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Abstract We discuss the magnetostriction effect in soft magnetic elastomers: stretching/shrinking of a sample
under the action of uniform magnetic field in the absence of mechanical loads. Qualitative analysis shows that
the field has a twofold effect on the medium; one of those mechanisms works at the macroscopic scale whereas
the other one stems from the mesoscopic processes. Essentially, the latter one is defined by the “architecture”
of short-range spatial order existing in the ferromagnet particle assembly. This conclusion is illustrated with the
aid of numerical modeling. First, it is done on a 2D elastic array filled with linearly magnetizable particles. It is
shown that it is indeed the presence of clusters that controls both the sign and magnitude of magnetostriction in
the composite. In other words, two composites with the same matrix/filler content may behave very differently
depending on their mesoscale structure. Further on, to get a more realistic description, themodeling is extended
to a 3D array of spherical particles randomly distributed in an elastic matrix. Although the general conclusions
hold, the quantitative results differ substantially.

Keywords Magnetorheological polymers · Magnetostriction effect · Magntomechanics

1 The origin of magnetostriction in magnetic elastomers

Functional materials obtained by embedding finely dispersed ferromagnets in polymers are well known.
Employing various ferromagnets (magnetically soft or highly coercive) and using rubbers (elasticity mod-
ulus G ∼10–100MPa) as binding agents, one may produce the cores for induction coils or electromagnetic
radiation absorbing shields [1,2,7,22] aswell as permanentmagnets [23,26]which sustainmuch higher extents
of deformation without destruction than their metal or ceramic prototypes [23,26].

The systems where the ferromagnet microparticles are admixed to a very soft (G ∼1–100kPa) polymer
under the particle content just two-three times lower than the maximal packing density, have attracted scientific
and applicational interest much later [17,18,24,35]. Now those composites make a special family of smart
materials termedmagnetorheological polymers or softmagnetic elastomers (SMEs). Thewell-known examples
of the matrices for SMEs are dense polymer gels (gelatine and polyvinyl alcohol) [21,24,35] or weakly
linked caoutchoucs (plasticized silicone rubbers) [8–10,27,33]. As the fillers, micro- or nanopowders of iron
or ferrites (e.g., magnetite or maghemite) are used. The main distinction between SMEs and conventional
magnetic rubbers is the scale of their deformational response to an applied magnetic field. This could be easily
proven with the aid of a few simple estimates. Let the magnetic field that is in our disposal be H ∼ 1kOe;
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or—in a nonuniform case—the jump of the same field ∇H ∼ H/ l at a distance l ∼ 1cm. We note that both
conditions are easily available at a laboratory. We assume that the magnetization of a SME under those fields
is M ∼ 102 G, in reality it might be two-three times greater. The strain Δl/ l ≡ ε—conventionally termed the
magnetostriction effect [10]—that is induced in a SME by a uniform field results from the balance between
the magnetic and elastic contributions to the energy density of the sample that is by the order of magnitude
M2ε ∼ Gε2. Taking the shear modulus of a SME as G ∼ 10kPa, one finds ε ∼ 10%. For a magnetic rubber
the same deformation would be 103–104 times lower and yet less for any solid ferromagnet. In a nonuniform
field, the SME deforms under the action of volumicmagnetic forces. Setting their work spent on a displacement
of a small element by distance Δl equal to the increment of elastic energy induced by that displacement, one
finds ε ∼ MH/Gm ; substitution of the above-mentioned numerical values yields ε ∼ 100%. Thus, one sees
that even a moderate field is able to produce macroscopically notable shape changes in SMEs.

The presented estimates are based on the viewpoint that a SME is an isotropic medium (continuum), where
each element possesses the same unchangeable ability to magnetize. The first and most known example of
using such a model is the problem of field-induced deformation of a SME sphere [11,28–31]. Such a theory
enables one to easily point out the sign of the effect, see Fig. 1a. As the internal magnetic field is uniform, the
magnetization M of the SME is uniform as well, and is directed along the applied field H0. In this case, the
only result of magnetizing is the occurrence of surface tension proportional to M2

n , i.e., squared projection of
the magnetization on the local normal. Apparently, this quantity is maximal at the “poles” that is in the points
where vector H0 that passes through the center of the sphere, crosses its surface. This entails unambiguous
conclusion that, under magnetizing, a SME sphere must stretch along the direction of the field.

