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Abstract This paper presents an optimization technique for dynamic balancing of a four-bar mechanism for
the purpose of minimization of joint reactions, shaking forces and shaking moment. Joint reaction forces
were determined by using a new method which can be applied in rigid planar closed-loop kinematic chains
with revolute joints, and it is based on the use of absolute angles of rotation. The problem of balancing
the obtained joint reaction forces was then solved as a multi-objective optimization problem. Kinematic and
dynamic parameters of the four-bar linkage were taken as design variables. Three cases with simultaneous
minimization of several objective functions were considered. The new hybrid algorithm namedHybrid Cuckoo
Search and Firefly Algorithm (H-CS-FA) was used for solving the defined optimization problem in accordance
with the given constraints. The appropriate selection of objective functions (three cases) and the application
of the proposed algorithm resulted in a significant reduction of the values of joint reactions, shaking forces,
shaking moment and driving torque. A concrete numerical example was used to show the efficiency of the
new hybrid algorithm. The results obtained by H-CS-FA are compared with those obtained by using basic
algorithms in the hybridization process (CS and FA) which proved the superiority of the newly proposed
optimization procedure.
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1 Introduction

The problem of determination and optimization of joint reactions as well as minimization of shaking forces
and shaking moment in different types of mechanisms represents a big challenge for researchers and designers.
Mechanisms are required to operate uniformly even at high speeds. In order to accomplish it, it is necessary
to reduce the forces and the moment which are the results of inertia. The minimization of shaking forces and
shaking moment leads to improved dynamics, while noise and vibrations decrease. Besides, the determination
of joint reactions plays an important role in stress analysis and dimensioning of mechanisms. Šalinić [1]
proposed an algorithm for determination of joint reactions in a symbolic form in planar and spatial rigid
multibody systems.

Mechanisms can be balanced either statically or dynamically. The condition for achieving static balance
is that the sum of all forces during motion must equal zero [2]. In order to achieve the balance of forces,
it is necessary to have the stationary mass center. Static balancing is accomplished by using the method of
counterweights [3] or the method of mass redistribution [4]. Berkof and Lowen [5] proposed the method of
linearly independent vectors, which requires redistribution of masses of members in such a way that the total
center of mass becomes stationary. Arakelian and Dahan [6] introduced a method for complete balancing
of the shaking force and partial balancing of the shaking moment which is applied for any planar or spatial
mechanism. The method is based on the principle of minimization of the mean value of the shaking moment.

Dynamic balancing implies simultaneous balancing of shaking forces and the moment [7,8]. In order to
satisfy dynamic balance, the sum of all forces and the sum of all moments must be equal to zero. The use of
counterweights and counter-rotations for shaking force and shaking moment balancing leads to the increase
in mass and inertia of the mechanism. Since recently, several optimization techniques have been used for
minimization of shaking moment only, or, in combination with the minimization of shaking force, and/or
driving torque. In addition to conventional optimization techniques which are applied for optimal balancing
of planar mechanisms [9], modern evolutionary optimization techniques, which are biologically inspired, are
often applied. Dynamic balancing of a planar mechanism in which shaking forces and shaking moment are
minimized by using the Genetic Algorithm, GA, is considered in [10]. Minimization of shaking forces and the
moment by finding the optimal distribution of mass of mechanism members by using an equivalent system of
point-masses is described in [10,11]. Chaudhary et al. [11] solved the multi-objective optimization problem by
using the teaching-learning-based optimization (TLBO) algorithm. Farmani et al. [12] considered the problem
of dynamic balancing in a four-bar mechanism by using two evolutionary algorithms called non-dominated
sorting Genetic Algorithm and multi-objective particle swarm optimization. The objective functions were
derived from the concept of inertia counterweights and physical pendulum that permit complete balance of all
mass effects.

For the purpose of obtaining as good results as possible and as effective algorithms as possible, and in
addition to the modification of standard optimization algorithms, several authors also combined two and more
different optimization algorithms.

A certain number of papers deal with the problem of balancing and optimization of dynamic parameters
of a four-bar mechanism. Guo et al. [13] proposed a new method which represents a combination of the
mass redistribution method and the counterweight method for a planar four-bar mechanism. For the purpose of
reducing shaking forces, shakingmoment and driving torque, the proposedmethod used theGeneticAlgorithm.
Erkaya [14] presented a practical method for reducing shaking forces and fluctuation of the moment in a four-
bar mechanism, which is based on the Genetic Algorithm. It was shown that the structure of the objective
function and the values of weighting factors have an important role in the optimization process.

The problem of minimization of joint reactions was discussed in [15,16]. Šalinic et al. [15] presented two
ways for minimization of joint reactions of a planar serial manipulator. The first way is based on the optimal
selection of the angular rotation laws of manipulator links, and the second one on attaching counterweights to
the manipulator links. Harl, Oblak and Butinar [16] considered the minimization of joint reactions of planar
kinematic chains by means of a multi-objective approach. The attention is directed toward the formulation of
the problem of nonlinear programming for the purpose of minimization of generalized forces.

In several papers, there is a reference to the research done so far,with an overviewof the literature in this field
and the summaryof results obtainedbydifferentmethodsof balancingofmechanisms.Arakelian andSmith [17]
presented an overview of methods for dynamic balancing of mechanisms based on the generation of different
movements of counterweights. Complete shaking force and shakingmoment balancing are demonstrated using
the pantograph copying properties.Wijk andHerder [18] presented the balancing principles which are obtained
froma survey of the literature and applied them to a representativemechanism. They summarized and compared
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the existing balancing principles concerning the addition of mass and the addition of inertia. Zhang andWei [7]
provided a detailed description of modern technologies and principles of dynamic balancing of mechanisms
based on the minimum increase in mass and inertia. Also, they explained the synthesis of parallel robots on
the basis of decomposition and the concept of integration. Several chapters of the book are devoted to the
discussion and presentation of optimization processes which are applied in balancing of mechanisms.

