n)−sinh

(
δβ̄n)) ,

Kn
15 = αm2 β̄

nsinh
(
δβ̄n) + χμ3cosh

(
δβ̄n) , Kn

23 = sin
(
δβ̄n) , Kn

24 = cos
(
δβ̄n)

+cosh
(
δβ̄n) , Kn

25 = −sinh
(
δβ̄n) ,



Modal characterization with nonlinear behaviors of a two-link flexible manipulator 1207

Fig. 2 Two-link manipulator model for static analysis

Kn
31 = (

αm1 + αm2 + αMαL
)
β̄n (sin

(
β̄n)−sinh

(
β̄n))− (

cos
(
β̄n) + cosh

(
β̄n)) ,

Kn
32 = (

αm1 + αm2 + αMαL
)
β̄n (cos

(
β̄n)−cosh

(
β̄n)) + (

sin
(
β̄n)

− sinh
(
β̄n)) , Kn

33 = αM/μ, Kn
35 = −αM/μ,

Kn
41 = −cos

(
β̄n) + cosh

(
β̄n) , Kn

42 = sin
(
β̄n) + sinh

(
β̄n) , Kn

43 = μ, Kn
44 = 0, Kn

45 = μ,

Kn
51 =

(
1/αm

(
β̄n)2

) (
sin

(
β̄n) + sinh

(
β̄n)) , Kn

52 =
(
1/αm

(
β̄n)2

) (
cos

(
β̄n) + cosh

(
β̄n)) ,

Kn
54 =

⎡

⎣

((
αm2αL/αM

) +
(
1/μ2

(
β̄n

)2))
cos

(
δβ̄n

)−
((

αm2αL/αM
)−

(
1/μ2

(
β̄n

)2))
cosh

(
δβ̄n

)+
(
αL/μβ̄n

) (
sin

(
δβ̄n

)−sinh
(
δβ̄n

))−
(
2/μ2

(
β̄n

)2)

⎤

⎦

Kn
55 =

((
αm2αL/αM

)−
(
1/μ2 (β̄n)2

))
sinh

(
δβ̄n) + (

αL/μβ̄n) cosh
(
δβ̄n) (14)

The eigenfrequency equation for the system is obtained for the existence of nontrivial solution for Eq. (14),
i.e., det |K (βn)| = 0; here K

(
β̄n

)
denotes the coefficient matrix. The expressions for the integration constants

(Bn
2 ,Cn

1 · · ·Cn
3 ) emerging in eigenfunctions in terms of B1 which has assumed to have unit magnitude are

obtained by some mathematical manipulations and given as:

Bn
2 = −(

Kn
13C

n
1 + Kn

15C
n
3 + Kn

11

)
/Kn

12,C
n
1 = ((

Kn
35K

n
24−Kn

25K
n
34

)
/
(
Kn
23K

n
34−Kn

33K
n
24

))
Cn
3 ,

Cn
2 = −(

Kn
23C

n
1 + Kn

25C
n
3

)
/Kn

24, Cn
3 = [(

Kn
11K

n
42−Kn

41K
n
12

) (
Kn
23K

n
34−Kn

33K
n
24

)
/d

]
,

d = (
Kn
35K

n
24−Kn

25K
n
34

) (
Kn
43K

n
12−Kn

13K
n
42

) + (
Kn
23K

n
34−Kn

33K
n
24

) (
Kn
45K

n
12−Kn

15K
n
42

)
(15)

3.2 Static analysis

For the static analysis, only the effects of steady loading conditions are considered which in this case includes
the gravitational forces acting on links and masses of motors attached to them in addition to the bending load.
Here, the two-linkmanipulator shown in Fig. 2 is initially considered in vertical plane. The equation of motions
and associated boundary conditions can be obtained from Eqs. (1–9) by eliminating the temporal terms. The
similar result shall be obtained by applying minimum potential energy theorem where the temporal terms in
potential energy function can be neglected.