Let us consider the same problem taking into account the internal structure of the composite material. This
is quite a justified approach as any SME is a heterogeneous system. Figure 1b schematically shows the internal
arrangement of the particles inside the same sphere as in Fig. 1a. It looks like a “watermelon with seeds”: inside
a rather soft matrix a large number of small solid magnetizable particles is distributed. If the metal or ferrite
has low coercivity, as, for example, carbonyl iron or magnetite do, the micron size of the particles ensures that
they are multi-domain. This makes them magnetically soft that means that they have zero magnetization in
zero field. It is worth noting that magnetic softness has nothing to do with the mechanical one: the Young’s
modulus of the particles are many orders of magnitude greater than that of the matrix. Under the fields of
moderate strength, the magnetization of such particles varies linearly as M = χH, where coefficient χ is
called magnetic susceptibility; for simplicity, we assume here that χ is isotropic. Note that some magnetic
susceptibility χm is inherent to the polymer matrix of the SME as well. However, the difference between χ
and χm is at least five orders of magnitude that enables one to completely neglect the magnetic response of
the matrix under moderate ∼ 1kOe fields.

Therefore, the magnetic field exerted on a SME sample, producing no effect on the matrix, magnetizes the
particles, i.e., imparts to each of them amagneticmomentm in the direction ofH (for simplicitywe neglect here
the inter-particles fields). In result, each of the particles becomes a source of its own nonuniformmagnetic field
and comes into ponderomotive interaction with all the other ones. If to assume that magnetization is uniform
inside the particles, then the interparticle pair potential could be taken in the dipole approximation:

U (dd)
i j = mi ·m j

r5i j
− 3(mi ·ri j )(m j ·ri j )

r5i j
. (1)

where ri j is center-to-center vector between i-th and j-th particles.

Fig. 1 To the discussion of the origin of magnetostriction effect in SMEs: a continual viewpoint (black arrows show the surface
pressure distribution); b mesoscopic viewpoint (color arrows show the particle magnetic moments) (Color online)
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The anisotropy of this potential is well known. In particular, each particle in Fig. 1b is attracted to its
nearest neighbors along the direction of the field (“head-to-tail” configuration) and is repelled by its neighbors
in the plane transverse to H (“side-by-side” configuration). Given that adhesion of the particles to the matrix
is sufficiently strong, those interparticle forces are transferred to the matrix and, as their actions add, make the
sphere to shrink along the direction of the field.

The occurring antagonism of the predictions does not mean, however, that one of the interpretations—
continual or discrete—is completely wrong. However, this contradiction definitely points out oversimplifica-
tions in considering the problem. As it is shown below, a correct approach should take into account the twofold
nature of magnetizing effect on SMEs. Meanwhile, each of Fig. 1a and b is made to intentionally emphasize
just one of the aspects.

The source of the first mechanism of deformation is the macroscopic magnetizationM that induces inside
and outside of the sample the fieldHd , which inside the body is called the demagnetizing field. The interaction
between M and Hd defines the part of magnetostatic energy that depends on the shape of the sample. The
tendency of this contribution to acquire minimum makes the body to elongate along the direction of the
field1. For small strains, the spherical problem has exact analytical solution [29,30] whereas the case of finite
field-induced strains requires numerical calculations [31].

As it follows from the afore-presented considerations, the discussed mechanism of striction emerges only
in the samples whose size along the field direction is finite, i.e., they have borders which are not parallel to
the applied field. With allowance for that, the considered mechanism of deformation might be termed shape
magnetostriction. Since the field Hd acts at the macroscopic scale and but weakly depends on the details of
spatial distributions of the particles in the matrix, the shape striction could be quite accurately described with
the continuum model. A direct theoretical proof for that is given in [15] where the authors, starting from the
sample composed of a finite number of discrete magnetic elements, have performed transition to the continual
limit by unbounded diminution of the element size under simultaneous enhancement of their number to infinity.

In this connection, we remind that in solid ferromagnets and ferrites (either crystalline or amorphous) the
strains caused by the shape striction are very small. Therefore, the large magnitude of shape magnetostriction
in SMEs is a specific essential property of these soft magnetic materials.

The other mechanism of magnetically induced deformation—we term it structure striction—is due, as
mentioned, to the particle interaction at themesoscopic scale∼ (N/V )−1/3, where N is the number of particles
in the sample and V its volume. This contribution to the magnetostatic energy is virtually independent of the
sample shape and does not tend to zero in an infinite body. On the other hand, because of the anisotropy of
dipolar interaction (1), this energy strongly depends on the short-range spatial order in the particle assembly,
i.e., on the character of the magnetic phase density distribution. This implies that, contrary to the shape effect
that is always positive (inducing elongation) in compact bodies, the structure magnetostriction may have any
sign and vary substantially in its magnitude. In this context, one should consider Fig. 1b (a regular lattice of
particles) where the structure striction is negative, just as an illustrative example.

The important role of interparticle interactions is discussed in a number of papers [3,5,16,19,25]. However,
in the modern literature on ferrogels and SMEs the shape and structure contributions to the magnetostriction
effect are not distinguished clearly. Indeed, even in fundamental experimental [10,34,35] and theoretical
[4,6] works on SMEs, any field-induced shape changes are termed and treated as a single magnetostriction
effect. This is not a surprise though, since in any experiment it is quite feasible to measure the macroscopic
magnetization and strain of a sample, but it is a sophisticated problem to “pre-program” the spatial distribution
of the particles before polymerization and to make a detailed morphological analysis of the material in the
course and after measurement.

