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Abstract A new Bernoulli–Euler beam model is developed based on modified gradient elasticity theory. The
governing equation and boundary conditions, which contain two internal length scales (i.e., lx and lz), are
derived by the variational principle. The new model can be simplified to the classical beam theory when
the two internal length scales vanish. The numerical examples of cantilever beams subjected to two typical
loadings are presented. Results show that the size effect can be captured by the new model, and the deflection
decreases with the internal length scales increasing. The influence of lz (the internal length scale along the
beam thickness direction) on deflection is much greater than that of lx (the internal length scale along the beam
length direction), and the increment of stiffness is mainly controlled by lz . The new beam model is convenient
for engineering applications and designs.

Keywords Modified gradient elasticity · Bernoulli–Euler beam · Internal length scale · Size effect

1 Introduction

Microscale beams are widely used in microstructure devices and systems, such as sensors [1–5] and actuators
[6,7], in which thickness of beams is typically on the order of microns and submicrons. The experimental
evidences indicate that a strong size effect exists in metals [8,9], polymers [10,11] as well as engineering
structures [12]. The classical elasticity theory failed to describe the size-dependent behavior of micro- and
nanoscale structures due to the lack of internal length scale parameters [13]. This motivated the development of
beam models using higher-order continuum theories that contain additional material length scale parameters.

The use of gradient elasticity to simulate the size effect is not a novel idea [14–16]. Cosserat and Cosserat
[14] equipped the kinematics equations with the displacement components as well as the micro-rotations and
included the couple stresses, which are conjugated to the micro-rotations, in the equation of equilibrium. The
classical couple stress elasticity theory, originated by Mindlin and Tiersten [17], Mindlin [15,18] and Toupin
[19], contained two classical and two additional material constants for isotropic elastic materials. By using
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Cosserat theory and Mindlin’s theory, Kang and Xi [20] and Zhou and Li [21] studied the free vibration
of micro-Bernoulli–Euler beam, respectively. Fleck and Hutchinson [22,23] extended and reformulated the
classical couple stress theory and renamed it the strain gradient theory. The concepts of Mindlin’s [18] theory
as well as Casal’s [24] theory are combined by Vardoulakis and Sulem [25], and then a simple theory of
gradient elasticity with surface energy is proposed. On the basis of Vardoulakis and Sulem’s [25] theory,
Papargyri-Beskou [26] developed a Bernoulli–Euler beam model and the problems of bending and stability of
Bernoulli–Euler beams are solved analytically.

In addition, many microbeam models based on gradient theories have been proposed in recent years. Park
and Gao [27] and Kong et al. [28] proposed a linear homogenous Bernoulli–Euler beam model, and the static
problem and the dynamic problem are studied, respectively. Ma et al. [29] developed a linear homogenous
Timoshenko beam model; the static bending, free vibration and Poisson effect problems are discussed. A
variety of beam models are also proposed by Asghari et al. e.g., nonlinear homogenous Timoshenko beam
model [30], linear functionally graded Bernoulli–Euler model [31] and Timoshenko beammodel [32]. In these
beam models, the equilibrium of the moment of couples is introduced as an additional equation for the couple
stresses, and the couple stress tensor must be symmetric.

Besides that, under the framework of another gradient elasticity theory, Kong et al. [33] studied the static
and dynamic problems for Bernoulli–Euler beams. Wang et al. [34] developed a microscale Timoshenko beam
model, by which the static and dynamic analysis and Poisson’s effect are discussed. A Bernoulli–Euler beam
model is also developed by Akgöz and Civalek, and the bulking problem [35] and various boundary conditions
[36] are discussed. Moreover, it is extended to their functionally graded Bernoulli–Euler beam model. In
these beam models, the dilatation gradients, deviatoric stretch gradients and rotation gradients are included in
the governing equation. However, the constitutive formulation is extremely complicated and difficult for the
analysis of structural behaviors.

