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Abstract This paper presents an analytical analysis and optimization of vibration-induced fatigue in a gener-
alized, linear two-degree-of-freedom inerter-based vibration isolation system. The system consists of a source
body and a receiving body, coupled through an isolator. The isolator consists of a spring, a damper, and an
inerter. A broadband frequency force excitation of the source body is assumed throughout the investigation.
Optimized system, in which the kinetic energy of the receiving body is minimized, is compared with sub-
optimal systems by contrasting the fatigue life of a receiving body helical spring with several alternative
isolator setup cases. The optimization is based on minimizing specific kinetic energy, but it also increases the
number of cycles to fatigue failure of the considered helical spring. A significant portion of this improvement
is due to the inclusion of an optimally tuned inerter in the isolator. Various helical spring deflection and stress
correction factors from referent literature are discussed.Most convenient spring stress and deflection correction
factors are adopted and employed in conjunction with pure shear governed proportional stress in the context
of high-cycle fatigue.

Keywords Vibration isolation · Fatigue life · Inerter · Helical spring · Optimization · Stress correction factor

1 Introduction

Mechanical systems, e.g. car suspension systems [1,2] are often subjected to high dynamic loading during their
lifetime. Such service loadings can cause unwanted vibration and premature failure, resulting from destructive
fatiguemechanisms [3]. These are especially evident in case of resonant harmonic excitations [1,3].Heavy-duty
springs used in car suspension systems [1,2] are an example where a crackmay initiate at a stress concentration
location and further propagate, potentially leading to a catastrophic failure [3–5]. Considering vibration fatigue
modelling and analysis of helical springs, both stiffness and strength parameters of general vibration system
should be determined for adequate mathematical modelling, which can be found in [6–18]. Classical works on
strength of materials [19,20], elasticity theory [21] and recent mechanical engineering literature [22,23] touch
on the subject of spring durability and spring fatigue. Considering springs as machine elements that need to
withstand exceptionally long life, appropriate high-cycle fatigue (HCF) calculation method [23–28] is usually
utilized for fatigue lifetime assessment. Extensive studies on the spring fatigue life, particularly for helical
springs, have been conducted [28–34].

From related literature [6–11], it can be observed that various stress and deflection correction factors are
used for spring strength analysis by different authors. Most often applied stress correction factors are those
introduced by Wahl [6,7,10,11,14–17,19–23], Bergsträsser [10,11,14,17,22] and Göhner [7–9,14,17]. For
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example, German DIN standard on calculation and design of cylindrical helical springs was previously based
on Göhner [8,9]; however, it is now based on the Bergsträsser and Wahl [10,11] correction factors. The stress
correction factors may significantly influence predicted fatigue lifetime of helical springs. Wahl himself in his
work [7] suggests that application of his own stress correction factor may result in over-conservative fatigue
life prediction. However, e.g. SAE [15] and Ugural [23] recommend using Wahl’s stress correction factor,
especially for fatigue analysis. Shigley [22], for instance, recommends the Bergsträsser’s correction factor
for fatigue lifetime assessment, for engineering simplicity reasons; however, he does not advise against using
Wahl.

Regarding helical spring fatigue, Berger and Kaiser [28,29] analysed results of very high-cycle fatigue
(VHCF) tests on helical compression springs up to 109 cycles, where they observed that cracks tend to occur
below the surface beyond 107 cycles, which is a practical upper limit for HCF. The authors also mentioned that
Göhner and Bergsträsser correction factors could yield too conservative results in a fatigue life assessment,
which is in agreement with Wahl [7]. Commonly, fatigue life assessment of mechanical springs is based on
fatigue endurance to torsion shear [19–23]. Contrary to that, Del Llano-Vizcaya et al. [30] point out that during
fatigue testing of compression springs with large index (coil radius to wire radius ratio), the dominant fatigue
cracks are initiated and propagated by variation of the principal tensile stress, rather than by the maximum
shear stress. Pyttel et al. [31] used Wahl stress correction factor and finite element method (FEM) for helical
spring stress analysis. Rivera et al. [32] also usedWahl stress correction for spring for elevator doors analytical
fatigue analysis. On the other hand, Ružička et al. [33] used Göhner [8,9,14] and Ancker & Goodier [12,14]
stress correction factor for analytical spring fatigue study and compared it with FEM results. Kamal et al. [34]
used FEM for both stress (S − N ) and strain-life fatigue (ε − N ) analysis of helical spring.