2 Modeling of the magnetostriction effects

We consider the magnetostriction problem with the aid of numerical experiment where a SME sample is
presented as a dispersion of particles of a magnetically soft ferromagnet in an isotropically elastic matrix. The
number concentration of the particles—they are assumed to be identical spheres—is taken to be 20–30vol.%,
as that in the real materials which are most attractive for practical applications. Due to limited computer

1 This statement is completely valid only for the “compact” bodies like spheres, cylinders. When the body geometry is more
complex and comprises a set of “compact” objects, e.g., a dumbbell [31], the sign and magnitude of the magnetostatic shape
effect could be evaluated only in result of accurate calculation.
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resources, the amount of particles cannot be taken too large, and we set this number about 100. Although such
modeling might be insufficient for quantitative accuracy, it is instructive in the fundamental qualitative aspect.

The principal questions to be answered are: (i) to what extent would the sample change its shape in response
to magnetizing, and (ii) what would be the orientation of the main axes of the emerging stretching/shrinking
with respect to the direction of the applied field. As it has been inferred, the most relevant part belongs
to the short-range details of the internal structure. In other words, we look for the causes due to which two
samples identical in their initial shape and overall magnetic phase content would display different field-induced
responses.

Fundamentally, this is due to the anisotropy of magnetodipole interaction. As formula (1) shows, the force
that couples a pair of magnetic dipoles (induced by and co-aligned with the field H0) changes from attraction
to repulsion under rotation of their center-to-center vector r from orientation r ‖ H0 to r ⊥ H0. As this
force goes down with the distance rather fast, the nearest particle neighborhood is what that mostly matters.
Depending on their arrangement, the particles would either group in chains or move away from one another.
Each particle in its displacement entrains the region of the matrix attached to it, and in SMEs with a high filling
fraction a simultaneous number of such moves is large. Evidently, if in a composite some prevailing type of
the short-range arrangement has been formed, the occurring mesoscopic changes should manifest themselves
in the overall behavior of the sample.

As mentioned, the shape effect in the magnetodeformational response registered in experiment is of purely
macroscopic origin. Therefore, the sample shape and overall magnetic phase content practically determine
its shape magnetostriction. The structure effect stems from mesoscopy, and to detect it one needs to vary the
short-range order without changing the magnetic phase fraction.

A hypothetical direct way to prepare such test samples is high-resolution 3D printing of metal-polymer
composites; unfortunately, such manufacturing procedure is unavailable whatsoever. The case of SMEs, how-
ever, is an example of a situation where the absence of precisely made samples is not a fatal obstacle for
progressing. An advantageous circumstance is that the reference ranges of the SME material parameters fall
within the scope where a numerical experiment has good chances for providing reliable results. To justify this
inference, we remark the following. The range of spatial scales that is mesoscopic for SMEs (1–10μm) is at
the same time indubitably macroscopic with respect to the atomic scale (1–10nm). The occurring three orders
of magnitude difference implies that, first, the particles may be treated as massive ferromagnets and, thus, may
be described with the aid of well-developed phenomenology. Second, at the same mesoscopic scale the SME
matrix may be for granted considered as a continuum with high-elasticity properties and, thus, described in
terms of conventional theoretical mechanics of elastomers.

This enables one to treat a SME as a two-phase material under condition of full adhesion of the particles to
the matrix. The moduli of the phases differ by several orders of magnitude; in the presence of a magnetic field
the solid phase behaves as a typical magnetically soft multi-domain ferromagnet. Given that, the problem of
mesomechanics of a SME is in a clear way reformulated in terms of a coupled magnetoelastic problem quite
suitable for computer simulation. Evidently, the transition from mesoscopic to real macroscopic scale would
require averaging of the results over a large number of realizations of the SME sample.

3 Solution of a 2D problem

The model sample is a plane square, see Fig. 2, of isotropically elastic material containing 160 identical
magnetically soft particles glued to the matrix; the particle radius a is 1/50 of the side of the square. A uniform
field H0 is exerted along axis Oy; the particle magnetization grows linearly with the field. The magnetic
(ponderomotive) force on a given particle is calculated as a sum of pairwise interactions with all the other
particles of the assembly under assumption that their magnetic moments are point dipoles located in their
centers; the occurring strains are assumed to be small.

As there are no reliable data on the morphology of real SMEs, the initial spatial distribution of the particles
is taken to be random. An example of the initial configuration is shown in Fig. 2. The statistical averaging is
done over 30 computer realizations of the initial state.