This paper considers the problem of dynamic balancing of a four-bar mechanism which is presented in
Fig. 1. The masses of the links are m1, m2 and m3, while the lengths of the links are L1, L2 and L3. The
four-bar mechanism is placed in the vertical plane O1xy. The positions of the mass centers Cp (p = 1, 2, 3)
are defined by αp[rad]idp[m], (p = 1, 2, 3).

Firstly, the joint reactions were determined at all joints by using the new method which can be applied to
rigid planar closed-loop kinematic chains. The problem of dynamic balancing of mechanisms was then solved
as an optimization problem. Unlike some papers [10,14,15] in which one objective function was formed by
using weighting factors, the optimization problem in this paper is solved by using a multi-objective approach.

In this paper, two biologically inspired algorithms, Cuckoo Search—CSA (Yang in [19]) and Firefly
Algorithm—FA (Yang and Deb in [20]), i.e., their hybridization, are used for solving the problem of multi-
objective optimization. Almost all biologically inspired algorithms are of recent origin, and they look simple
and their main characteristics are most often derived, directly or indirectly, on the basis of observations of
systems from nature. The success and popularity of these algorithms can be attributed to the following factors:
simplicity of algorithm, simplicity of application and diversity of solutions they generate.

Several biologically inspired algorithms are capable of achieving convergence toward a global optimum
of an optimization problem after a relatively small number of iterations. This characteristic practically recom-
mends them for solving problems of global optimization. To be efficient, biologically inspired algorithms must
have certain specific characteristics. They must generate new solutions which are better than the previous ones.
The second characteristic is that a metaheuristic algorithm must recognize a trap of entering a local optimum
and have a mechanism which will take it out of that search space. A good combination of these characteristics
results, under certain conditions, in a good efficiency of the algorithm, which, again, requires good balance of
two main components: intensification and diversification [21]. Diversification means that different solutions
which search the space on a global scale are generated, whereas intensification means to focus on the search in
a local region using the information about good solutions found in it. Intensification often uses randomization,
which enables the algorithm to leave any local minimum. It can also be used for local search around the
currently best solution if the step is restricted to a local region. If the step is sufficiently big, randomization
can explore the search space on a global scale.

The number of biologically inspired algorithms has been rapidly rising recently, so that the short research
by Fister in [22] shows that there are more than 40 kinds of these algorithms with the tendency of appearance
of new ones inspired by nature. It is simply impossible to mention all the existing types of biologically inspired
algorithms, as well as their modifications and hybridizations. Readers can find a detailed overview of the
existing algorithms in the paper written by Yang [23].

The application of biologically inspired algorithms in the design ofmechanisms can be seen in the following
papers: [24–33].

Except biologically inspired algorithms, gradient-based methods can effectively lead to a global optimum.
However, gradient-based methods involve determination of the first and the second derivative of the objective
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function and that is not always easy in real engineering problems. In addition, the use of gradient-basedmethods
to a complex optimization problems is limited because it is necessary to set the initial values of the design
variables in such a way to make them close to the desired (optimum) values. In some cases, the gradient must
be approximated numerically which is not at all an easy task because it requires several additional calculations
of the objective function in each iteration. Due to the above facts, the authors did not deal with the application
of this algorithm, leaving the space for future research.

As aforementioned, this paper shows how a multi-objective optimization problem was solved by using a
new algorithm created by hybridization of two biologically inspired algorithms—Cuckoo Search and Firefly
Algorithm, i.e., H-CS-FA. The selected algorithms have different approaches and optimization flows, but
what they have in common is that both of them use the mechanism of Lévy flights for obtaining solutions.
[34,35]. The main difference between these two algorithms is that in the CS algorithm there is a mechanism
for elimination of a ”bad“ nest, which represents a danger that the algorithm may, at a point, leave the good
directionwhile searching for an optimum solution, which can lead to the increased time of finding the optimum.

In the H-CS-FA algorithm, a new approach for solving the problem of multi-objective optimization is
introduced where simultaneous, i.e., parallel search is used. After starting the initial solution for each objective
function, it is checked whether the optimality criterion is satisfied for every pass. If the optimality criterion is
not satisfied for all objective functions, the algorithm starts checking from the beginning, in a new iteration.
Otherwise, i.e., when the optimality criterion is satisfied for all objective functions, that solution is proclaimed
the best one and the values of the objective function are compared with it in the next iterative cycle. The risk of
wrong estimation of the values of weight factors for each objective function is thus avoided, i.e., the search time
is reduced—the cycle of searching for the best values of each objective function is avoided because everything
is done in one iterative cycle of searching.

The paper is organized as follows: Section 2 provides a detailed description of the newmethod for determi-
nation of joint reactions. Solving of the problemof dynamic balancing by applyingmulti-objective optimization
and the new hybrid algorithm H-CS-FA is presented in Sect. 3. The efficiency of the new hybrid algorithm
was tested on the example of optimization of dynamic parameters of a four-bar mechanism and the obtained
results are shown in Sect. 4. Finally, the conclusions and notes are presented in Sect. 5.