Contemporary literature dealing with vibration and dynamic problems tied to fatigue, e.g. [1,3–5] do not
yet incorporate the beneficiary usage of inerter [2,35] in a classical mass-damper-spring (MDS) environment.
In mechanical networks, inerter is a relatively novel element developed by Smith [2] which produces force
proportional to relative acceleration (a2 − a1) between its terminals, i.e. relation Finrt = b(a2 − a1) holds. The
coefficient of inerter resistance force Finrt is called inertance. It is denoted by label “b” and is measured in
kilograms. Ideal inerter can be approximated in the same sense in which mathematical ideals approximate, e.g.
springs and viscous dampers. Ideally, it is assumed that its mass is small compared to produced inertance [2].
According to authors’ knowledge, no attempt to include the ideal inerter concept in commercial FEM codes
is recorded in the literature.

In the presented study, analytical investigation is conducted to model the fatigue load of a helical spring
acting as an elastic element in a simple and physically transparent two-degree-of-freedom (2-DOF) inerter-
based vibration isolation system. In Sect. 2, analytical mathematical 2-DOF inerter-based vibration isolation
system model is established where optimized parameters for both viscous damper and inerter are determined.
Minimization of kinetic energy is used as a criterion. In Sect. 3, different dimensionless spring deflection and
stress correction factors available from referent literature are discussed, which are later used in the context of
analytically determining displacement and stress amplitudes under harmonic force loading. Finally, Sect. 4
presents a benchmark example by utilizing previously adopted optimization model and employing adopted
spring correction factors. Benchmark is performed by comparing vibration fatigue study of systems with
optimized parameters to sub-par systems. Method for deriving the optimal damping and optimal inertance
combined with optimal damping is developed and employed. Göhner-, Castigliano- and Timoshenko-based
deflection correction factor is derived in dimensionless form. There is no record in the literature of employing
Timoshenko thick beam formulation [19–21] and Cowper shear correction factor [36] for spring deflection
correction, which is also investigated in the scope of this paper, where novel deflection correction factor is
derived. Analytical expression based on the von Mises criterion [22,27,37] for shear governed biaxial and
proportional stress, which explicitly ties vibration displacement amplitudes through Basquin’s equation with
HCF of helical spring, is derived and given in explicit form.

2 2-DOF inerter-based vibration isolator mathematical model

In this chapter, the generalized analytical mathematical model for discrete 2-DOF inerter-based vibration
isolation system is established analytically. The studied problem is represented by a discrete parameter model
as shown in Fig. 1a. It is assumed that the critical component concerning fatigue is a helical spring k3, also
shown in Fig. 1b where E is (Young) modulus of elasticity, ν is Poisson’s factor/ratio, S′

f is fatigue strength
coefficient, and “B” is Basquin’s exponent, i.e. fatigue strength exponent [24,25] here denoted in capital letter
in order not to be confused with inertance “b”. Number of active coils is denoted as n (n = 2 in Fig. 1b),
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(b)(a)

Fig. 1 a The 2-DOF linear discrete vibration isolation system, b helical spring k3 properties (colour figure online)

and h is spring length where h = n · l. Diameters D and d are large and small spring diameters, respectively,
and C = D/d is defined as spring index [7,22,23]. D can also be designated as the mean coil diameter
and d as the wire diameter [22]. Recommended values of spring index C for practical purposes lie between
C = 4−12 [22]. Angle α represents the pitch angle which can be calculated according to geometric expression
α = arctan[l/(πD)], where l is the spring pitch. For the time being, the spring stress is not considered and
spring stiffness is denoted simply as “k3”.

The goal of the vibration-based optimization is to minimize vibrations of the receiving body, i.e. vibrations
of mass m2 which are proportional to the maximum deflection amplitudes of spring k3. In this optimization,
the excitation of the source body F1(t) is assumed to have white noise spectral properties [38], i.e. unit loading
amplitude F01(Ω) = 1 over all frequencies. The whole vibration system consists of discrete masses m1 and
m2, ideally massless springs k1, k2 and k3, viscous dampers c1, c2 and c3 and an ideal inerter of inertance b2.
Isolator consists of spring k2, damper c2 and inerter b2. The ideal inerter produces a force Finrt proportional
to the relative acceleration [2] between masses m1 and m2. Presented discrete parameter approximation may
represent a system of a much more complex nature, including structures with distributed mass, stiffness and
damping, as discussed in, for example, [39–41].