3.1 Elastic problem

As the particle–matrix interfaces in our model are unbreakable (no delamination), the SME sample is treated
as a continuum with piecewise-constant properties, elastic and magnetic. Namely, we consider a limited in
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Fig. 2 An example of random distribution of 160 particles in a square sample, the particle radius is a = 0.02; at two adjacent
sides of the square (x = 1 and y = 0), normal displacements are forbidden, see conditions (5). Color shows the result of cluster
analysis: empty circles are solitary (isolated) particles, colored are the particles united in clusters (Color online)

two directions polymer sample with N circular holes. Each hole has diameter 2a and is fully filled with a solid
magnetic material (particle) and, thus, is practically undeformable; the polymer phase obeys the Hook law.
Then the equation of the sample equilibrium and pertinent incompressibility condition is

∇·S + fmag = 0, Tr(E) = 0; (2)

here S is the Cauchy stress tensor, Tr(E) the first invariant of small-strain tensor E, and fmag the density of
magnetic forces.

The Hook law for an incompressible medium has the form

S = −pg + 2G(r)E, (3)

where p is hydrostatic pressure, g unit tensor, and G(r) shear modulus. As mentioned in above, G here is a
coordinate-dependent piecewise-constant function; for the polymer matrix it is denoted as Gm , for the particle
substance we take Gp ∼ 105Gm to virtually eliminate deformation of the particles. Introducing indicator
function Ii (r) that equals unity if radius-vector r ends in i-th particle and is zero otherwise, one gets for the
modulus a coordinate-dependent representation

G(r) =
∑

i

{
Gp Ii (r) + Gm [1 − Ii (r)]

}
. (4)

For the strain tensor, a standard kinematic relation is adopted:

E = 1
2

(∇u + ∇uT
)
, (5)

that expresses it via gradients of the displacement vector u; index T denotes matrix transposition. At two
adjacent sides of the square (x = 1 and y = 0), an unbreakable contact of the SME with the boundary is
imposed:

ux |x=1 = 0, uy
∣∣
y=0 = 0; (6)

it prevents delamination but does not impede sliding of the sample along those boundaries. Two other sides of
the sample allow for free displacements in xOy plane:

n·S|x=0 = 0, n·S|y=1 = 0, (7)

here n is the vector of outer normal.
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3.2 Magnetic forces

In small-strain approximation, the elastic andmagnetic parts of the problem split. First, assuming that the field-
induced magnetic moments of the particles may be treated as point-like ones, we evaluate the interparticle pair
magnetodipole forces in the initial configuration. This is done in the following way.

As the particles are assumed to be spherical and there is no mutual magnetization, each particle has the
same field-induced magnetic moment:

mi = 3vH0

3χ−1 + 4π
; (8)

where v is the particle volume and χ volumic magnetic susceptibility of the particle substance. For strongly
magnetizable materials (e.g., iron with χ � 103) formula (8) reduces to a well-known limiting expression
m = 3vH0/4π that for a spherical particle yieldsm = a3H0.

The force exerted on i-th particle is evaluated as the gradient of its dipolar energy:

Fi = −
N∑

j=1
j �=i

∇U (dd)
i j = mi ·

N∑

j=1
j �=i

∇
[
−m j

r3i j
+ 3

(
m j ·ri j

)
ri j

r5i j

]

=
N∑

j=1
j �=i

{
3

r5i j

[(
mi ·m j

)
ri j + (mi ·ri j

)
m j + (m j ·ri j

)
mi
]

−15

r7i j

(
mi ·ri j

) (
mi ·ri j

)
ri j

}

and is uniformly “smeared” over the volume of the particle that is very convenient for numerical calculations.
Therefore, the force distribution in the sample is shaped up as a piecewise-constant function

fmag = (πa2)−1
∑

i

Fi Ii (r). (9)

3.3 Magnetostriction deformation

After evaluation of magnetic forces, the elastic theory equations are solved by finite-element method with the
aid of programme package FreeFEM++ [14]. For that, general variational problem is written in the form

∫

V

[
S··δE + Tr(E) δp

]
dV =

∫

V

fmag ·δu dV . (10)

By substitution of the Hook law (3) and kinematic relation (5), functional (10) is transformed to
∫

V

[
−p∇δu + 1

2
G
(
∇u + ∇Tu

)
··
(
∇δu + ∇T δu

)
+ Tr(E)δp

]
dV

=
∫

V

fmag ·δu dV, (11)

where the elasticity modulus and magnetic force are given by piecewise-constant functions (4) and (9), respec-
tively.

Minimization of functional (11) is performed on a sufficiently dense trianglemesh that covers all the sample
and particles altogether. In result, with the given magnetic forces fmag one finds the displacement and pressure
distributions: u and p. To measure elongation/shrinking of the sample, we use the average displacement of its
upper boundary (the lower boundary in immovable):

ε =
1∫

0

uy
∣∣
y=1 dx; (12)
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Fig. 3 Strain histograms of the model SME; vertical axis renders the number of realizations; a all the particles are magnetically
susceptible; b only solitary particles are magnetic; c only clustered particles are magnetic (Color online)

in the linear problem under solution this quantity is the equivalent of strain. Since in the calculation the
nondimensional magnetic field is set to unity

(
H2
0 /Gm

) = 1 with Gm being the shear modulus of the matrix,
parameter ε renders the nondimensional initial “magnetostriction susceptibility” Gm

(
dε/dH2

0

)
H0=0 of the

sample.