2 A new method for determination of joint reactions of a four-bar mechanism

This section will present a new method for determination of joint reaction forces in rigid planar closed-loop
kinematic chains in which rigid bodies are interconnected by revolute joints. This new method is based on the
approach for determination of joint reaction forces in tree structure rigid multibody systems described in [1].
Namely, in our paper the method from [1] will be modified and extended to the case of rigid planar closed-loop
multibody systems. The modification of the method from [1] relates to the use of absolute angles of rotation
of bodies in the kinematic chain instead of relative angles of rotation between neighboring bodies connected
by a revolute joint. In terms of calculation, the use of absolute angles of rotation considerably simplifies the
procedure of determination of joint reaction forces in comparison with the procedure from [1] based on relative
joints coordinates.

According to [36], after cutting off the jointO3 (seeFig. 1), themotionof the considered four-barmechanism
can be divided into simultaneous motions of two mechanisms denoted with I and II and shown in Fig. 2, where
the links of the mechanism II are massless.

The driving torques M∗
1 , M∗

2 and M∗
3 act in the joints O1, O2 and O4 of the mechanism I, while in the

mechanism II the corresponding driving torques are M∗∗
1 , M∗∗

2 and M∗∗
3 , respectively. Since the joints O2, O3

and O4 of the four-bar mechanism shown in Fig. 1 are passive (not actuated), the following conditions must
be satisfied [36]:

M∗
2 + M∗∗

2 = 0 (1)

M∗
3 + M∗∗

3 = 0 (2)

External force systems exerted on the links
(
Vp

)
(p = 1, 2, 3) of the mechanism I are represented by

equivalent force systems consisting of forces F∗
p (p = 1, 2, 3) determined by:

F∗
p = [

0 −mpg 0
]
, p = 1, 2, 3 (3)
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Fig. 3 The introduction of redundant coordinates in the mechanisms I and II

passing through the mass centers Cp (p = 1, 2, 3), respectively, together with the couples with torques
M∗

p (p = 1, 2, 3) given by:

M∗
1 = [

0 0 M∗
1 − M∗

2

]
, (4)

M∗
2 = [

0 0 M∗
2

]
, (5)

M∗
3 = [

0 0 M∗
3

]
, (6)

where g is the gravitational acceleration.
Similarly, for the mechanism II one has:

F∗∗
1 = [0 0 0] , (7)

F∗∗
2 = [

XO3 YO3 0
]
, (8)

F∗∗
3 = [−XO3 −YO3 0

]
, (9)

M∗∗
1 = [

0 0 M∗∗
1 − M∗∗

2

]
, (10)

M∗∗
2 = [

0 0 M∗∗
2 + XO3 (d2 sin (θ2 + α2) − L2 sin θ2) + YO3 (−d2 cos (θ2 + α2) + L2 cos θ2)

]
, (11)

M∗∗
3 = [

0 0 M∗∗
3 +XO3 (−d3 sin (θ3+α3) + L3 sin θ3) − YO3 (−d3 cos (θ3 + α3) + L3 cos θ3)

]
, (12)

where XO3 and YO3 represent the components of reaction force in the joint O3 along the x and y axes,
respectively. In accordance with [37,38], introducing now redundant coordinates s1, . . . , s6 (also known as
open-constraint coordinates), the motions of the mechanisms I and II can be described by the generalized
coordinates q1, . . . , q9 where qi ≡ θi (i = 1, 2, 3) and q3+r ≡ sr (r = 1, . . . , 6) and where the following
constraints hold (see Fig. 3):

fr ≡ q3+r = 0, r = 1, . . . , 6. (13)
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Note that the coordinates s1, . . . , s6 represent the prohibited relative motions in the joints O1, O2 and O4.
In addition, the constraints (13) may be written at velocity and acceleration levels, respectively, as follows:

q̇3+r ≡ 0, q̈3+r ≡ 0, r = 1, . . . , 6. (14)

Applying Kane’s equations with undetermined multipliers [39] for the mechanism I, one has:

Qa
i(∗) + Qin

i(∗) = 0, i = 1, 2, 3 (15)

Qa
3+r(∗) + Qin

3+r(∗) + λr(∗) = 0, r = 1, . . . , 6 (16)

and for the mechanism II:

Qa
i(∗∗) + Qin

i(∗∗) = 0, i = 1, 2, 3 (17)

Qa
3+r(∗∗) + Qin

3+r(∗∗) + λr(∗∗) = 0, r = 1, . . . , 6 (18)

where Qa
j(∗) ( j = 1, . . . , 9) and Qa

j(∗∗) ( j = 1, . . . , 9) represent generalized active forces corresponding to
the generalized coordinates q1, . . . , q9 determined by the following expressions:

Qa
j(∗) =

3∑

p=1

(
M∗

p
∂ωp

∂q̇ j
+ F∗

p

∂VCp

∂q̇ j

)
, j = 1, . . . , 9 (19)

Qa
j(∗∗) =

3∑

p=1

(
M∗∗

p
∂ωp

∂q̇ j
+ F∗∗

p

∂VCp

∂q̇ j

)
, j = 1, . . . , 9 (20)

Qin
j(∗) ( j = 1, . . . , 9) and Qin

j(∗∗) ( j = 1, . . . , 9) are the generalized inertia forces corresponding to the gener-
alized coordinates q1, . . . , q9 determined by:

Qin
j(∗) = −

3∑

p=1

(
mpaTCp

∂VCp

∂q̇ j
+ JCpε

T
p
∂ωp

∂q̇ j

)
, j = 1, . . . , 9 (21)

Qin
j(∗∗) = 0, j = 1, . . . , 9 (22)

In the expressions (19)–(21), ωp = [
0 0 θ̇p

]T
and εp = [

0 0 θ̈p
]T

are the angular velocity and the

angular acceleration of the link
(
Vp

)
, respectively, VCp = [

ẋCp ẏCp 0
]T and aCp = [

ẍCp ÿCp 0
]T

are the linear velocity and the linear acceleration of the mass center Cp, respectively, where the Cartesian
coordinates xCp (p = 1, 2, 3) and yCp (p = 1, 2, 3) are given in Appendix, and JCp is the mass moment of
inertia about centroidal axis of the link

(
Vp

)
.