The equations of motion [1] for system in Fig. 1a can be written in the general matrix form as

Mẍ (t) + Cẋ (t) + Kx (t) = F (t) , (1)

where M is the global mass matrix, C is the global damping matrix, K is the global stiffness matrix and F(t)
is the excitation column force vector. Displacement of the masses m1 and m2 from their static equilibrium
positions, velocity and acceleration vectors are denoted by x(t), ẋ(t) and ẍ(t), respectively.

Global matrices and vectors from Eq. (1) can be written as

M =
[

m1 + b2 −b2
−b2 m2 + b2

]
, C =

[
c1 + c2 −c2
−c2 c2 + c3

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]
, (2a, b, c)

x =
[

x1 (t)
x2 (t)

]
, F =

[
F1 (t)
0

]
, (3a, b)

where the parameters and functions in the matrices and vectors are denoted in Fig. 1a.
As the damping of the source and receiving bodies is assumed to be fairly light, the effects of the source

mass m1 and the receiving mass m2 dampers are further neglected, i.e. c1 ≈ c3 ≈ 0.
By assuming harmonic excitation and expressing the excitation and the steady-state response in the complex

form F(t) = F0eiΩt and x(t) = x0eiΩt , where i = √−1, the solution of Eq. (1) can be written as

x0 (Ω) = [−Ω2M + iΩC + K
]−1

F, (4)
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where terms inside the square bracket denote dynamic stiffness matrix and x0(Ω) is the complex displacement
amplitude. Differentiating Eq. (4) with respect to time t yields with complex velocity amplitude expression

ẋ0 (Ω) = iΩx0 (Ω) . (5)

By considering M, C and K matrices from Eq. (2a, b, c), the steady state, i.e. time-invariant complex
response of mass m2 can be expressed in simplified form as the following frequency response function (FRF)

ẋ02 (Ω) = B0 + (iΩ) B1 + (iΩ)2 B2 + (iΩ)3 B3

A0 + (iΩ) A1 + (iΩ)2 A2 + (iΩ)3 A3 + (iΩ)4 A4
. (6)

where coefficients A0−A4 and B0−B3 with respect to Eq. (6) are given by

A0 = (k2 + k3) k1 + k2k3 B0 = 0
A1 = c2 (k1 + k3) B1 = k2
A2 = (m2 + b2) k1 + (m1 + m2) k2 + (m1 + b2) k3 B2 = c2
A3 = c2 (m1 + m2) B3 = b2
A4 = (m2 + b2) m1 + b2m2

. (7a–i)

The transfer mobility, i.e. FRF ẋ02 ≡ v02, from Eq. (6) represents the complex velocity amplitude of the
receiving body per unit forcing F01 = 1, of the source body. FRF from Eq. (6) is further used to assess the
effectiveness of the vibration isolation.

Considering that the excitation force F1 with unit power spectral density (PSD) is assumed, the specific
kinetic energy of the receiving body Ik (per unit mass and per unit excitation force) can be calculated as

Ik =
∞∫

−∞

∣∣∣∣v02 (Ω)

F01

∣∣∣∣
2

dΩ, (8)

according to [42]. The specific kinetic energy index Ik fromEq. (8) is used throughout this study as a quantitative
measure of the broadband frequency vibration isolation performance. The objective is tominimize this quantity
for all vibration isolation systems analysed in the scope of this paper. Vibration-based isolation optimization
with the goal of vibration reduction by using the minimization of kinetic energy can be found in [38]. The
specific kinetic energy index in Eq. (8) for Ik can according to [42] analytically be calculated with expression

Ik = π
A0B2

3 (A0A3 − A1A2) + A0A1A4

(
2B1B3 − B2

2

)
− A0A3A4

(
B2
1 − 2B0B2

)
+ A4B2

0 (A1A4 − A2A3)

A0A4

(
A0A2

3 + A2
1A4 − A1A2A3

) , (9)

where substituting coefficients A0 − A4 and B0 − B3 from Eq. (7a–i) into Eq. (9) yields with final kinetic
energy index Ik analytical expression, which is here omitted because of length.

In the next two subchapters of this study, two types of vibration transmission control are analysed with
respect to potential opportunity of minimizing the specific kinetic energy index Ik : isolation control without
inerter, i.e. b2 = 0, and isolation control with optimized inertance bopt. Optimized damping and inertance
isolator parameters, for inerter excluded where c2 = copt, and inerter included where c2 = copt2 and b2 = bopt,
are obtained by minimizing the frequency averaged kinetic energy of the receiving body denoted symbolically
in Eq. (9).