4 Results of 2D modeling

As it follows from the qualitative analysis present in Sect. 1, the deformation induced in the model sample in
response to an applied uniform field comprises contributions from the shape effect and the structure striction.
A direct attempt to find which of the parts prevails in the square sample with the given particle concentration
( 20% with respect to the occupied area) fails. The obtained distribution of ε (30 realizations) does not provide
a definite answer: the probabilities to encounter stretching or shrinking turn out to be close, see Fig. 3a. In
other words, in a given sample the value of magnetostriction strongly fluctuates. The main uncertainty stems,
of course, from the structure magnetostriction, once again pointing out the importance of short-range order of
the particles.

To clarify the issue, we have to get back to the qualitative analysis of the structure magnetostriction. Let
us assume, first, that spatial distribution of the particles is highly uniform, i.e., almost all the particles are
isolated and are positioned from one another at the distances about the mean statistical value r ∼ (N/V )−1/3.
The structure magnetostriction in this case should not differ much from that of a lattice system (Fig. 1b) and,
according to the above-given consideration, be negative.

Let now the magnetic filler be intentionally embedded in the matrix in the form of linear chain clusters
each comprising ν particles. Such a magnetic “ν-mer” responds to the applied field as a single object (a rod)
and strives to set its major axis alongH0. If the initial angle of this axis is nonzero, the turn of the chain should
provoke local stretching of the matrix in the ±H0 direction, and by that induce positive magnetostriction. The
longer the chain the stronger the effect under a given filed strength.

These conclusions were verified with the same set of 30 realizations of the square sample in the following
way. Each randomly generated configuration of the particle assembly had been analyzed for the presence of
clusters. A particle was considered as belonging to a cluster, if it had at least one neighbor with the center
positioned inside a surrounding sphere of radius 2a(1 + δ∗) with δ∗ = 0.04. By that, all the particles in the
sample were marked as either solitary (isolated) or clustered.

After the cluster analysis, each configuration was transformed in one of two ways. In the first variant,
the solitary particles were left intact whereas the clustered particles were deprived of magnetic susceptibility.
In the second variant, only the clustered particles were considered magnetizable. Evidently, in zero field the
mechanical properties of the samples of both types are the same, the difference in deformation should manifest
itself under magnetization.

For both variants of the particle “magnetic selection”, the problem of the field-induced deformational
response was solved numerically for 30 realizations of the initial state, and the strain was evaluated according
to formula (12). The results are presented by histograms in Fig. 3b, c.

As mentioned, the difference between Fig. 3b, c is due solely to the absence/presence of elongated clusters
emerged during generation of the initial state. Consider Fig. 3b characterizing the samples where only solitary
particles havemagnetic moments. The statistical spread notwithstanding, in this histogram there are no positive
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Fig. 4 Interferograms of the end-wall surface of SME cylinders in normal field 600Oe; the color scale (at the top) graduates
elevations and depressions of the surface with respect to the unperturbed level (at H0 = 0); panes a–d correspond to four different
samples; taken from Ref. [12] (Color online)

values of ε. This means that a square SME sample comprising no magnetic clusters always shrinks along the
direction of the field. To the contrary, the samples where magnetic particles are grouped always do stretch
under magnetization, see Fig. 3c. These facts enable one to easily interpret the histogram of Fig. 3a that
renders the result for a sample where both the solitary and clustered particles are magnetic and contribute
to the deformation. Expectably, such a sample has the most wide spread of occurring strains centered at
zero.

One comment on the above-discussed model is necessary. Note the simplified expression for the particle
magneticmoment (8): it is definedby the external fieldH0 andnot by the local field that takes in the contributions
of all the particles in the assembly. This means that the demagnetizing effect is always fixed to its value
inherent to a sphere and does not depend on the geometry of the sample. In other words, the shape part of the
magnetostriction is ignored, and the focus is only on the structure contribution.

Although the results of the 2D model cannot be taken as an ultimate proof, they strongly support the
conclusion that mesoscopic short-range order is crucially important for the macroscopic magnetomechan-
ical properties of SMEs [32]. As a direct experimental confirmation (qualitative, as well) for the above-
given considerations we remark Ref. [12], where measurements of magnetostriction effect are reported on
an isotropic SME with silicone rubber base and carbonyl iron filler with volume fraction about 15% and
mean particle diameter 6μm. The cylinder sample of diameter 20mm and height 10mm was fixed by its
end-wall on a solid substrate, whereas the other end-wall was free; a uniform field of 600Oe was applied
along the cylinder axis. The normal displacements of the free surface were registered with optical interfer-
ometry technique. Typical optical patterns obtained on four samples of the same material under the same
conditions are shown in Fig. 4 taken from [12]. Comparison against the color scale shows that the revealed
“landscape” is nonuniform being a mixture of positive (elevations) and negative (depressions) of the SME
surface.