Solving now Eqs. (15) and (17) for M∗
2 , M∗∗

2 , M∗
3 and M∗∗

3 and substituting the obtained quantities into
Eqs. (1) and (2) yield the following expressions for the components of the reaction force in the joint O3:

XO3 = − 1

2L2L3 cos (θ2 − θ3)

[
d2L1L3m2 (cos (α2 − θ1 + θ2 − θ3) + cos (α2 − θ1 + θ2 + θ3)) θ̈1

+ 2
(
d22 L3m2 + JC2L3

)
θ̈2 cos θ3 + 2L2

(
JC3 + m3d

2
3

)
θ̈3 cos θ2

+ d2L1L3m2θ̇
2
1 (sin (α2 − θ1 + θ2 − θ3)

+ sin (α2 − θ1 + θ2 + θ3)) + d2gL3m2 (cos (α2 + θ2 − θ3) + cos (α2 + θ2 + θ3))

+ d3gL2m3 (cos (α3 − θ2 + θ3) + cos (α3 + θ2 + θ3))
]

(23)

YO3 = − 1

2L2L3 cos (θ2 − θ3)

[
d2L1L3m2 (sin (α2 − θ1 + θ2 + θ3) − sin (α2 − θ1 + θ2 − θ3)) θ̈1

+ 2
(
d22 L3m2 + JC2L3

)
θ̈2 sin θ3 + 2L2

(
JC3 + m3d

2
3

)
θ̈3 sin θ2

+ d2L1L3m2θ̇
2
1 (cos (α2 − θ1 + θ2 − θ3)

− cos (α2 − θ1 + θ2 + θ3)) + d2gL3m2 (sin (α2 + θ2 + θ3) − sin (α2 + θ2 − θ3))

+ d3gL2m3 (sin (α3 + θ2 + θ3) − sin (α3 − θ2 + θ3))
]

(24)

where the constraints (14) are taken into account. In addition, from Eq. (16) it follows that:
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λ1(∗) = m1
(
ẍC1

)
0 + m2

(
ẍC2

)
0 , (25)

λ2(∗) = (m1 + m2) g + m1
(
ÿC1

)
0 + m2

(
ÿC2

)
0 , (26)

λ3(∗) = m2
(
ẍC2

)
0 , (27)

λ4(∗) = m2g + m2
(
ÿC2

)
0 , (28)

λ5(∗) = m3
(
ẍC3

)
0 , (29)

λ6(∗) = m3g + m3
(
ÿC3

)
0 , (30)

and from Eq. (18):

λ1(∗∗) = λ3(∗∗) = −XO3, (31)

λ2(∗∗) = λ4(∗∗) = −YO3, (32)

λ5(∗∗) = XO3, (33)

λ6(∗∗) = YO3 (34)

where the notation (·)0 means that the quantity (·) is calculated for q4 = · · · = q9 = 0.
Finally, the components of reaction forces in the joints O1, O2 and O4 along the x and y axes, respectively,

read:

XO1 = λ1(∗) + λ1(∗∗) = m1
(
ẍC1

)
0 + m2

(
ẍC2

)
0 − XO3 (35)

YO1 = λ2(∗) + λ2(∗∗) = m1
(
ÿC1

)
0 + m2

(
ÿC2

)
0 + (m1 + m2) g − YO3 (36)

XO2 = λ3(∗) + λ3(∗∗) = m2
(
ẍC2

)
0 − XO3 (37)

YO2 = λ4(∗) + λ4(∗∗) = m2
(
ÿC2

)
0 + m2g − YO3 (38)

XO4 = λ5(∗) + λ5(∗∗) = m3
(
ẍC3

)
0 + XO3 (39)

YO4 = λ6(∗) + λ6(∗∗) = m3
(
ÿC3

)
0 + m3g + YO3 (40)

In Eqs. (23), (24) and (35)–(40), the quantities θ2 and θ3 and their time derivatives can be eliminated using the
following relations [2]:

θ2 = 2 tan−1

⎛

⎝
−b2 ±

√
b22 − 4a2c2

2a2

⎞

⎠ (41)

θ3 = 2 tan−1

⎛

⎝
−b3 ±

√
b23 − 4a3c3

2a3

⎞

⎠ (42)

where

a2 = cos θ1 − L4

L1
+ L4

L2
cos θ1 + L2

3 − L2
4 − L2

1 − L2
2

2L1L2
, (43)

b2 = −2 sin θ1, (44)

c2 = L4

L1
+

(
L4

L2
− 1

)
cos θ1 + L2

3 − L2
4 − L2

1 − L2
2

2L1L2
, (45)

a3 = cos θ1 − L4

L1
− L4

L3
cos θ1 + L2

1 − L2
2 + L2

3 + L2
4

2L1L3
, (46)

b3 = −2 sin θ1, (47)

c3 = L4

L1
−

(
L4

L3
+ 1

)
cos θ1 + L2

1 − L2
2 + L2

3 + L2
4

2L1L3
, (48)
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At the end, it should be added that the presented approach for determination of joint reactions in planar closed-
loop multibody systems is based on the technique of introducing prohibited relative motions in the joints, as
in the approach described in [40]. However, our approach in terms of calculation is advantageous over the
approach in [40] because it does not require the formation of constraint Jacobian matrices and their pseudo-
inverse matrices, as in [40]. In this paper, this is allowed by using one absolute coordinate (absolute angle of
rotation), and not three as in [40], for determination of the position of links of the mechanism.