2.1 Isolation optimization without inerter

By setting the inertance b2 = 0, and considering Eq. (7a–i), Eq. (9) now morphs into simpler form

Ik (b2 = 0) = π
k22 (m1 + m2) + c22 (k1 + k3)

c2 (m2k1 − m1k3)2
. (10)

Differentiating Eq. (10) with respect to viscous damping coefficient c2, equalling with zero and again
solving for damping c2 yields the single physically valid solution

copt = k2

√
m1 + m2

k1 + k3
, (11)
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which unambiguously represents the optimum damping coefficient c2 = copt. Inserting Eq. (11) into Eq. (10)
yields the value of optimum, i.e. minimum kinetic energy

Ikopt = 2πk2

√
(m1 + m2) (k1 + k3)

(m2k1 − m1k3)2
. (12)

By inspecting Eq. (12) mathematical structure, two main conclusions can be drawn.
Firstly, optimum kinetic energy Ikopt is directly proportional to value of isolator spring stiffness k2, which

strongly implies using soft/compliant spring for better isolation effect. Trivial solution is to incorporate zero
stiffness spring k2 which completely decouples the source and receiving bodies. In practical situations, static
or stationary deflections impose true physical limits to spring compliance, therefore spring stiffness k2 cannot
be optimized arbitrarily and is further considered as fixed value.

Secondly, when values m2k1 ≈ m1k3, denominator of Eq. (12) tends to zero and Ikopt value tends to
infinity; therefore, such vibration system should be accordingly detuned during design, i.e. m2k1 �= m1k3.

2.2 Isolation optimization with inerter

When b2 �= 0, differentiating Eq. (9) with respect to damping c2, equalling with zero and again solving for
damping c2 yields the single physically valid solution

c2 (b2 �= 0) =
√

m1 + m2

k1 + k3
k22 − 2b2k2 + m1k23 + m2k21 + b2 (k1 + k3)2

(k1 + k3) [m1 (b2 + m2) + b2m2]
b22, (13)

where c2 now represents optimum damping copt(b2) for any given inertance b2. For inertance b2 = 0, Eq. (13)
morphs into simple Eq. (11). By substituting Eq. (13) into Eq. (9), differentiating with respect to b2, equalling
with zero and solving for b2, optimum inertance parameter bopt is obtained. Inserting b2 = bopt into Eq. (13)
results with optimum damping copt2, which subsequently yields an expression for a minimum specific kinetic
energy Ikopt2 from Eq. (9). Analytical expressions for bopt, copt2 and Ikopt2 are not explicitly shown in the
scope of this paper because they are rather cumbersome and very lengthy. However, it is important to note
that no numerical approximation is used in the process of optimization, thus all derived expressions are purely
algebraic and exact, without any loss in accuracy.

3 Helical spring displacement and stress correction factors

In this chapter, spring stiffness and stress are discussed. A simple expression for determining the spring
fatigue life is also derived, where HCF life [22–26] above 103 cycles is addressed and employed. Obtained
displacement amplitudes in the frequency domain from previous chapter, i.e. Eq. (4), can now be tied to stress
amplitudes below the yielding strength σY, necessary for performing vibration fatigue analysis.

Cylindrical spring can for simplicity be viewed as a thin/slender, curved rod/beam subjected to torsion load
exclusively. In such case [22], analytical expressions for spring stiffness, static displacement and shear stress
can be denoted with

knom = F0

δnom
= Gd4

8D3n
= Gd

8C3n
⇒ δnom = 8F0D3n

Gd4 = 8F0C3n

Gd
, τnom = 8F0D

πd3 = 8F0C

πd2 ,

(14a, b, c)

where knom is nominal spring stiffness, δnom is nominal spring deflection, τnom is nominal spring shear stress
and G = E/[2(1 + ν)] is the shear modulus. As linear elastic/small deformation and deflection conditions
are assumed, Eq. (14a, b, c) is valid for both tensile and compressive applied force amplitude ±F0. For
simple harmonic loading conditions adopted, F(t) = F0eiΩt . Helical spring geometry, parameters, loading
and boundary conditions (BCs) are the same as schematically shown in Fig. 1b. For a more general approach
in the scope of this paper, boundaries of spring index C are varied both inside and outside of recommended
values C = 4 − 12, in order to parametrically test all physically obtainable solutions. As already noted,
Eq. (14a, b, c) is obtained by simply considering spring as a thin beam/rod loaded with exclusively torsion
shear, where direct shear, curvature and pitch angle effects are ignored and neglected for simplicity. Therefore,
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(a) (b) (c)