To interpret the images, we remind that observation always renders the joint action of the shape and
structure magnetostriction. The tested sample is a short cylinder (height greater than diameter), and due
to that the demagnetizing (shape) effect is relatively small [30,36]. So, the more pronounced is the struc-
ture effect that makes isolated particles to group and the particle clusters to rotate. The former induce
surface depressions and the latter—elevations. In an isotropic SME, there are the regions of both types
and, if for just structure magnetostriction (no shape contribution), the number of those regions would
have been about the same. This explains well-mixed coloration between red and blue in the images of
Fig. 4.
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5 Framework for 3D modeling

5.1 General remarks

The above-presented 2Dmodeling yields important facts for qualitative conclusions and helps to build a correct
general viewpoint on the magnetomechanics of SMEs with magnetically soft fillers. However, it is essentially
insufficient for even semi-quantitative consideration of the problem. The fundamental cause for that is that both
the magnetostatic and elastic interactions, which “rule the game”, are long-range. For that kind of interactions,
the passage from 2D to 3D usually entails very important quantitative differences. In general sense, this is due
to a large change of the number of close neighbors for the particles as well as for the elements of the matrix.

The tensor form of the 3D elastic problem does not differ much from that of the 2D case and is written
in following way. The SME sample occupies a 3D space region Ω and contains N spherical particles. The
i-th particle occupies the space Ω

(p)
i , so that the matrix region is Ω(m) = Ω\Ω(p)

1 \Ω(p)
2 ...\Ω(p)

N . The outer
surface Γ of region Ω comprises three parts. To the part Γ f a distributed external force F(b) is applied, at the
part Γu the normal to the surface displacements are forbidden, the part Γ0 is stress-free. Definitions (4) for the
indicator function and piecewise-constant modulus remain the same and so is the kinematic relation (5). It is
worth of noting that the above-given description covers not only the 3D magnetostriction problem as itself but
the situations where external mechanical loads F(b) might be exerted on a SME sample as well. Therefore, the
general scheme presented in Sect. 5.2 (below) is applicable to a broad range of problems. For example, one
would need the extended formulation for evaluation of the elastic moduli and forced deformations of SMEs.
In what follows, we, first, specify the general problem statement and outline the way to its solution; then we
focus just on magnetostriction setting F(b) = 0 so that the surfaces Γ f and Γ0 merge.

5.2 Elastic energy

Each particle experiences the force F(p)
i that is applied to its center of mass; here for a time being the origin

of the force is irrelevant. The equations for the stress tensor virtually coincide with (2) and (3):

∇·S + f = 0, f =
N∑

i

Ii (r)F
(p)
i /Vi , (13)

with Vi being the particle volume. The boundary conditions are

n·S|Γ f
= F(b)/S f , n·u|Γu

= 0, n·S|Γ0 = 0, (14)

where S f is the area of Γ f .

The boundary Γ f moves under the action of internal forces F(p)
i and external force F(b)

i . The mean values
of displacements of the particles and the boundary Γ f are evaluated according to

u(p)
i = 1

Vi

∫

Ω
(p)
i

u dV, u(b) = 1

S f

∫

Γ f

u dS; (15)

here S f is the area of the stress-free surface of the sample.
Defining generalized forces and displacements as

F =
{
F(p)
1 , F(p)

2 , ...F(p)
N , F(b)

}
, U =

{
u(p)
1 , u(p)

2 , ...u(p)
N , u(b)

}
, (16)

we introduce the linear response matrix C that relates the displacements u(p)
i and u(b) with the forces F(p)

i and
F(b):

U = C·F. (17)

To find C, one has to solve the elastic problem (13) 3(N + 1) times. At i-th step, the generalized force vector
is given by condition Fk = 0 if k �= i , and F(p)

i = 1 if k = i . Then, by solving equation (13), the sequence
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of values that makes i-th line of matrix C is found. For further use, it is convenient to introduce the inverse
matrix L = C−1 so that

F = L·U. (18)

Let us evaluate the portion of work spent by the forces F(p)
i and F(b) when producing displacements u(p)

i
and u(p):

d A = F·dU = U·L·dU. (19)
This work is equal to the increment of accumulated elastic energy for which integration yields

Uel =
∫

dW = 1
2U·L·U. (20)

5.3 Magnetic energy

As the magnetoelastic problem is solved by minimization of the energy functional, there is no need to derive
explicit formulas for magnetic forces. Unlike 2D case, here we take into account mutual magnetization of the
particles. In this approach, the particle magnetic moments are induced by the local magnetic field that consists
of two parts: external magnetic field and the field from all the other particles of the sample except for the given
one:

mi = Vi
χ−1 + 4π/3

⎡

⎢⎣H0(ri ) +
N∑

j=1
j �=i

(
−m j

r3i j
+ 3

m j

r5i j

(
m j ·ri j

)
)⎤

⎥⎦ . (21)