As the development of higher-order continuum theories, the modified gradient elastic theory (MGE) has
been proposed by Zhao et al. and Song et al. [37,38], in which the micro-curvature as well as the gradients
of normal strain is included. The internal length scales of MGE are defined anew by the partial derivative of
the strain on the strain gradient. In such a way, the complexity decomposition of the strain gradient tensor is
avoided, and the physical meaning of internal length scales gets clearer.

The purpose of this paper is to develop a microscale Bernoulli–Euler beam model based on the modified
gradient elasticity. The rest parts are organized as follows. After the basic equations of MGE are reviewed,
the governing equation as well as the boundary conditions of Bernoulli–Euler beam theory is derived by the
variational principle based on MGE in Sect. 2. In Sect. 3, the static problems of cantilever beam subjected
to bending moment or concentrated force are solved. In Sect. 4, the new beam model and some higher-order
beammodels are compared, and the influence of internal length scales on size effect is discussed. Finally, some
major conclusions are given in Sect. 5.

2 Theory and beam model

2.1 A review of modified gradient elasticity

In references [37–39], the modified gradient elasticity (MGE) assumed that the strain energy density, Wm,
depends on both the classical strain tensor εi j and the strain gradient tensor ηi jk :

Wm = Wm(εi j , ηi jk), (1)

Ẇm =
(

∂Wm

∂εi j

)
ε̇i j +

(
∂Wm

∂ηi jk

)
η̇i jk . (2)

The strain εi j and the strain gradient ηi jk are related to the displacement ui by

εi j = 1

2

(
ui, j + u j,i

)
(3)

and

ηi jk = ∂εi j

∂xk
. (4)
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For an isothermal and infinitesimal deformation process, Ẇm can be written as:

Ẇm = σi j ε̇i j + τi jk η̇i jk, (5)

where σi j is the Cauchy stress and τi jk is the higher-order stress.
The substitution of Eq. (5) into (2) yields:

((
∂Wm

∂εi j

)
− σi j )

)
ε̇i j +

((
∂Wm

∂ηi jk

)
− τi jk

)
η̇i jk = 0. (6)

Equation (6) holds for the arbitrary values of ε̇i j and η̇i jk , which requires σi j and τi jk to be conjugated
with εi j and ηi jk :

∂Wm

∂εi j
= σi j ,

∂Wm

∂ηi jk
= τi jk . (7)

Let

lk = ∂εi j

∂ηi jk
(k = x, y, z), (8)

where lk is a new extra material constant vector, called the internal length scale vector. It has the dimension of
length, and it is the scale of microstructure interactions (physical meaning).

The initial state of a material is εi j = 0, σi j = 0, ηi jk = 0. Taylor’s series of the strain energy density with
respect to εi j and ηi jk is expanded to the second power of εi j and ηi jk :

Wm = Wm
0 +

(
∂Wm

∂εi j

)
0
εi j +

(
∂Wm

∂ηi jk

)
0
ηi jk + 1

2

(
∂2Wm

∂εi j∂εkl

)
0
εi jεkl

+1

2

(
∂2Wm

∂ηi jk∂ηmnq

)
0
ηi jkηmnq +

(
∂2Wm

∂εi j∂ηmnq

)
0
εi jηmnq + · · · (9)

Let

Ai j =
(

∂Wm

∂εi j

)
0
, Di jkl =

(
∂2Wm

∂εi j∂εkl

)
0
, (10)

then (
∂Wm

∂ηi jk

)
0

=
(

∂Wm

∂εi j

∂εi j

∂ηi jk

)
0

=
(

∂Wm

∂εi j

)
0
lk = Ai j lk, (11)

(
∂2Wm

∂εi j∂ηmnq

)
0

= Di jmnlq , (12)

(
∂2Wm

∂ηi jk∂ηmnq

)
0

= Di jmnlqlk . (13)

The substitution of Eqs. (11)–(13) into (9) yields:

Wm = Wm
0 + Ai jεi j + Ai j lkηi jk + 0.5Di jklεi jεkl

+ 0.5Di jmnlklqηi jkηmnq + Di jmnlqεi jηmnq . (14)

The substitution of Eq. (14) into (7) yields:

σi j = ∂Wm

∂εi j
= Ai j + Di jmnεmn + Di jmnlqηmnq , (15)

τi jk = ∂Wm

∂ηi jk
= Ai j + Di jmnεmnlk + Di jmnlqlkηmnq . (16)
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When material is unloaded completely to the initial state, σi j = 0, εkl = 0, ηmnq = 0, from Eqs. (15) and
(16), it is found that Ai j = 0, W0 = 0; then, Eqs. (14)–(16) can be written as:

Wm = 0.5 · Di jklεi jεkl + 0.5 · Di jmnlklqηi jkηmnq

+Di jmnlqεi jηmnq , (17)

σi j = Di jmn
(
εmn + lqηmnq

)
, (18)

τi jk = Di jmn
(
εmn + lqηmnq

)
lk, (19)

where Di jmn is the elastic tensor.
Then, the modified gradient elasticity (MGE) was derived directly from the strain energy density expansion

method.When the influence of strain gradients is neglected (ηi jk = 0), the internal length scales lk (k = x, y, z)
vanish, and the modified gradient elasticity can be simplified to the classical elastic constitutive equations.
Note that both micro-curvature and gradients of normal strain are included in this theory.

2.2 Bernoulli–Euler beam model based on MGE

The classical Bernoulli–Euler beam theory assumes that the beam thickness is much less than the radius of
curvature for a slender beam. The shear deformation is neglected, and the radius of curvature is induced only
by bending moment. The coordinate system is chosen as Fig. 1, in which, the x-axis is along the beam length
and coincides with the neutral axis, y-axis is along the beam wide, and z-axis is along the thickness. The cross-
sectional area of the beam is constant Aalong the length of the beam. The component of the displacements
along the wide direction is secondary and neglected in the beam theory.

When the axial deformation is taken into account, the displacement is only the functions of x and z
coordinates. Then, the displacement fields in a Bernoulli–Euler beam can be represented by [27,40]

u = −zφ(x), v = 0, w = w(x), (20)

Fig. 1 Geometry and loading of the Bernoulli–Euler beam
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where u, v and w are, respectively, the x , y and z components of the displacement vector u, and φ is the
rotation angle of the neutral axis and is given by

φ(x) = dw(x)

dx
. (21)

From Eqs. (3), (20) and (21), it follows that

εxx = −z
d2w

dx2
, εyy = εzz = εxy = εyz = εzx = 0. (22)

The approach to establish a Bernoulli–Euler beam model based on MGE is proposed as follows.
Firstly, by substituting Eq. (22) into (4), the nonzero strain gradients ηi jk are

ηxxx = −z
d3w

dx3
, ηxxz = −d2w

dx2
. (23)

For a slender Bernoulli–Euler beam with a large aspect ratio, the Poisson’s effect is secondary and may be
neglected. By substituting Eqs. (22)–(23) into Eqs. (18)–(19), the nonzero stress components are obtained as

σxx = −E

(
z
d2w

dx2
+ z

d3w

dx3
lx + d2w

dx2
lz

)
, (24)

τxxx = −E

(
z
d2w

dx2
+ z

d3w

dx3
lx + d2w

dx2
lz

)
lx , (25)

τxxz = −E

(
z
d2w

dx2
+ z

d3w

dx3
lx + d2w

dx2
lz

)
lz, (26)

where E is the Young’s modulus.
Secondly, the total strain energy U in a deformed isotropic linear elastic material occupying region Ω can

be written as

U = 1

2

∫
Ω

(σi j · εi j + τi jk · ηi jk)dΩ. (27)

By substituting Eqs. (22)–(26) into (27), the total strain energy in the beam can be determined as

U = −1

2

∫ L

0
Mxx · d

2w

dx2
dx − 1

2

∫ L

0
Yxxx · d

3w

dx3
dx − 1

2

∫ L

0
Yxxz · d

2w

dx2
dx, (28)

where L is the length of beam. Mxx and Yxxx are classical bending moment and higher-order bending moment,
respectively. Yxxz is a new quantity which has the dimension of bending moment. Mxx , Yxxx and Yxxz are
defined as