Fig. 2 Spring shear stresses: a torsion shear τM , b transverse/direct shear τA, c combined torsion and direct shear with additional
curvature “c” and pitch angle α effects τmax = τM + τA + τc + τα (colour figure online)

Table 1 Expressions for stress correction factors Kτ and deflection correction factors Kδ

Author/standard Stress correction factor Kτ Deflection correction factor Kδ

Strength of materials
Wahl, DIN 13906 4C−1

4C−4 + kW
C = 4C−1

4C−4 + 1+2ν
2(1+ν)C –

Röver cos (α)
[

C
C−cos2(α)

+ 1+sin2(α)
4C

]
–

Wood C
C−1 + 1

2C
2C2+C−1

2C2

Honegger cos (α)
[

C
C−cos2(α)

+ 0.615
C

]
2C2−cos4(α)

2C2 cos5(α)

Elasticity theory

Göhner, DIN 2089 1 + 5
4C + 7

8C2 + 1
C3 cos (α) + 3 cos5(α)

16(C2−1)
+ sin(α) tan(α)

1+ν

Ancker & Goodier 1 + 5
4C + 7

8C2 + 1
2 tan

2 (α) 1 − 3
16C2 + 3+ν

2(1+ν)
tan2 (α)

Approximate/empirical relation

Bergsträsser, DIN 13906 C+0.5+sin2(α)

C−0.75+1.51 sin2(α)
–

Sopwith, BS 1726 C+0.2
C−1 –

Strain energy (Castigliano’s) method

Shigley – 1 + 1
2C2

Dym –
(
1 + 1

2C2

)
cos (α) +

(
1 + 1

4C2

)
tan(α) sin(α)

(1+ν)

additional correction factors Kδ and Kτ need to be applied for displacement and shear stress, where relations
δmax = Kδδnom and τmax = Kτ τnom now hold [22,23]. Figure 2 schematically shows spring cumulative shear
stress τ correction.

Shift of the helical spring neutral line towards outside of wire diameter d centre results with maximum
shear stress τmax appearing at the point closest to spring axis x , as shown in Fig. 2c. As already pointed out
in introduction, multiple expressions for correcting deflection and stress exist in the referent literature where
authors sometimes present notably different correction factors depending on the theory they used for derivation
[15]. Therefore, no unified solution can be found in the literature [14] or standards [8–11].

Table 1 sums up all the expressions from the referent literature used in the scope of this paper.
It is appropriate to recognize that important and thorough investigation regarding spring stress and deflection

correction determination was conducted by the Research Committee on the Analysis of Helical Spring [14]
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where authors parametrically compared influence of spring parameters on stress results based on the theory
used. They used FEM for numerical part of the investigation. They obtained the best correlation for Bergsträsser
and Göhner stress correction factors and found Wahl to be overly conservative; however, they neglected the
influence of pitch angle α on stress correction where α = 0 in their main FEM test model for stresses (see
Table 5 and Fig. 20 in [14]).

Somedata inTable 1 (most notablyWahl, Röver,Wood,Honegger,Göhner,Ancker&Goodier, Bergsträsser
and Sopwith) are adopted from already mentioned Research Committee [14]. Wahl stress correction factor can
also be found in current DIN 13906 (germ. Deutsches Institut für Normung) standard [10,11], and [6,7] among
others. DIN 13906 [10,11], and [22] also include Bergsträsser stress correction factor, however without pitch
angle α inclusion. Göhner stress correction factor, previously included in older, now defunct DIN 2089 [8,9]
was later adopted by Ancker & Goodier [12] and rearranged in order to contain initial pitch angle α. By
comparing it to original Göhner stress correction expression, it can be observed that the first three terms are
identical; however, Göhner uses 1/C3, and Ancker & Goodier use 1/2 · tan2(α) as a last term instead, which
takes into account the initial pitch angle α. Ancker & Goodier deflection correction factor from Table 1 can
also be found in their original paper [12] and is considered to be one of the most accurate ones found in the
literature [16]. Sopwith stress correction factor was used as a part of BS 1726 (British Standard) [16]. Both
Shigley [22] and Dym [13] give similar solutions for deflection correction, based on strain energy (Castigliano)
method, where Shigley solution is simpler; however, it neglects the influence of pitch angle α compared to
Dym.