The center-to-center vector ri j = r(0)
i − r(0)

j + u(p)
i − u(p)

j is defined with allowance for the probing displace-

ments of the particles: ri = r(0)
i + u(p)

i and r j = r(0)
j + u(p)

j where the radii with index 0 denote the initial
position of i-th and j-th particles: Presenting the interparticle field in explicit form and regrouping the resulting
expression, one gets

N∑

j

[
(1 − δi j )

(
g

r3i j
− 3ri j ⊗ ri j

r5i j

)
+ gδi j

χ−1 + 4π/3

Vi

]
·m j = H0i , (22)

here notation H0i = H0(ri ) means that the right-hand side, equal H0 (external uniform field), is present in
each line of the obtained set of 3N linear equations that determines the magnitudes and directions of all the
magnetic moments in the sample.

After introducing coefficients

Ai j (U) =
{
g/r3i j − 3ri j ⊗ ri j/r5i j for i �= j;
g
(
χ−1 + 4π/3

)
/Vi for i = j; (23)

the set (22) writes as
N∑

j=1

Ai j ·m j = H0i . (24)

Presenting the set of coefficients Ai j in block form, one gets
⎛

⎜⎜⎜⎝

[
Ai j
xx

] [
Ai j
xy

] [
Ai j
xz

]

[
Ai j

yx

] [
Ai j

yy

] [
Ai j

yz

]

[
Ai j
zx

] [
Ai j
zy

] [
Ai j
zz

]

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎝

[
(mx ) j

]
[
(my) j

]

[
(mz) j

]

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

[
(H0x ) j

]
[
(H0y) j

]

[
(H0z) j

]

⎞

⎟⎟⎠ , (25)

or, in compact notations
A·m = H0. (26)

Finally, the expression for the magnetostatic energy takes the form

Umag = −1

2

N∑

i

mi ·H0 = − 1
2H0 ·A−1(U)·H0 (27)
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Fig. 5 Field-induced structuring of a SME cube with volume content 0.15 at zero field (a) and H2
0 /Gm = 200 (b). Pane c shows

the field dependence of strain for five different realizations of the sample (colors), thick black lines are eye-guides obtained by
averaging of the symbol series in the intervals to the left and right of H2

0 /Gm = 70 (Color online)

Fig. 6 Same as in Fig. 5 but for volume content 0.2 (Color online)

Fig. 7 Field-induced structuring of a SME cube with volume content 0.26 at zero field (a) and H2
0 /Gm = 200 (b). Pane c shows

the field dependence of strain for five different realizations of the sample (colors), thick black lines are eye-guides obtained by
averaging of the symbol series in the intervals to the left and right of H2

0 /Gm = 70 (Color online)

6 Results of 3D modeling

Contributions (20) and (23) together render the magnetomechanical energy of the model SME sample to be
studied numerically:

U = Uel +Umag = 1
2U·L·U − 1

2H0 ·A−1(U)·H0. (28)

The equilibrium configuration and structure of the SME is found by minimizing of functional (28) under
constraints ri − r j + ui − u j > ai + a j where ai and a j are the respective particle radii.

The developed approach is applied to a cube sample with the side of length l; the cube is filled with
64 randomly positioned identical magnetically polarizable particles. There is no external force (F(b) = 0),
and a constant magnetic field H0 is directed along Oz axis. The boundary conditions at the cube faces are:
ux |x=0 = 0, uy |y=0 = 0, uz |z=0 = 0, see the coordinate frames in Figs. 5a, 6 and 7a. That is, three cube faces:
x = 0, y = 0, and z = 0 may slide without tangential resistance along the respective planes but cannot deform
in normal direction; all the other faces are free.
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Figures 5, 6 and 7 present the snapshots of the samples differing in the particle volume content: with
three concentrations: 0.15 (Fig. 5), 0.2 (Fig. 6) and 0.26 (Fig. 7). Panes a in these figures show the initial
configurations (at H0 = 0) and panes b render the structures occurring under the field H2

0 /Gm = 200 that for
the matrix with shear modulus about 5kPa corresponds to the field strength about 2kOe.

Panes c of Figs. 5, 6 and 7 show the field dependencies of the strain u(b)/ l averaged over the upper surface
of the cube, see equation (15). In simulations, for each value of the particle content, five sample realizations
were generated, the field dependencies of strain obtained in particular calculations are shown by series of
symbols. Solid black lines are eye-guides resulting form averaging the particular results in two regions: to the
left and to the right of the point H2

0 /Gm ≈ 70.
Due to a limited number of particles in the sample and a small number of realizations of the system, the

results fluctuate substantially. However, the tendencies are sufficiently clear, and the analysis made on 2D
models helps to explain them.