ρ1A1g + E1 I1w
′′ ′′
1 = 0 (16)
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w1(0, t) = 0, w′
1(0, t) = 0, E1 I1w

′′′
1L + E2 I2w

′′′
2 (0, t) +

L2∫

0

ρ2A2gdx− (m1 + m2) g = 0,

E1 I1w
′′
1L + m2g

(
L2sin

(
θ2 + w

′
1L

)
−w2Lcos

(
θ2 + w

′
1L

))

+
L2∫

0

ρ2A2g
(
x sin

(
θ2 + w

′
1L

)
+ w2cos

(
θ2 + w

′
1L

))
dx = 0 (17)

E2 I2w
′′ ′′
2 + ρ2A2sin

(
θ2 + w

′
1L

)
= 0. (18)

w2 (0, t) = 0, w
′
2 (0, t) = 0, E2 I2w

′′′
2L − m2g sin

(
θ2 + w

′
1L

)
= 0 and E2 I2w

′′
2 (L2, t) = 0 (19)

However, it is initially assumed that the links are being held in horizontal position before the deflection.
We obtain the resulting equations of motion as:

ρ1A1g + E1 I1w
′′ ′′
1 = 0 (20)

w1(0, t) = 0, w
′
1(0, t) = 0, E1 I1w

′′
1L + ρ2A2gL

2
2/2 + m2gL2 = 0,

E1 I1w
′′′
1L + E2 I2w

′′′
2 (0) + ρ2A2gL2− (m1 + m2) g = 0 (21)

E2 I2w
′′ ′′
2 + ρ2A2g = 0, (22)

w2 (0, t) = 0, w
′
2 (0, t) = 0, E2 I2w

′′
2 (L2, t) = 0andE2 I2w

′′′
2L−m2g = 0 (23)

Using boundary conditions Eqs. (21) and (23), one may obtain the expressions for static for links 1 and 2 as:

w1 (x) = (−ρ1A1g/24E1A1) x
4 +

(
m1 + 2m2 + ρ1A1L1+
2ρ2A2L2

)
(g/6E1 I1) x

3

−
(

(m1 + 2m2)L1 + m2L2+
ρ1A1L2

1 + ρ2A2 (L1−L2/2)

)
(g/2E2 I2) x

2

w2 (x) = (−ρ2A2g/24E2A2) x
4 + (m2 + ρ2A2L2) (g/6E2 I2) x

3− (m2 + ρ2A2L2/2) (L2g/2E2 I2) x
2

(24)

3.3 3:1 Internal resonance

The nonlinear characteristics and stability of two-link flexible manipulator have been studied for the case of
3:1 internal resonance. The geometric nonlinearities arising due to stretching effect and the inertial coupling
in equations of motion of both the links expressed as Eqs. (6) and (8) are retained, and also representative
damping is included. The rotational motions of the motors and gravitational terms are neglected for the present
study.

Nonlinear equations of motion for links 1 and 2 are expressed as

(
ρ1A1ẅ1 + E1 I1w

′′ ′′
1

)−3E1A1

2

(
w

′2
1 w

′′
1

)
+ c1ẇ1 = 0 (25)

(
ρ2A2

(
ẅ1 + xẅ

′
1L

)
+ E2 I2w

′′ ′′
2

)
−3E2A2

2

(
w

′2
2 w

′′
2

)
+ c2ẇ2 = 0 (26)

For nondimensional terms, w̄1 = w1/L1; w̄2 = w2/L2; x̄ = x/L1, τ = t
√
E1 I1/ρ1A1L4

1, c̄ = cL2/
√

ρAE I ,
Eqs. (25–26) are expressed after dropping bar for simplicity as

ẅ1 + w′′ ′′
1 − (

3A1L
2
1/2I1

) (
w

′2
1 w

′′
1

)
+ c1ẇ1 = 0 (27)

(
ẅ2 + x̄ẅ′

1L + (χ/αM) w′′ ′′
2

) − 3A2L2
2

I2

(
χ/αMα2

L

) (
w

′2
2 w′′

2

)
+ c2ẇ2 = 0 (28)
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Henceforth, ()’and (·) represent the differentiation with respect to space parameter x̄ and time τ , respectively.
When the system is excited by a broadband signal, most of the input excitation energy is injected into the first
mode. Governing equation of motion Eqs. (27) and (28) are discretized by using assumed mode expressions,
w1(x̄, τ ) = rψ1 (x̄) u1 (τ ); here, u1 (τ ) and u2 (τ ) are the time modulation for the first and second links,
respectively, r is the scaling factor, and ψ1 (x̄) and ψ2 (x̄) are the eigenfunction of the first and second links,
respectively, given in Eqs. (10–11) and expressed as :