Mxx =
∫
A

σxx zdA, Yxxx =
∫
A

τxxx zdA, Yxxz =
∫
A

τxxzdA. (29)

Substituting Eqs. (24)–(26) into (29), it follows that

Mxx = −E Iy
d2w

dx2
− E Iylx

d3w

dx3
, (30)

Yxxx = −E Iylx
d2w

dx2
− E Iyl

2
x
d3w

dx3
, (31)

Yxxz = −E Al2z
d2w

dx2
, (32)

where Iy = ∫
A z

2dA is the second-order moment of the cross-sectional area with respect to the neutral axis.
By neglecting the body force, the work done by the external force is given by

W =
∫ L

0
q(x) · wdx + [V · w]|L0 +

[
M · dw

dx

]∣∣∣∣
L

0
+

[
Mh · d

2w

dx2

]∣∣∣∣
L

0
, (33)
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where q(x) is the lateral loading distributed along the longitudinal axis x of the beam, V is the boundary shear
force, M is the boundary bending moment, and Mh is the boundary higher-order moment.

From Eqs. (28) and (33), the total potential energy 	 in the loaded beam can be written as

∏
= U − W

= −1

2

∫ L

0

(
Mxx · d

2w

dx2
+ Yxxx · d

3w

dx3
+ Yxxz · d

2w

dx2

)
dx

−
∫ L

0
q(x) · wdx − [V · w]|L0 −

[
M · dw

dx

]∣∣∣∣
L

0
−

[
Mh · d

2w

dx2

]∣∣∣∣
L

0
. (34)

The first variation of
∏

is

δ
∏

=
∫ L

0

[
δw ·

(
d3Yxxx
dx3

− d2Mxx

dx2
− d2Yxxz

dx2
− q

)]
dx +

[
δw ·

(
dMxx

dx
+ dYxxz

dx
− d2Yxxx

dx2
− V

)]∣∣∣∣
L

0

+
[(

dYxxx
dx

− Mxx − Yxxz − M

)
· dδw
dx

]∣∣∣∣
L

0
+

[(−Yxxx − Mh) · d
2δw

dx2

]∣∣∣∣
L

0
. (35)

Lastly, considering the minimum total potential energy principle, i.e., δ
∏ = 0 for the equilibrium state,

and using the fundamental lemma of the calculus of variation and the arbitrary value of δw, it can be given
from Eq. (35) that

− d2Mxx

dx2
+ d3Yxxx

dx3
− d2Yxxz

dx2
= q(x) ∀xε(0, L), (36)

as the governing equation, and

V = dMxx

dx
− d2Yxxx

dx2
+ dYxxz

dx
or δw = 0 at x = 0 and x = L , (37)

M = −Mxx − Yxxz + dYxxx
dx

or
dδw

dx
= 0 at x = 0 and x = L , (38)

Mh = −Yxxx or
d2δw

dx2
= 0 at x = 0 and x = L , (39)

as the boundary conditions, where the overbar represents the prescribed value at a boundary.
Substituting Eqs. (30)–(32) into Eqs. (36)–(39), the governing equation becomes

E Iy
d4w

dx4
− E Iyl

2
x
d6w

dx6
+ E Al2z

d4w

dx4
= q(x), (40)

and the boundary conditions become

V = −E Iy
d3w

dx3
− E Al2z

d3w

dx3
+ E Iyl

2
x
d5w

dx5
or δw = 0 at x = 0 and x = L , (41)

M = E Iy
d2w

dx2
+ E Al2z

d2w

dx2
− E Iyl

2
x
d4w

dx4
or

dδ

w
dx = 0 at x = 0 and x = L , (42)

Mh = E Iylx
d2w

dx2
+ E Iyl

2
x
d3w

dx3
or

d2δw

dx2
= 0 at x = 0 and x = L . (43)