An additional comment is presented for Wahl stress correction factor, as shown in the first row of Table 1.
Nominal expression for Wahl stress factor found in most literature, e.g. [6,7,16] is

Kτ,Wahl = 4C − 1

4C − 4
+ 0.615

C
. (15)

Wahl in his textbook [7] cited Timoshenko [21] as an influence and main source for determining his often
cited stress correction factor. It is interesting to observe the numerator of second term from Eq. (15), which
is for the sake of this discussion temporarily denoted as kW = 0.615. Wahl used Timoshenko solution which
comes from setting a Poisson’s ratio ν = 0.3 in the equation derived for the shear stress at the horizontal edge
of a cantilevered circular bar [21]. Using the dimensionless, Poisson’s ratio ν dependent term found in Eq. (h),
p. 321 from [21], one can write expression

Kτ,Wahl = 4C − 1

4C − 4
+ kW

C
⇒ kW = 1 + 2ν

2 (1 + ν)
, (16a,b)

and by setting the different values for Poisson’s factor ν in Eq. (16b), values of kW are obtained as

kW (ν = 0) = 0.5, kW (ν = 0.3) = 8

13
∼= 0.615384615 ≈ 0.615, kW (ν = 0.5) = 0.6̇, (17a,b,c)

where it can be observed that if ν rises, kW also rises, resulting in larger stress correction factor Kτ,Wahl.
By using fixed kW = 0.615, one hard-codes universal, Poisson’s ratio-independent stress correction solution.
As stresses in helical spring are mostly shear governed [22,23], by adopting the von Mises energy criterion
[19–22] with relation σeqv(HMH),max = √

3τmax, stress correction factor Kτ can also be written as Kσ .
Two additional deflection correction factors are derived and presented as detailed below.
The first novel Timoshenko & Cowper deflection correction factor can be obtained as follows. Taking into

the consideration nominal spring deflection from Eq. (14b) and introducing the additional deflection due to
shear correction [19–21,36], maximum spring deflection can now be written as

δTimoshenko = δnom + δk = 8F0D3n

Gd4 + F0L

k AG
, (18)

where k is the shear correction factor [19–21,36], L is the total length of the spring and A is spring cross-
sectional area. By neglecting the pitch angle α, length L and cross-sectional area A are given by the following
equations:

L (α ≈ 0) = nDπ, A = d2π

4
. (19a,b)
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Improved shear correction factor k is adopted from Cowper [36] and can be expressed as

k = kCowper = 6 (1 + ν)

7 + 6ν
, (20)

where it can be seen that shear correction k is solely Poisson’s factor ν dependent, i.e. k = k(ν). Finally,
after inserting Eqs. (20) and (19a,b) into Eq. (18) and dividing it with nominal deflection δnom from Eq. (14b),
Timoshenko & Cowper (T/C) deflection correction, after considering C = D/d and simplifying, is

Kδ,T/C = δTimoshenko

δnom
= 1 + 7 + 6ν

12C2 (1 + ν)
, (21)

where, as already noted, pitch angle α is for simplicity neglected in derivation.
The second explicit dimensionless deflection correction factor can also be derived by using Castigliano’s

energy theorem, as noted by Timoshenko [20]. Timoshenko’s (Castigliano’s) deflection expression is

δCastigliano/Timoshenko = F0R2L

[
sin2 (α)

E I
+ cos2 (α)

G Ip
β

]
, (22)

where R = D/2 is themean spring radius, and I and Ip are spring axial and polar inertiamoments, respectively,

I = d4π

64
, Ip = 2I = d4π

32
. (23a,b)

Interestingly,β fromEq. (22) is an additional deflection correction factor/parameter, for which Timoshenko
cites Göhner. In case C is sufficiently small, factor β should be included and can be written as

β = 1 + 3

(
1

C

)2
{
16

[
1 −

(
1

C

)2
]}−1

, (24)

where Timoshenko states that “torsional rigidity G Ip must be multiplied by the correction factor” [20] from
Eq. (24). As initial pitch angle α is now fully taken into account in Eq. (22), total spring length L , with regard
to Eq. (19a), can be calculated according to a more punctual and consistent general helix length expression

L (α �= 0) = nDπ

cos (α)
. (25)