ψ1 (x̄) = sin
(
β̄ x̄

)−sinh
(
β̄ x̄

) + B2
(
cos

(
β̄ x̄

)−cosh
(
β̄ x̄

))
(29)

ψ2 (x̄) = C1sin
(
δβ̄ x̄

) + C2cos
(
δβ̄ x̄

) + C3sinh
(
δβ̄ x̄

) + C4cosh
(
δβ̄ x̄

)

−x̄αLβ̄
(
cos

(
β̄
) − cosh

(
β̄
) − B2(sin

(
β̄
) + sinh

(
β̄
))

(30)

Here, β̄ is the first-mode eigenfrequency for the two-link manipulator system for the defined nondimensional
parameters given in Eq. (12) and B2, C1, C2 and C3 can be calculated as explained in previous section. Now
ordering the damping terms in Eqs. (27) and (28) in terms of ε, a small dimensionless parameter and utilizing the
orthogonal property of the mode shapes, following nonlinear nondimensional ordinary differential equations
are obtained:

ü1(τ ) + Ω2
1u1(τ )−α1u

3
1(τ ) + 2ε2μ1u̇ = 0 (31)

ü2(τ ) + α2ü1 + Ω2
2u2(τ )−α3u

3
2(τ ) + 2ε2μ2u̇ = 0 (32)

Here, Ω2
1 =

(
1∫

0
ψ ′′ ′′
1 (x̄) ψ1 (x̄) dx̄/

1∫

0
ψ2
1 (x̄) dx̄

)

, Ω2
2 = (χ/αM)

(
1∫

0
ψ ′′ ′′
2 (x̄) ψ2 (x̄) dx̄/

1∫

0
ψ2
2 (x̄) dx̄

)

,

α1 = (
3r2A1L

2
1/I1

)
⎛

⎝
1∫

0

ψ
′2
1 (x̄) ψ

′′
1 (x̄) ψ1 (x̄) dx̄/

1∫

0

ψ2
1 (x̄) dx̄

⎞

⎠ , c1 = 2ε2μ1,

α2 = ψ
′
1 (1)

⎛

⎝
1∫

0

x̄ψ2 (x̄) dx̄/

1∫

0

ψ2
2 (x̄) dx̄

⎞

⎠

α3 = (
3A2L

2
2r

2/I2
)
(χ/αM)

⎛

⎝
1∫

0

ψ
′2
2 (x̄) ψ ′′

2 (x̄) ψ2 (x̄) dx̄/

1∫

0

ψ2
2 (x̄) dx̄

⎞

⎠ , c2 = 2ε2μ2 (33)

Now, method of multiple scales is exploited to obtain the analytical and closed-form solution of u1 and u2
which have been expressed in terms of fast and slow timescales.

u1 = εu11 (T0, T1, T2) + ε2u12 (T0, T1, T2) + ε3u13 (T0, T1, T2) (34)

u2 = εu21 (T0, T 1, T 2)+ε2u22 (T0, T 1, T 2)+ε3u23 (T0, T 1, T 2) (35)

Here, T0 = τ is the fast timescale and T1 = ετ and T2 = ε2τ are slow timescales. Using chain rule, time
derivatives in terms of T0, T1 and T2 become

d/dt = ∂/∂T0 + ε∂/∂T1 + ε2∂/∂T2, d2/dt2 = ∂2/∂T 2
0 + 2ε

(
∂2/∂T0∂T1

)

+ε2
(
2
(
∂2/∂T0∂T2

) + ∂2/∂T 2
1

)
(36)

Substituting Eqs. (34–36) into Eq. (31) and after equating the coefficients of the same powers of ε, the following
equations are obtained:

O
(
ε1
) : ∂2u11/∂T

2
0 + Ω2

1u11 = 0 (37)

O
(
ε2
) : [∂2u12/∂T 2

0 + 2
(
∂2u11/∂T0∂T1

) + Ω2
1u12

] = 0 (38)

O
(
ε3
) : ∂2u13/∂T

2
0 + 2

(
∂2u12/∂T0∂T1

) + ∂2u11/∂T
2
1 + 2

(
∂2u11/∂T0∂T2

)

+Ω2
1u13−α1u

3
11 + 2μ1 (∂u11/∂T0) = 0 (39)
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The general solution of Eq.(37) can be expressed as:

u11 = P (T1, T2) e
iΩ1T0 + P̄ (T1, T2) e

−iΩ1T0 (40)