It can be seen from Eqs. (40)–(43) that the MGE Bernoulli–Euler beam model contains two additional
material constants, i.e., lx and lz . It can also be seen from Eqs. (41)–(43) that in the higher-order beam model,
not only the classical boundary conditions but also the non-classical boundary conditions should be satisfied.
When the influence of strain gradients is neglected (i.e., lx and lz vanish), the present beam model can be
simplified to the classical Bernoulli–Euler beam theory.
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Fig. 2 A cantilever beam subjected to a moment (case 1) or a concentrated force (case 2) at the free end

3 Examples: cantilever beam problem

A rectangular cantilever beam is studied by MGE Bernoulli–Euler beam model in this section. The geometry
and cross-sectional shape are shown in Fig. 2. Two typical loadings, a bending moment M (case 1) and a
concentrated force Q (case 2), are applied at the free end, respectively. The classical beam properties are taken
to be same with [11,33,41]: b/h = 2, L = 20h and E = 1.44GPa. The additional length parameters, i.e.,
lx and lz , are taken to be comparable to the thickness of beam, like the references [11,33,41], so the internal
length scales are taken the values in the interval of 0.5h–1.5h.

3.1 Boundary conditions statement

There are two possible boundary conditions (BC1 and BC2) illustrated in references [33]. The difference
between these two boundary conditions is that the non-classical boundary conditions at the fixed end are
different.

The classical boundary conditions for the cases shown in Fig. 2 are specified, for case 1:

w|x=0 = 0,
dw

dx

∣∣∣∣
x=0

= 0, V
∣∣
x=L = 0, M

∣∣
x=L = M, (44)

and for case 2:

w|x=0 = 0,
dw

dx

∣∣∣∣
x=0

= 0, V
∣∣
x=L = Q, M

∣∣
x=L = 0. (45)

The two possible non-classical boundary conditions for both case 1 and case 2 are
BC1:

Mh
∣∣∣
x=0

= 0, Mh
∣∣∣
x=L

= 0. (46)

BC2:

d2w

dx2

∣∣∣∣
x=0

= 0, Mh
∣∣∣
x=L

= 0. (47)

As discussed in references [33], there is no much difference between the two boundary conditions. In this
paper, the non-classical boundary conditions are chosen as BC1.

3.2 Case 1: bending moment loading

Firstly, the cantilever beam is only subjected to a bending moment, M , at the free end (Q = 0, q(x) = 0).
The governing equation Eq. (40) becomes

E Iy
d4w

dx4
− E Iyl

2
x
d6w

dx6
+ E Al2z

d4w

dx4
= 0. (48)
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According to the general solution of differential equation, the solution of Eq. (48) can be written as

w(x) = C1 + C2x + C3x
2 + C4x

3 + C5e
λx + C6e

−λx , (49)

where λ =
√
E Iy + E Al2z /

√
E Iyl2x .

The boundary conditions can be derived from Eqs. (44) and (46) as

w|x=0 = 0, (50a)
dw

dx

∣∣∣∣
x=0

= 0, (50b)

V
∣∣
x=L =

(
−E Iy

d3w

dx3
− E Al2z

d3w

dx3
+ E Iyl

2
x
d5w

dx5

)∣∣∣∣∣
x=L

= 0, (50c)

M
∣∣
x=L =

(
E Iy

d2w

dx2
+ E Al2z

d2w

dx2
− E Iyl

2
x
d4w

dx4

)∣∣∣∣
x=L

= M, (50d)

Mh
∣∣∣
x=0

=
(
E Iylx

d2w

dx2
+ E Iyl

2
x
d3w

dx3

)∣∣∣∣
x=0

= 0, (50e)

Mh
∣∣∣
x=L

=
(
E Iylx

d2w

dx2
+ E Iyl

2
x
d3w

dx3

)∣∣∣∣
x=L

= 0. (50f)

Substituting Eq. (50a–50f) into (49), the boundary conditions can be written as

C1 + C5 + C6 = 0 (51a)

C2 + C5λ − C6λ = 0 (51b)

−
(
E Iy + E Al2z

)(
6C4 + C5λ

3eλL − C6λ
3e−λL

)
+ E Iyl

2
x

(
C5λ

5eλL − C6λ
5e−λL

)
= 0 (51c)(

E Iy + E Al2z
)(

2C3 + 6C4L + C5λ
2eλL + C6λ

2e−λL
)