3 Optimization process

3.1 Hybrid Cuckoo Search and Firefly Algorithm (H-CS-FA)

The algorithm used in this paper was created by hybridization of two biologically inspired algorithms: Cuckoo
Search and Firefly Algorithm.

Cuckoo Search (CS) represents a new optimization metaheuristic algorithm, which is also biologically
inspired by the cuckoos’ manner of looking for nests where they could lay eggs. This algorithm, as already
said, was proposed by Yang and Deb in [19]. The Cuckoo Search algorithm is a biologically inspired algo-
rithm which is widely applied in solving very complex optimization problems in various fields of engineer-
ing, industry, etc. In the existing literature, there are a large number of papers where this algorithm was
used in its original form, or as its various improvements or hybridizations with other algorithms. A detailed
presentation of application of the standard Cuckoo Search algorithm can be seen in the review articles [41–
43].

The Firefly Algorithm (FA) was introduced for the first time by Yang, in [20]. The Firefly Algorithm is
also a biologically inspired optimization algorithm which idealizes some characteristics of the flashing light
of the firefly. A comprehensive review of the literature where the Firefly Algorithm was applied for solving
different optimization problems was given by Fister et al. in [44] and Yang and Xingshi in [45].

In this paper, the authors will not remain on a detailed explanation of these algorithms.
The hybrid algorithm applied in this paper represents a combination of the Cuckoo Search algorithm, CS,

and the Firefly Algorithm, FA. In both algorithms, generation of new solutions takes place according to the
Lévy flight mechanism. The main difference between these two algorithms is that in the CS algorithm there
is a mechanism of elimination of a “bad” nest, which represents a danger that the algorithm may, at a point,
leave the good direction while searching for an optimum solution. It can lead to the increased time of finding
the optimum.

The proposed hybrid algorithm is based on the CS algorithm which incorporates a part of the FA, which
is shown in Algorithm 1.
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MOO is used for solving optimization problems which include two or more complex, nonlinear, opposed
objective functions, which should be simultaneously optimized:min {F1 (X) , F2 (X) , . . . , Fm (X) ,}where X
is the vector of design variables:X = (x1, x2, . . . , xd)T . In single-criterion optimization, i.e., optimizationwith
one objective function, the optimization algorithm generates a new solution looking for it in the search space
defined by the boundaries of design variables. During the iterative process, worse solutions are eliminated
and replaced with better ones. The solution found for that iterative cycle is also the best one for the given
optimization problem. However, in nontrivial, MOO problems, there is no unique solution which will at the
same time optimize each objective function. The optimum solutions found cannot be improved by one criterion
without being worsened by another, which makes the search and finding of the optimum solution by all criteria
considerably difficult.

In the literature, themethod ofweighting factors or the Pareto front is used for solving the problems ofmulti-
objective optimization. In the method of weighting factors, all objective functions are transformed through
weighting factor into one objective function and the problem of multi-objective optimization is reduced to the
problem of single-criterion optimization. In the application of the Pareto front, instead of weighting factors,
the best values for each objective function are used and those best values have the role of the weighting factor
during the linearization of problems, i.e., transformation of multi-objective optimization into single-criterion
optimization.

In this paper, simultaneous, i.e., parallel search is used for solving the problem of multi-objective optimiza-
tion. After starting the initial solution for each objective function, it is checked whether the optimality criterion
is satisfied for every pass. If the optimality criterion is not satisfied for all objective functions, the algorithm
starts checking from the beginning, in a new iteration. Otherwise, i.e., when the optimality criterion is satisfied
for all objective functions, that solution is proclaimed the best one and the values of the objective function are
compared with it in the next iterative cycle (Algorithm 2). The risk of wrong estimation of the values of weight
factors for each objective function is thus avoided, i.e., the search time is reduced—the cycle of searching
for the best values for each objective function is avoided because everything is done in one iterative cycle of
searching.

The shaded rows in Algorithm 2 show that from the matrix of solutions n × d where n—the number of
nests and d—the number of design variables, only the solution in which all elements of the newly generated
row of the matrix of solutions are smaller than the corresponding elements of the previous best solution is
selected.
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3.2 Objective function

There are two different approaches in multi-objective optimization. The first one uses specially structured
algorithmswhose goal is obtaining the best set of non-dominated solutions in terms of Pareto fronts. The second
one is usually defined as multi-objective optimization, which consists of one optimization goal when different
objective functions are linearly combined in a unique objective function using weighting factors. The authors
of this paper follow the approach which differs from the above-mentioned two, where optimizations of several
objective functions are performed simultaneously.Multi-objective optimization is applied for theminimization
of joint reaction forces, shaking force, shaking moment and driving torque of a four-bar mechanism. Based on
the above expressions, the problem is defined as follows:

min {F1 (X) , F2 (X) , . . . , Fm (X)} (49)

Subject to: g j (X) ≤ 0, j = 1, . . . , k where Fi (X) , (i = 1, 2, . . . ,m) is the objective functions, g j (X) ≤ 0,
are the constraint functions and k is the number of constraints. The design variables vector is denoted by
X = (x1, x2, . . . , xd)T , and d is the number of design variables.