Here, P̄ (T1, T2) is the complex conjugate of P (T1, T2). Now, substituting Eq. (40) into Eq. (38) gives:

∂2u12/∂T
2
0 +Ω2

1u12 = −2i (∂P/∂T1) e
iΩ1T0 + 2i

(
∂ P̄/∂T1

)
e−iΩ1T0 (41)

The elimination of secular terms in Eq. (41) yields the particular solution as:

u12= 0 (42)

Similarly, the following expression is obtained for the response of u13:

∂2u13/∂T
2
0 +Ω2

1u13 = (−2iΩ1 (∂P/∂T2)+3α1P
2 P̄−2iΩ1μ1P

)
eiΩ1T0+α1P

3e3iΩ1T0 + CC (43)

Here, CC stands for the complex conjugate. Expression of P (T2) is written in the polar form as P (T2) =
(1/2) a (T2) eiφ(T2). Now, eliminating the secular terms from Eq. (43) and separating real and imaginary parts,
the following governing equations are obtained for the amplitude a (T2) and phase φ (T2):

∂a/∂T2−μ1a = 0, aΩ1∂φ/∂T2 + (3/8) α1a
3 = 0 (44)

For steady-state condition, the solution of Eq. (44) for a and φ is as follows:

a = a0 exp(−μ1T2), φ= −3α1a
2
0T2/8Ω1 + φ0 (45)

Here, a0 and φ0 are arbitrary constants determined by initial conditions. The particular solution of Eq. (43) is:

u13= − (
α1P

3/8Ω2
1

)
e3iΩ1T0 (46)

Substituting Eqs. (40, 42, 46) into Eq. (34), and replacing the timescales by original variable τ , one may obtain
the following expression for the response for link 1.

u1= ε (a/2) cos (ωτ+φ)−ε3
(
α1a

3cos (3ωτ + 3φ)/64Ω2
1

)
(47)

Here, ω = Ω1− (3/8Ω1) ε2α1a20; a and φ are given by Eq. (45).
A similar procedure is adopted as in the case of link 2 to obtain the equations of motion corresponding to

each timescale given as:

O
(
ε1
) : ∂2u21/∂T

2
0 +Ω2

2u21+α2
(
∂2u11/∂T

2
0

)= 0 (48)

O
(
ε2
) : ∂2u22/∂T

2
0 +Ω2

2u22+2
(
∂2u21/∂T0∂T1

)+α2
(
∂2u12/∂T

2
0

)+2α2
(
∂2u11/∂T0∂T1

)= 0 (49)

O
(
ε3
) :

[
∂2u23/∂T 2

0 +Ω2
2u23+2

(
∂2u22/∂T0∂T1

)+∂2u21/∂T 2
1 +2

(
∂2u21/∂T0∂T2

)+α2
(
∂2u13/∂T 2

0

)

+2α2
(
∂2u12/∂T0∂T1

)+α2
(
∂2u11/∂T 2

1

)+2α2
(
∂2u11/∂T0∂T2

)−α3u321 + 2μ2 (∂u21/∂T0)

]
= 0

(50)

General solution of Eq. (48) can be expressed as:

u21=
[
Q (T1, T 2) e

iΩ2T0+Ω2
1α2P (T2) e

iΩ1T0/
(
Ω2

2−Ω2
1

)+CC
]

(51)

Substituting Eqs. (40) and (51) into Eq. (49), one may obtain the following equation as:

∂2u22/∂T
2
0 +Ω2

2u22= −2Ω2 (∂Q (T1, T 2)/∂T1) e
iΩ2T0+CC (52)

Eliminating the secular term proportional to eiΩ1T0 , hence its coefficient should be zero, i.e., ∂Q (T1, T 2)/
∂T1= 0, which results Q = Q (T2). The particular solution of Eq. (52) is

u22= 0 (53)

Similarly, one may obtain the following expression for response u23:
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∂2u23/∂T
2
0 +Ω2

2u23=
⎡

⎣
−2iΩ2 (∂Q (T2)/∂T2 + μ2Q) eiΩ2T0+

(
9α1α2P3/8

)
e3iΩ1T0 − 2iα2Ω1 (∂P/∂T2) e

iΩ1T0+
α3

((
Ω2
1α2P/2

(
Ω2
2−Ω2

1

))
eiΩ1T0+Q (T2) e

iΩ2T0+CC
)3

⎤

⎦ (54)