By using Eqs. (25), (24) and (23a,b), inserting them in Eq. (22), and dividing Eq. (22) with nominal
deflection δnom from Eq. (14b), some mathematical simplifying results with Castigliano/Timoshenko (C/T)
are as follows:

Kδ,C/T = δCastigliano/Timoshenko

δnom
=

(
16C2 − 13

)
(1 + ν) cos (α) + 16

(
C2 − 1

)
sin (α) tan (α)

16
(
C2 − 1

)
(1 + ν)

. (26)

By inserting β = 1 in Eq. (22), Eq. (26) morphs into purely Castigliano governed expression

Kδ,Cstg = (1 + ν) cos (α) + sin (α) tan (α)

1 + ν
, (27)

where spring index C influence is not taken into account; however, pitch angle α is considered. It can be
shown that derived deflection correction from Eq. (26) and Göhner expression for deflection correction factor
from Table 1 give almost identical results, as further shown in Fig. 3a, i.e. Kδ,C/T ≈ Kδ,Göhn. It should be
noted that as the pitch l is geometrically independent value of diameter d , pitch is for plotting purposes tied
to wire diameter d through relation l = 2 · d , as shown in Fig. 3 rectangular frame. Introduced expression
α = arctan[l/(πD)] is employed for calculating pitch angle α for arbitrary spring index C value. Values of
C = 2 − 25 are considered for plotting. Conventional steel Poisson’s ratio ν = 0.3 is adopted for plotting
correction factors. Wahl stress correction factor is for the purpose of plotting appropriately hard-coded with
kW = 0.615 value, according to Eq. (17b). All expressions from Table 1 are shown in Fig. 3, including newly
derived Eqs. (21) and (26) in Fig. 3a.
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Fig. 3 Different correction factors for ν = 0.3: a deflection correction Kδ , b stress correction Kτ (colour figure online)

It can be seen that all plot lines for both deflection and stress factors in Fig. 3 show goodmutual correlation,
except simple Wood deflection correction expression, which is thus disregarded and excluded from further
analyses. It can also be noted that deflection correction factors Kδ contribution are almost one order of
magnitude lower compared to stress correction factors Kτ . Neglecting Wood correction expression, Dym [13]
presents the largest deflection correction factor. Derived Timoshenko & Cowper deflection correction factor
Kδ,T/C gives higher results compared to other deflection correction curves, however, still lower than Dym.
Regarding stress correction, Wood and Honegger give the most conservative results for all values of spring
index C .

Assumption that helical spring stress field is purely shear governed and therefore biaxial is employed in
fatigue calculation. Adopted von Mises (HMH)

√
3Kτ τnom criterion with denoted stress correction factor Kτ

is further used. Proportional fatigue stress state is assumed. Proportional stress/strain implies that ratio and/or
line direction of principal stresses σ1,2,3 does not change during fatigue load cycle [4,24], i.e. the orientation
of the principal axes with respect to the loading axes remains fixed. For pure shear stress state, relations
σ1,3 = ±τmax and σ3/σ1 = −1 = const. are valid. By equalling the force amplitudes F0 from Eq. (14a, b),
and by using the defined deflection and stress correction factors, max von Mises equivalent stress amplitude
is expressed as ∣∣σeqv(HMH), max (δmax)

∣∣ ≡ Sa = √
3

Kτ

Kδ

G

C2nπd
δmax, (28)

where Sa denotes max fatigue stress amplitude as a function of max deflection amplitude δmax. In order to tie
fatigue nomenclature to vibrations, δmax can be obtained from Eq. (4), i.e. relation δmax ≡ |x02| holds. Classic
HCF Basquin relation [24] for explicit number of cycles Nf can be written as

Nf =
(

Sa
S′
f

) 1
B

, (29)

By inserting Eq. (28) in Eq. (29) and using appropriate vibration terminology, i.e. obtained displacement
amplitudes from Eq. (4), number of cycles to failure Nf can finally be explicitly written as

Nf =
[√

3
Kτ

Kδ

G

C2nπd

|x02 (Ω)|
S′
f

] 1
B

, (30)