The upper and lower boundaries are defined for each design variable. Sixteen design variables are consid-
ered, and thus, X is defined as:

X = {
L1, L2, L3, L4, α1, α2, α3,m1,m2,m3, JC1, JC2 , JC3, d1, d2, d3

}
(50)

and the boundaries of design variables are shown in Table 1.

4 Numerical results

In this paper, the problem of dynamic balancing of a four-bar mechanism is considered as a multi-objective
optimization problem. The new algorithm, (H-CS-FA), is used for solving the optimization problem. The
driving member 2 rotates with a constant angular velocity of 300 rpm.

The following three cases are considered:

Case 1—In this case, reactions are optimized at all four joints of the given mechanism, i.e., simultaneous
minimization of eight objective functions is performed. Unlike numerous examples in the available literature
in which only joint reactions in fixed joints, i.e., ground joint reaction forces, are optimized, the relations below
show that the objective functions are selected in such a way to cover the reactions at all joints of the observed
four-bar mechanism.

Fj = 1

δ

√√√
√

δ∑

i=0

f 2j (ti ), j = (1, 2, . . . , 8) , where δ = 200, and t = 0:0.01:0.2; (51)

f1 = XO1, f2 = YO1, f3 = XO2, f4 = YO2, f5 = XO3, f6 = YO3, f7 = XO4, f8 = YO4, (52)

Case 2—In this case, all joint reactions and the driving torque are optimized. In other words, nine objective
functions are minimized simultaneously:

Fj = 1

δ

√√
√√

δ∑

i=0

f 2j (ti ), j = (1, 2, . . . , 9) , where δ = 200, and t = 0:0.01:0.2; (53)

f1 = XO1, f2=YO1, f3= XO2, f4=YO2, f5= XO3, f6=YO3, f7= XO4, f8 = YO4, , f9 = M1 (54)

Case 3—By applying the H-CS-FA algorithm in this case, three objective functions which cover the shaking
forces in the direction of x and y axes, as well as the shaking moment, are simultaneously minimized:

Fj = 1

δ

√√
√√

δ∑

i=0

f 2j (ti ), j = (1, 2, 3) , where δ = 200, and t = 0:0.01:0.2; (55)

f1 = Fshx , f2 = Fshy, f3 = Msh, (56)
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Fig. 4 Original and optimized values of ground joint reaction forces (Case 1)

The control parameters of the algorithm used in the optimization process for all three cases are:
n = 25—the number of nests; pa = 0.25—the discovery rate of alien eggs; iter max = 500—themaximum

number of iterations, n f = 40—the number of fireflies, α = 0.5—the randomization parameter, γ = 1—the
absorption coefficient, β0 = 0.2—the attractiveness, d = 16—the number of design variables.

Design variables are defined for the proposed mechanism. The non-optimized (original) values (taken from
[14]) and the optimized values of design variables (obtained by using FA, CS and H-CS-FA), as well as the
boundaries of design variables, are given in Table 1.

For Case 1, the ground joint reaction forces of the original and optimized mechanisms are given in Fig. 4.
After the optimization process, the values of these forces are considerably lower in comparison with the initial
values. The use of the above-mentioned optimization algorithm resulted in the reduction by 97.834%, 71.329%,
80.633% and 53.898%, in the values XO1, YO1, XO4 and YO4 , respectively.

Figure 5 presents the initial and optimized values of joint reactions at the movable joints O2 and O3. The
reactions at these joints, XO2 , YO2 , XO3 and YO3 are reduced by 61.586%, 23.615%, 84.641% and 1.919%,
respectively. On the other hand, Fig. 6 presents the change of values of the shaking forces, the shaking moment
as well as the driving torque, before and after the optimization process, for Case 1.

In Case 2, the values of ground joint reaction forces which are considerably lower in comparison with the
initial values are obtained by applying the H-CS-FA algorithm in the optimization process. In other words, the
application of the hybrid algorithm results in the reduction by 90.293%, 69.216%, 84.639% and 72.665%, in
the values XO1, YO1, XO4 and YO4 , respectively. Figure 7 presents the initial and optimized values of ground
joint reaction forces for Case 2.

Similarly, the reactions at the movable joints XO2 , YO2 , XO3 and YO3 are reduced by 62.992%, 36.711%,
89.406% and 61.962%, respectively, while the optimized value of the driving torque is reduced by 92.546%
in relation to the original value. The joint reactions at the movable joints O2 and O3 for Case 2 are presented
in Fig. 8. The change of values of shaking forces along the axes x and y, the shaking moment as well as the
driving torque, before and after the optimization process, for Case 2, is shown in Fig. 9.