The particular solution of Eq. (54) can be expressed by the following form:

u23= [u231+u232+u233+u234+u235+u236+u237+u238] .

u231= K 1exp (Ω2T0) , u232= K 2exp (3Ω1T0) , u233= K 3exp (Ω1T0) ,

u234= K 4exp (Ω2T0) , u235=K5exp (2Ω2+Ω1) T0,

u236= K 6cos (2Ω2−Ω1) T0, u237= K 7 exp (Ω2−2Ω1) T0, u238= K 8exp (3Ω2T0) (55)

It was observed that due to the inertial coupling existing in the second link, the nondimensional frequency,
Ω2 of second link, is nearly three times the nondimensional frequency Ω1 of first link for the first mode for
identical masses and link properties, which represent a condition of internal resonance. Hence, u231 and u232
in Eq. (66) result in small divisor terms in the present case of internal resonance of 3:1 between two links. The
nearness of Ω1 to (1/3)Ω2 can be expressed as 3Ω1 = Ω2 + ε2σ , here σ represents the detuning parameter
on substitution in Eq. (54), and further elimination of secular terms results in equations:

−2iΩ2 (∂Q/∂T2) + α3
(
3Q2 Q̄ + 6Qk2P P̄

)−2iΩ2μ2Q + (
α3k

3P3−9α1α2P
3/8

)
exp (iσT2) = 0 (56)

Here, k = (
Ω2

1α2/
(
Ω2

2−Ω2
1

))
. Express Q (T2) in polar form as Q (T2)= (1/2) b (T2) eiγ (T2) and substitute

in Eq. (56). Now separating real and imaginary parts from the resulting equation and transformed into an
autonomous system by letting ϕ : ϕ = σT2 + 3φ − γ we obtain:

Ω2 (∂b/∂T2) = −Ω2μ2b + (
α3k

3−9α1α2/8
) (
a3/8

)
sin (ϕ) (57)

bΩ2 (∂ϕ/∂T2) = bΩ2σ + 3α3k
2a2b/4−9α1a

2bΩ2/8Ω1 + 3α3b
3/8 + (

α3k
3−9α1α2/8

) (
a3/8

)
cos (ϕ)

(58)

Equations (57) and (59) are the governing equation for modulation of the amplitude and the phase of the free
oscillation term. The first-order solution for the time response of link 2 in terms of original time variable is
given by:

u2 = (1/2) b cos (3Ω1τ + 3φ + ϕ) + (α2a/16) cos (Ω1τ + φ) (59)

Here, b and ϕ are given by the autonomous set of Eqs. (57) and (58). For steady-state response the amplitude
and phase become constant with respect to time in Eqs. (57) and (58) after which the elimination of phase
from both the equations results in the frequency response equation of the system. The stability of the response
of second link depends on the stability of the steady-state solution for the amplitude b and phase ϕ given
by Eqs. (57–58). If the steady-state solutions are b0 and ϕ0, their stability is studied by introducing small
variations b1 and ϕ1 given as b = b0 + b1, ϕ = ϕ0 + ϕ1 which on substitution in Eqs. (57–58) and linearizing
the resulting equations, the following Jacobian matrix is obtained.

{
Ẋ
} =

⎡

⎣
Ω2μ2

(
α3k

3−9α1α2/8
) (

a30/8
)
cos (ϕ0)

σ1/b0+3α3k2a
2
0/4b0Ω2−9α1a

2
0/8b0Ω1 + 3α3b0/8Ω2 −

(
α3k

3−9α1α2/8
) (

a30/8b0Ω2

)
sin (ϕ0)

⎤

⎦ {X} (60)

Here,

{X}T = [b1, ϕ1] (61)

Stability of the steady-state solution is now decided by the nature of eigenvalues of Jacobian matrix [A]. If all
the eigenvalues have negative or zero real parts, the steady-state solutions are stable, otherwise unstable.
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Fig. 3 Static deflection of two-link manipulator

Fig. 4 First four mode of vibration of flexible two-link manipulator with tip mass