The initial system is generated by random positioning of the particles in the cube. The lower the concentra-
tion the more particles are solitary, i.e., non-clustered. When the field is just turned on, the dominating mode
of the SME response is closing-in of the particles which reside near one another given their center-to-center
vectors fall inside the space angle where the magnetodipole interaction is attractive. Thus, at this stage the
degree of clusterizing enhances, although the field is not yet strong enough to notably rotate the clusters. The
resulting overall magnetostriction effect is very low: function ε(H2

0 ) is nearly zero, see the symbols and solid
lines in panes c of Figs. 5, 6 and 7 at H2

0 /Gm < 70. With regard to the results of 2D modeling, we infer that
here the negative structure striction (due to the particle mutual approaches) and positive shape striction (caused
by the action of demagnetizing field) are comparable in magnitude and oppose each other. Depending on the
particular configuration of the particle assembly, one or another tendency prevails slightly, see swings around
zero of the symbol lines in Figs. 5c, 6 and 7c. We note that the simulated aggregation patterns very much
resemble those obtained in direct X-ray observations performed on real silicone rubber-based SMEs filled
with carbonyl iron [13]. As reported there, at enhanced concentrations (∼ 10vol.% and higher) the particles
form rather 3D loose structures than well separated chains. Indeed, all the simulated field-induced structures
presented in Figs. 5, 6 and 7 resemble arrangements of that type.

This low-field process, independently of the model, should evolve proportionally to H2
0 , and the average

low-slope lines in Figs. 5c, 6 and 7c confirm that.
After the majority of the initially solitary particles unite in clusters, the structuring effect of the applied field

reduces mostly to rotation of the emerged line aggregates and their straightening. Besides that, the straightened
chains which lie at short distances to one another, begin aggregate laterally. This mechanism is worth of a
special comment. As it is known, see Ref. [20], for example, straight linear chains of permanent dipoles at close
distances do attract each other laterally if they are configured in “zipper” way: the equator of a spherical particle
of one chain is positioned opposite to the interparticle gap in another one. This pattern of aggregation—it is
valid as well for the field-induced point dipoles that is the case here—becomes visible if to expand (not shown
here) the transition between, for example, Fig. 6a, b in a series of snapshots.

At this stage, both the structure and shape strictions work mostly to the same effect, and the rate of strain
growth increases. It is clearly seen from the change of slope of the ε(H2

0 ) dependence for any particular
assembly as well as from their average. Notably, this process requires that there is some room for changing the
cluster conformations. Whereas for concentrations 0.15 and 0.2 the dependencies ε(H2

0 ) look very much alike,
see Figs. 5c and 6c, the most dense sample (Fig. 7c) elongates with more difficulty: the value ε(H2

0 ) attained
at the maximum field is smaller, cf. Figs. 5c and 6c. We attribute that to the fact that at that concentration the
particles hinder each other displacements.

7 Conclusions

Theoretical discussion on the origin and magnitude of the magnetostriction effect in soft magnetic elastomers
(SMEs) filled with low-coercive ferromagnetic microparticles is presented. The 2D model, despite its evident
roughness andnaivety, enables one to understand that the striction effect comprises twomain contributions—the
shape and structure ones—which work on different scales. The shape striction stems from overall macroscopic
properties of a SME whereas the structure contribution is essentially mesoscopic and crucially dependent on
the short-range arrangement of the particle mutual positions in the matrix.

3D modeling, which brings the consideration much closer to reality, extends this understanding. It reveals
that at low fields the nature of striction is mostly due to clustering of solitary particles. In this process, the
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shape and structure strictions work against one another, and the resulting deformation of a sample is relatively
small. Upon emerging of clusters, the processes of their rotation to and straightening along the field become
the dominating ones. Here both strictions work to the same effect. In result, the overall striction becomes
definitely positive (elongation along the field) and enhances its rate with respect to the field strength. At this
stage, a too large concentration of the particles is an impeding factor as the particles sterically hinder each
other displacements. From that, it follows that for a SME with given material parameters of the particles and
matrix there should exist an interval of concentrations where the striction effect is maximal.

Several features of the presented model might be considered as its drawbacks. Those are: (i) assumption of
perfect sphericity and identical size of the particles; (ii) employment of isotropic linear magnetization of the
ferromagnet instead of imposing a dependence with saturation; (iii) taking a simple Hook law instead of a more
realistic one (Mooney-Rivlin or Gent) for describing the elastic matrix. In this connection, we remark that the
goal of the paper is not to achieve a perfect agreement with experiments (besides, the presently available data
are not at all coherent) but rather to advance a conceptual insight in the magnetostriction effect in SMEs. Note,
however, that by order of magnitude the strain attained under maximum field in the 3D model (Figs. 5c, 6 and
7c) fully agrees with the quantitative estimates given in Sect. 1.
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