The values of joint reactions, shaking forces, shaking moment and driving torque are considerably
reduced by applying the proposed H-CS-FA algorithm in Case 3. The values of ground joint reaction forces
XO1, YO1, XO4 and YO4 are reduced by 90.92%, 75.654%, 76.029% and 77.687%, respectively, in relation
to the initial values. Figure 10 presents the original and optimized values of these reactions for Case 3 in the
observed four-bar mechanism.
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Fig. 5 Original and optimized values of reaction forces in the joints O2 and O3 (Case 1)
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Fig. 6 Original and optimized values of shaking force components, shaking moment and driving torque (Case 1)
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Fig. 7 Original and optimized values of ground joint reaction forces (Case 2)
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Fig. 8 Original and optimized values of reaction forces in the joints O2 and O3 (Case 2)
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Fig. 9 Original and optimized values of shaking force components, shaking moment and driving torque (Case 2)

The joint reactions at the movable joints O2 and O3 in the original and optimized mechanisms are shown
in Fig. 11. The application of the optimization process in Case 3 resulted in a considerable reduction of the
values of these reactions, which is shown in Fig. 11. Also, after the optimization process and the application of
the proposed algorithm, the values of shaking forces in the direction of x and y axes are reduced by 99.186%
and 77.396%, while the value of the shaking moment Msh is reduced by 76.383% in relation to the initial
value. Figure 12 presents the original and optimized values of shaking forces, shaking moment and driving
torque for Case 3.

Based on the optimal values of design variables given in Table 1, Figs. 4, 5, 6, 7, 8, 9, 10, 11 and 12 are
obtained.

Observing Table 1, it can be noticed that several optimized values of design variables(
L1, L2, L3,m2, JC3, d3

)
coincide with the lower or upper bounds of these variables. For this reason, the

search space has been expanded, i.e., the boundaries of these design variables are expanded in order to test the
sensitivity of the proposed algorithm.

The optimized values of design variables along with the expanded boundaries of these design variables
are shown in Table 2. It should be noted that the expansion of the search space was done only for Case 3
in order to test the applied algorithm in terms of the speed of convergence and the sensitivity of the bound-
aries.

The italics values in Table 2 indicate the boundaries for the initial values of design variables with expanded
range. As it can be seen from Table 2 by expanding the search space, i.e., by setting wider limits, the optimized
values of design variables do not coincide with the lower or upper bounds of these variables.

The diagrams of convergence in this paper are given in Figs. 13, 14 and 15, only for Case 3. The diagrams
of convergence in Figs. 13a, 14a and 15a correspond to the situation where the search space is within the
boundaries of Table 1, while the diagrams of convergence in Figs. 13b, 14b and 15b correspond to the case
where the search space is expanded (the boundaries of the design variables taken from Table 2). The other
diagrams of convergence are not shown in order not to exceed the usual size of the paper.
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Fig. 10 Original and optimized values of ground joint reaction forces (Case 3)
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Fig. 11 Original and optimized values of reaction forces in the joints O2 and O3 (Case 3)
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Fig. 12 The original and optimized values of the shaking force components, the shaking moment and the driving torque (Case 3)

Table 2 Original and optimized parameters of the four-bar mechanism for expanded search space

Case 3

Design variables Original values (taken from [14]) H-CS-FA Boundaries

L1 (m) 0.100 0.064 0.04–0.120
L2 (m) 0.400 0.518 0.320–0.680
L3 (m) 0.320 0.174 0.100–0.384
L4 (m) 0.600 0.584 0.480–0.720
α1 (rad) 0 3.223 0−2 × π
α2 (rad) 0 5.543 0−2 × π
α3 (rad) 0 2.876 0−2 × π
m1 (kg) 0.360 1.040 0.01–3
m2 (kg) 1.296 0.847 0.6–1.6
m3 (kg) 1.046 0.560 0.5–1.5
JC1 (kgm2) 4.13 × 10−4 23.214 × 10−4 2 × 10−4−60 × 10−4

JC2 (kgm2) 1.87 × 10−2 3.56 × 10−2 2 × 10−2−7 × 10−2

JC3 (kgm2) 9.85 × 10−3 16.32 × 10−3 6 × 10−3−18 × 10−3

d1 (m) 0.050 0.0527 0.001–0.1
d2 (m) 0.200 0.0804 0.001–0.400
d3 (m) 0.160 0.00057 0.0005–0.320

It can be seen from the previous figures that the expansion of the search space does not significantly affect
the speed of convergence. In gradient-based methods, by narrowing the search space, or by setting the initial
values of the design variables in such a way to make them close to optimal, the speed of convergence is rapidly
increasing. However, it should be noted that in H-CS-FA applied in this paper, the expansion of the search
space does not significantly affect the speed of convergence. On the contrary, for one of the objective function
(Msh) the speed of convergence is better in the case of expanded boundaries (Fig. 15).

The percentage decreases of the values of joint reactions, the driving torque, the shaking force, and the
shaking moment for all three considered cases are presented in Table 3. Note that two variants have been
considered for Case 3: the search space with the boundaries from Table 1 and the expanded search space with
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(a) (b)

Fig. 13 Diagram of convergence in Case 3 for Fshx

(a) (b)

Fig. 14 Diagram of convergence in Case 3 for Fshy

(a) (b)

Fig. 15 Diagram of convergence in case 3 for Msh
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Table 3 The decreasing ratios for the cases considered

Percentage decrease in values in relation to the original ones (%)

Case 1 Case 2 Case 3

FA CS H-CS-FA FA CS H-CS-FA FA CS H-CS-FA
(Table 1)

H-CS-FA
(Table 2)