− E Iyl
2
x

(
C5λ

4eλL + C6λ
4e−λL

)
= M (51d)

E Iylx
(
2C3 + C5λ

2 + C6λ
2
)

+ E Iyl
2
x

(
6C4 + C5λ

3 − C6λ
3
)

= 0 (51e)

E Iylx
(
2C3 + 6C4L + C5λ

2eλL + C6λ
2e−λL

)
+ E Iyl

2
x

(
6C4 + C5λ

3eλL − C6λ
3e−λL

)
= 0. (51f)

Equation (51a–51f) is solvable, so that the coefficients C1 − C6 can be calculated. However, the forms of
C1−C6 are too long and prohibit their presentation here. Nevertheless, when h = 20μm,M = 0.03μNm and
lx = lz , an application is worked out to indicate the influence of the internal length scales included in the beam
governing equation and boundary conditions. The deflection curves of the cantilever beam are shown in Fig. 3.
It can be seen that, when lx = lz = 10μm (0.5h), the ratio between the deflections of MGE Bernoulli–Euler
beam theory and the classic beam theory is about 25.61%. The deflections of MGE Bernoulli–Euler beam
theory decrease with the increment of internal length scales.

3.3 Case 2: concentrated force loading

Secondly, another typical loading Q is applied to the cantilever beam at the free end (M = 0, q(x) = 0); the
governing equation can be written as

E Iy
d4w

dx4
− E Iyl

2
x
d6w

dx6
+ E Al2z

d4w

dx4
= 0. (52)

The solution of Eq. (52) also can be written as

w(x) = C1 + C2x + C3x
2 + C4x

3 + C5e
λx + C6e

−λx . (53)
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Fig. 3 Deflections of cantilever beam subjected to bending moment

The boundary conditions can be derived from Eqs. (45) and (46) as:

w|x=0 = 0, (54a)
dw

dx

∣∣∣∣
x=0

= 0, (54b)

V
∣∣
x=L =

(
−E Iy

d3w

dx3
− E Al2z

d3w

dx3
+ E Iyl

2
x
d5w

dx5

)∣∣∣∣∣
x=L

= Q, (54c)

M
∣∣
x=L =

(
E Iy

d2w

dx2
+ E Al2z

d2w

dx2
− E Iyl

2
x
d4w

dx4

)∣∣∣∣
x=L

= 0, (54d)

Mh
∣∣∣
x=0

=
(
E Iylx

d2w

dx2
+ E Iyl

2
x
d3w

dx3

)∣∣∣∣
x=0

= 0, (54e)

Mh
∣∣∣
x=L

=
(
E Iylx

d2w

dx2
+ E Iyl

2
x
d3w

dx3

)∣∣∣∣
x=L

= 0. (54f)

By substituting Eq. (54a–54f) into (53), a solvable equation set can be obtained. In spite of the solvability of
Eq. (54a–54f), the forms of C1–C6 are long and difficult to be reported here. However, when h = 20μm,
Q = 100μNand lx = lz , an application has beenworked out to demonstrate the influence of the internal length
scales on deflections. The deflection curves of the cantilever beam are shown in Fig. 4. It can be seen that,
when lx = lz = 10μm (0.5h), the ratio between the deflections of MGE Bernoulli–Euler beam theory and
the classic beam theory is about 25.90%. The deflections of MGE Bernoulli–Euler beam theory also decrease
with the increment of internal length scales in this case.

4 Discussion

4.1 The comparison of microbeam models

Based on the couple stress theory or the extended couple stress theory, e.g., [27,41], various higher-order
Bernoulli–Euler beam models have been proposed [27,28,31]. The intrinsic length parameter is introduced
into constitutive equation by shear modulus and couple stress as:

mi j = 2l2Gχi j , (55)
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Fig. 4 Deflections of cantilever beam subjected to concentrate force

where mi j is the symmetric part of the couple stress tensor, l is the intrinsic length parameter, G is the shear
modulus, and xi j is the symmetric part of the curvature (or rotation gradient) tensor. Then, even though the
shear strains are not considered, the shear modulus G appears in their governing equation, e.g., [27]:

(
E I + GAl2

)d4w
dx4

= q(x). (56)

It is a fourth-order partial differential equation.
Different from Eq. (55), the intrinsic length parameters are introduced by the partial derivative of the strain

on the strain gradient in MGE Bernoulli–Euler beam model, and the shear modulus does not appear in its
governing equation [Eq. (40)]. The governing equation is sixth-order partial differential equation.