4 Results and discussion

4.1 Static analysis

Static analysis is very important to understand the displacement profile which may further guide the designer
to easily interpret the stress and strain distributions in the system before the process of its design takes place.
For the deflection of the tip end, it is assumed that the payload moves vertically downward instead of moving
in a circular arc. It is valid if it is assumed to have a low flexure beam. However, industrial manipulators
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Table 1 Variation of nondimensional eigenfrequency parameter with tip mass parameter (αm2)

αm2 β̄1 β̄2 β̄3 β̄4 β̄5 β̄6

0 0.9346 1.7819 3.9239 4.8061 7.0686 7.9133
0.1 0.9030 1.6934 3.7584 4.6858 6.8339 7.7519
0.2 0.8757 1.6315 3.6675 4.6397 6.7392 7.7105
0.5 0.8119 1.5162 3.5476 4.5875 6.6409 7.6715
1 0.7408 1.4101 3.4812 4.5560 6.5962 7.6503
2 0.6566 1.2902 3.4398 4.5290 6.5711 7.6327
5 0.5420 1.1119 3.4121 4.4998 6.5555 7.6142
10 0.4620 0.9703 3.4026 4.4845 6.5504 7.6047
15 0.4194 0.8893 3.3995 4.4783 6.5487 7.6008
20 0.3912 0.8338 3.3979 4.4749 6.5478 7.5987

Table 2 Variation of nondimensional eigenfrequency parameter with system mass parameter (αm2 and αm2)

αm1, αm2 β̄1 β̄2 β̄3 β̄4 β̄5 β̄6

0.1 0.9494 1.8031 3.7530 4.7450 6.8299 7.7938
0.2 0.9095 1.7237 3.6628 4.6848 6.7360 7.7418
0.5 0.8251 1.5646 3.5457 4.6061 6.6397 7.6840
1 0.7408 1.4101 3.4812 4.5560 6.5962 7.6503
2 0.6485 1.2409 3.4408 4.5186 6.5717 7.6261
5 0.5302 1.0201 3.4132 4.4885 6.5561 7.6071
10 0.4503 0.8685 3.4034 4.4765 6.5508 7.5997
15 0.4083 0.7882 3.4000 4.4722 6.5490 7.5971
20 0.3806 0.7351 3.3983 4.4701 6.5481 7.5957

may not satisfy this condition; hence, appropriate modification shall be necessary. Figure 3 shows the static
deflection of planar two-link manipulator. To get an idea about the variation of static defection with the flexural
rigidity, the three different cases considered here are E1 I1> E2 I2, E1 I1= E2 I2 and E1 I1< E2 I2. The beam
characteristics considered are L1, L2= 0.35m, b1, b2= 0.03m, h1, h2= 0.003m, ρ1, ρ2= 7800 kg/m3. For
first case E1= 200GPa and E2= 100GPa, for second case E1= 200GPa and E2= 200GPa and for third case
E1= 100GPa and E2= 200GPa are considered.

4.2 Eigenfrequencies and spectrums

In Table 1, for a wide range of αm2 (defined in Eq. 15), the corresponding first six eigenfrequency parameters,
β̄, are listed, which are the roots of the eigenfrequency equation that has been solved numerically using
Newton–Raphson method. The two links are considered to be identical, which renders the values of αL, αM,
χ and μ as unity, and also the mass parameter αm1 is taken as 1. For the simplicity, we have considered
E1 I1 = E2 I2 = E I , ρ1A1 = ρ2A2 = ρA and L1 = L2 = L . From Table 1, it can be observed that the β̄
decreases as αm2 increases, which is obvious from the fact that the natural frequency of a system decreases
as the mass of the system increases. Variation of nondimensional eigenfrequency parameter with respect to
systemmass parameters (αm1 andαm2) is shown in Table 2. It can be noticed that as the systemmass parameters
increase, the nondimensional eigenfrequency parameter decreases.

The effect of flexural rigidity ratio (χ = E2 I2/E1 I1) on the nondimensional eigenfrequency parameter is
shown in Table 3. First six eigenfrequency parameters have been tabulated for a wide range of flexural rigidity
ratio which shall cover all the practical values, while other parameters are taken as unity. It is evident from the
table that the eigenfrequencies tend to increase with the increasing flexural rigidity ratio. Also, from Tables 4
and 5 it is noticeable that the eigenfrequencies show a decreasing trend with the increase in nondimensional
beam mass density and length parameters.