XO1 [N ] 18.862 11.868 97.834 47.768 71.270 90.293 84.250 52.94 90.920 78.148
YO1 [N ] 6.583 13.554 71.329 24.376 43.401 69.216 52.392 44.504 75.654 78.449
XO2 [N ] 13.803 4.415 61.586 45.107 43.507 62.992 2.602 10.843 48.323 49.284
YO2 [N ] 18.329 0.904 23.615 6.952 1.943 36.711 53.680 42.945 20.381 53.846
XO3 [N ] 51.530 34.565 84.641 66.442 71.774 89.406 58.284 57.238 80.744 56.743
YO3 [N ] 41.902 38.198 1.919 40.919 18.896 61.962 6.287 15.653 54.004 69.616
XO4 [N ] 34.515 70.755 80.633 56.957 74.490 84.639 67.804 18.934 76.029 46.395
YO4 [N ] 66.865 33.413 53.898 40.632 9.603 72.665 49.635 59.394 77.687 78.915
M1 [Nm] 70.061 44.981 90.317 81.166 71.922 92.546 52.759 21.615 94.762 81.788
Fshx [N ] 21.432 4.292 90.385 50.261 52.053 79.055 81.238 73.805 99.186 98.853
Fshy [N ] 17.343 36.838 71.947 48.487 41.272 69.698 59.69 56.217 77.396 78.234
Msh [Nm] 65.140 30.427 51.629 39.912 10.770 69.338 52.416 65.564 76.383 77.178

Bold values indicates the objective functions which are optimized in Case 1, 2 or 3

the bounds from Table 2. By expanding the boundaries of design variables for Case 3, the percentage decrease
in values of objective functions (Fshx , Fshy and Msh) remains almost at the same level.

Note that the italics values presented in Table 3 represent the results obtained by individual application
of the FA and CS algorithms, which are better in comparison with the corresponding results obtained by
applying the H-CS-FA algorithm. Finally, by analyzing the data in Table 3, it can be concluded that for all
three considered cases (Case 1, Case 2, and Case 3), the application of H-CS-FA results in the reduction of
all optimization values. Also, for Case 1 and Case 2, in comparison with FA and CS, the H-CS-FA algorithm
provides, for most optimization values, a higher degree of reduction in values of these quantities. In Case 2,
in comparison with CS and FA, the use of the H-CS-FA algorithm results in a considerable reduction of all
optimization values. From the aspect of minimization of reaction forces in the inner joints (joints 2 and 3) for
the considered type of planar mechanism, it is best, for practical calculations, to use the objective function
(49) composed of the particular functions defined in Case 2

5 Conclusions

This paper considers the problem of minimization of joint reactions, shaking forces, shaking moment and
driving torque in a four-bar mechanism. Firstly, the joint reactions are determined by using a newmethod based
on the use of absolute angles of rotation of the links. The problem ofminimization of joint reactions is solved by
using multi-objective optimization. Unlike the conventional approaches to multi-objective optimization which
imply the use of weighting factors or the Pareto front, this paper presents a new algorithm created by means
of hybridization of two biologically inspired algorithms in order to accomplish simultaneous minimization of
several objective functions. Three cases in which eight, nine and three objective functions are simultaneouly
minimized by optimization of the distribution of mass of each link of the mechanism are considered. The new
biologically inspired algorithm, named Hybrid Cuckoo Search and Firefly Algorithm (H-CS-FA), is applied
for the purpose of minimization of joint reaction forces, shaking force, shaking moment and driving torque.
The results obtained show considerable reduction of values of these dynamic quantities in comparison with
the original (non-optimized) ones. By analyzing the results shown in Table 3, it can be noticed that the greatest
reduction in the value of the shaking force along the x and y axes, the shaking moment as well as the driving
torque is in Case 3. Hence, in Case 3, when Fshx , Fshy and Msh are chosen for objective functions, the results
show that their percentage decrease is also the highest. By expanding the search space, this result does not
change significantly. In other words, by expanding the boundaries of design variables in Case 3, a percentage
reduction in values Fshx , Fshy andMsh remains at the same level. In Case 1, where joint reactions at all joints are
selected as objective functions in the optimization process, it can be noticed that there is the greatest reduction
in the values of joint reactions in the stationary support O1. In Case 2, where all joint reactions and the driving
torque are optimized, it is noticed that the highest percentage decrease in joint reactions is in the joints O2, O3
and O4. The imposed conclusion is that an adequate selection of objective functions can influence the degree of
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reduction in the corresponding dynamic quantities. Also, the results obtained show that the use of the proposed
H-CS-FA in the process of multi-objective optimization results in obtaining considerably reduced values of
the optimized quantities, which proves its efficiency. Also, by comparing the results obtained using the hybrid
algorithm (H-CS-FA) and the results obtained by applying the basic algorithms (CS and FA), the efficiency
of the proposed optimization procedure and justification of the application of the proposed algorithm have
been proved. While solving the problem of dynamic balancing of the four-bar mechanism in this paper, the
joint reactions at all four joints are taken into account, which is not the case in the previous approaches in the
literature which have considered only reaction forces at the ground joints, O1 and O4. Further research of the
authors of this paper will be directed toward the extension of the proposed hybrid algorithm to other types of
planar mechanisms.

Acknowledgements Authors wish to acknowledge the support of the Ministry of Education and Science of the Republic of
Serbia for support through research projects TR-35038, TR-35006 and TR-33015.

Appendix

The Cartesian coordinates of mass centers Cp (p = 1, 2, 3) of the mechanisms
(
Vp

)
(p = 1, 2, 3) of the

mechanism shown in Fig. 3 are:

xC1 = s1 + d1 cos (θ1 + α1) ,

yC1 = s2 + d1 sin (θ1 + α1) ,

xC2 = s1 + L1 cos θ1 + s3 + d2 cos (θ2 + α2) ,

yC2 = s2 + L1 sin θ1 + s4 + d2 sin (θ2 + α2) ,

xC3 = L4 + s5 + d3 cos (θ3 + α3) ,

yC3 = s6 + d3 sin (θ3 + α3) .
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