A beam model proposed by Lazopoulos in ref [42] has a similar form with MGE Bernoulli–Euler beam
model. Even though its constitutive equation contains additional length parameters, i.e., lk (the direction surface
length, k = x , y, z) and g (the intrinsic bulk length), the governing equation of beam model does not include
lk :

E Iy
d4w

dx4
− E Iyg

2 d
6w

dx6
+ E Ag2

d4w

dx4
+ q(x) = 0, (57)

and the boundary conditions include lk as:

V = E
(
Iy + g2A

)d3w
dx3

− E Iyg
2 d

5w

dx5
or δw = 0 at x = 0 and x = L , (58)

M = E
(
Iy + g2A

)d2w
dx2

− E Iyg
2 d

4w

dx4
or

dδw

dx
= 0 at x = 0 and x = L , (59)

Mh = E Iyg
2 d

3w

dx3
+ E Iylx

d2w

dx2
or

d2δw

dx2
= 0 at x = 0 and x = L . (60)

In Lazopoulos’ beam model, the values of the additional length parameters are restricted as 0 < lx < g2

[25,26]. In the MGE Bernoulli–Euler beam model, both of lx and lz are included in the governing equation
and the boundary conditions, and the values of lx and lz have no restriction. Hence, the situation of lx < lz or
lx > lz can be investigated and the influence of strain gradients on x direction and z direction can be discussed.
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Fig. 5 Deflections of beam subjected to bending moment. a lz changes only, b lx changes only

Fig. 6 Deflections of beam subjected to concentrate force. a lz changes only, b lx changes only

4.2 The influence of the internal length scales on deflections

To investigate the influence of lx and lz on beam deflection, the beam in Sect. 3 is studied in this section by
changing the values of lx and lz : One remains a constant and the other one changed. Two cases of loading are
also considered, respectively. It can be seen from Figs. 5 and 6 that, when lx remains a constant, the beam
deflections decrease obviously with lz increasing. Different from it, when lz remains a constant, the beam
deflections change slightly with lx increasing. It confirmed that the influence of lz on deflections is much
greater than that of lx , and the increment of stiffness is mainly controlled by lz .

4.3 Features

The internal length scale parameters contained in MGE Bernoulli–Euler beam model have a clear physical
meaning and a brief form [38], so that the internal length scale parameters can be determined not only by the
experiments, but also by the microstructure of the materials, and the values of internal length scale parameters
are not restricted. It makes the present beam model convenient for engineering applications.

It is easy for MGE Bernoulli–Euler beam model to consider the anisotropy of gradient. The influence of
strain gradients along the beam length and thickness direction can be analyzed, and the value of internal length
scale can be adjusted by microstructure of materials. So the present beam model can be applied for the design
optimization of microbeam and its materials used in engineering applications.
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5 Conclusions

A new Bernoulli–Euler beam model within modified gradient elasticity is proposed in this paper. When the
internal length scales vanish, MGE Bernoulli–Euler beam model can be simplified to the classical Bernoulli–
Euler beam theory. The deflections of the cantilever beams subjected to two typical loadings are analyzed. The
deflections decrease with the internal length scales increasing, and the size effect can be captured by MGE
Bernoulli–Euler beam model. The influences of strain gradients on x direction and z direction are discussed.
The influence of lz on deflection is much greater than that of lx , and the increment of stiffness is mainly
controlled by lz . The internal length scale parameters contained in MGE Bernoulli–Euler beam model have
a clear physical meaning and a brief form; thus, MGE Bernoulli–Euler beam model is of great useful in
engineering applications and designs.
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