In further text, the effect of variation of essential system parameters over the first four mode shapes of the
system is studied. The first four mode shapes of the two-link flexible manipulator system considering αm1,
αm2 αL , αM, χ and μ as unity are shown in Fig. 4. The effect of variation of system mass parameters on the
mode shapes is depicted in Fig. 5. A significant decrease in amplitude of the payload with increase in system
mass parameter can be noticed for the lower mode shapes; however, higher mode shapes tend to clutter together
along the length of manipulator.
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Fig. 5 Effect of mass () on eigenspectrums of two-link manipulator

Table 3 Variation of nondimensional eigenfrequency parameter with flexural rigidity ratio (χ)

χ β̄1 β̄2 β̄3 β̄4 β̄5 β̄6

0.5 0.6891 1.3488 3.0933 4.3139 5.7904 7.3224
0.75 0.7215 1.3850 3.3158 4.4540 6.2580 7.5076
1 0.7408 1.4101 3.4812 4.5560 6.5962 7.6503
1.25 0.7536 1.4288 3.6146 4.6361 6.8532 7.7800
1.5 0.7627 1.4433 3.7266 4.7023 7.0504 7.9087
2 0.7747 1.4645 3.9079 4.8105 7.3136 8.1798

The flexural rigidity ratio has a noticeable effect on lower as well as higher mode shapes of the manipulator
which is shown in Fig. 6. Themode shapes tend to spread out along the length of manipulator and the amplitude
of the payload tends to decrease as the flexural rigidity ratio increases. This effect can be very much useful
while designing the arms of a robot manipulator made of different materials, as the changes in the flexibility
may cause the variation in the amplitude of payload.

The effect of variation of beam mass density ratio parameter on the mode shapes can be observed in Fig. 7.
Here also, the effect of mass density parameter is pronounced over the mode shapes for both lower and higher
order of vibration. So it can be concluded that the variation of materials in two different arms of the two-link
manipulator can cause the significant changes in the amplitude of payload.
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Fig. 6 Effect of flexural rigidity on first four eigenspectrums of flexible two-link manipulator

Table 4 Variation of nondimensional eigenfrequency parameter with nondimensional mass density parameter (αM)

χ β̄1 β̄2 β̄3 β̄4 β̄5 β̄6

0.5 0.7693 1.4586 3.8799 4.8018 7.2327 8.2509
0.75 0.7544 1.4332 3.6581 4.6337 6.9300 7.8073
1 0.7408 1.4101 3.4812 4.5560 6.5962 7.6503
1.25 0.7284 1.3889 3.3419 4.5093 6.3117 7.5739
1.5 0.7169 1.3693 3.2295 4.4758 6.0793 7.5213
2 0.6964 1.3342 3.0575 4.4263 5.7273 7.4296

Table 5 Variation of nondimensional eigenfrequency parameter with nondimensional length parameter (αL)

χ β̄1 β̄2 β̄3 β̄4 β̄5 β̄6

0.25 0.9944 2.6042 4.6789 7.5458 10.5097 13.1869
0.75 0.9057 1.8908 4.3939 6.7740 7.9547 10.6100
1 0.7408 1.4101 3.4812 4.5560 6.5962 7.6503
1.25 0.6728 1.3001 2.9069 4.3506 5.4863 7.3011
1.5 0.6148 1.2211 2.4867 4.1111 4.8004 6.5094
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Fig. 7 Effect of mass density () on first four mode shapes of flexible two-link manipulator

Fig. 8 A typical frequency response characteristics for link 2
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Fig. 9 Effect of nondimensional payload mass on frequency response curve of second link

Fig. 10 Effect of nondimensional mass density on frequency response curve of second link

4.3 Internal resonance: nonlinear phenomena and bifurcations

Internal resonance arising due to the inertial coupling between the two links has been investigated in the present
section. The beam characteristics considered here are the same as those in static analysis. The dimensionless
parameter, scaling factor and nondimensional representative damping coefficient are considered as 0.1. The
initial conditions for link 1 and link 2 are u10 = 0.1, u̇10 = 0, u20 = 0 and u̇20 = 0.

For the steady-state response the system exhibits spring softening behavior as shown in Fig. 8 in which
the bending represents the presence of nonlinearity in the system. Jump-up and jump-down phenomenon,
represented by dotted arrow, is observed at the critical points, B and E, respectively, during starting and
stopping of the system. This jump phenomenon observed for the existence of saddle-node bifurcation may
cause catastrophic failure of the manipulator. The solid lines represent the stable steady-state solution; dotted
line symbolizes the unstable solutions.

The demonstration of variation of payload mass parameter and beam mass density parameter on the
frequency response curve is shown in Figs. 9 and 10, respectively. The maximum amplitude of the steady-state
response decreases as the mass parameter of the payload is increased. However, the maximum amplitude tends
to increase with the beam mass density parameter. The increase in flexural rigidity ratio tends to increase the
amplitude of the system, and the jump-up phenomena start at higher frequencies, which is depicted in Fig. 11.

The coefficients corresponding to cubic nonlinear terms arising due to the axial stretching in both the links
can be varied by their respective geometric properties as given in Eq. (33). The effect of nonlinearity variation
associated with link 1 and link 2 on the frequency characteristics is elucidated in Figs. 12 and 13, respectively.
A sharp increase in amplitude of system response along with the shifting of response curve is observed with
the increase in nonlinear coefficient associated with link 1. However, the response curve witnesses substantial
decrease in jump length with the increase in cubic nonlinear coefficient associated with link 2.
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Fig. 11 Effect of flexural ratio on frequency response curve of second link

Fig. 12 Effect of geometric nonlinearity due to axial stretching (α1) of second ink on frequency response characteristics

Fig. 13 Effect of geometric nonlinearity due to axial stretching α3 of second link on frequency response characteristics

The effect of nondimensional damping parameter on the frequency response curve is shown in Fig. 14, and
it can be observed that the slight increase in damping parameter results in large reduction of peak amplitude of
the system. The amplitude of the link 1 or in other words the initial excitation given to link 1 has a pronounced
effect of the amplitude of link 2 which is depicted in Fig. 15. A large variation in amplitude of second link
is observed for a slight increase in excitation. Also, the jump phenomenon starts at the higher frequency for
larger amplitude of first link.
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Fig. 14 Effect of damping on frequency response curve of second link.

Fig. 15 Effect of amplitude of link 1 on frequency response curve of second link

5 Conclusions

The objective of this present work is to describe a brief modeling of N -link flexiblemanipulator and subsequent
generation of eigenfrequencies from the free vibration analysis essential for the design of a two-link flexible
manipulator. Themodeling is based on the classical Euler–Bernoulli beammodel, and eigenfrequency equation
has been solved numerically to obtain the eigenspectrums of the system analytically. Static analysis has been
carried out to obtain expressions for the defection of manipulator links under gravitational forces. Finally,
nonlinear analysis has been accomplished to demonstrate the effect of parametric variation on the stability of
the system. The results obtained in this article are summarized as follows:

1. The system eigenfrequencies tend to decrease with increase in payloadmass, beammass density and length
parameters; however, it increases with flexural rigidity ratio. It is noticed while the systemmass parameters
tend to affect the lower modes vibration, pronounced effect of beam mass density parameter and flexural
rigidity ratio has been observed on higher modes of vibration also.

2. Method of multiple scales of second order has been used to interpret the nonlinear behavior of the two
link of manipulator for the case of 3:1 internal resonance arising due to inertial coupling. The frequency
characteristic curves demonstrate typical nonlinear phenomena such as jump, multivalued amplitudes and
S-N bifurcation. These phenomena are highly valuable explicit design variables which often control the
stability and safety issues which further restrict the working flexibility of the manipulator.

3. The variation of the frequency characteristics with system parameters is inspected thoroughly. The payload
mass parameter and nonlinearity coefficient associatedwith second link tend to decrease the peak amplitude
of steady-state response of the system. The system experiences jump phenomenon at higher frequencies
for larger values of flexural rigidity ratio and nonlinearity coefficient associated with first link.
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4. The present model can be used for a greater accuracy as the mode shapes thus obtained included the inertial
coupling present in the equations of motion and boundary conditions. Also, for nonlinear analysis the mode
shapes thus obtained shall give more accurate results which has been absent in previous models where
the mode shapes of the beams with predefined boundary conditions have been used. This improvement in
dynamic model shall result in better control strategy to attenuate the vibration of two-link manipulator,
especially in space robots.
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