Advantage of employing simple Eq. (30) is that it is not necessary to explicitly know force amplitude F0
acting on spring k3, i.e. mass m2; however, vibration displacement/deflection amplitudes should be determined
before fatigue calculation.Also, it is necessary to know true deflection correction factor Kδ and stress correction
factor Kτ , together with relevant fatigue parameters, i.e. fatigue strength coefficient S′

f and Basquin’s exponent
B. In addition, Shigley [22] recommends using factor kc (load modification factor) and multiplying it with S′

f
in Eq. (29), where kc = 0.59 for torsion. Fatemi et al. [24] mention kL (empirical load factor) where kL = 0.58
for torsion, while Bannantine et al. [26] introduce loading effect kT which is the most conservative, and for
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Table 2 Example 2-DOF vibration isolation system parameters

m1, kg m2, kg k1, N/mm k2, N/mm k3, N/mm F0, kN

m0 2 · m0 k0 k0/10 k0 1

Table 3 Example helical spring of stiffness k0 geometric and material properties

D, mm d , mm n, – l, mm E , MPa ν, – S′
f , MPa B, –

50 17 1 2 · d 200,000 0.3 925 – 0.1

(b)(a)

Fig. 4 Mass m2 specific kinetic energy index Ik : a c2 = copt and b2 = 0, b c2 = copt2 and b2 = bopt (colour figure online)

torsion kT = 0.577. Bannantine explains all given values with energy effect theory, i.e. herein previously
adopted von Mises failure criterion where 1/

√
3 ≈ 0.5774.

In the next chapter, benchmark example is demonstrated for chosendeflection correction factor Kδ and stress
correction factor Kτ . Based on information from the literature and this chapter, and by visually inspecting
Fig. 3a, b for approximate median values, further adopted are approximate Ancker & Goodier deflection
correction factor where Kδ = Kδ,A/G, and approximate Wahl stress correction factor where Kτ = Kτ,Wahl.

4 Example: inerter-based isolator helical spring vibration fatigue study

In this chapter, vibration fatigue analysis and optimization is performed on a general 2-DOF system, as shown
in Fig. 1a. Table 2 shows example parameters used in this isolator optimization process. System is detuned,
i.e. m2k1 �= m1k3, and spring k2 is notably compliant, compared to springs k1,3.

General mass value is chosen as m0 = 100 kg and spring stiffness k0 is yet to be determined from helical
spring parameters given in Table 3. Spring material parameters (E , ν, S′

f and B) are chosen in such way to
represent physical elastic and fatigue properties of regular spring steel [24,25].

Diameters D and d are chosen soC = D/d = 50/17 ≈ 2.941which is a very small spring index. However,
such small spring index C results with a relatively large stress correction factor which is a convenient fatigue
benchmark. Ideal massless springs are considered for simplicity and straightforwardness. Spring stiffness is
calculated according to relation Kδ F0 = k0δnom. Figure 4 shows plotted numerical results of optimization
process for given parameters from Tables 2 and 3. Minimum, i.e. optimum kinetic energy Ikopt is determined
for the cases without inerter (Fig. 4a—copt) which corresponds to Ikopt, and with inerter (Fig. 4b—copt2 and
bopt) which corresponds to Ikopt2, by using the method described in Sects. 2.1 and 2.2. Diamond shape in the
bottom of Fig. 4b corresponds to the case when b2 = 0, i.e. Fig. 4a. Dash-dotted line in Fig. 4b which connects
Ikopt and Ikopt2 represents the implicit plot of function c2(opt)(b2 �= 0), i.e. Eq. (13).

Obtained 2-DOF key values/factors and optimized parameters are further listed in Table 4.
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Table 4 Example 2-DOF vibration isolation system referent values and optimized parameters

C = D/d , – Kδ,A/G, – Kτ,Wahl, – k0, N/mm copt, Ns/m bopt, kg copt2, Ns/m

2.941176471 1.037789623 1.595594406 6 190.746 3 047.31349 13.700475 934.329293
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Fig. 5 The 2-DOF frequency response functions: a mass m2 displacement amplitude |x02|, b spring k3 number of cycles to fatigue
failure Nf (colour figure online)

Analytically obtained optimized parameters are used in the fatigue analysis of the spring k3 which is
considered next. Type of spring processing and manufacture, e.g. shot-peening described by SAE [15], Shigley
[22], Ugural [23] and Fatemi [24], is not considered. Spring is for simplicity considered to be perfectly smooth
and without any residual stresses. Also, spring fatigue notch sensitivity is presumed to be near unity, i.e.
Kt(τ ) ≈ Kf which is a valid assumption according to Ugural [23]. Spring fatigue life Nf can now be calculated
according to beforehand derived Eq. (30) where both displacement (A/G) and stress (Wahl) correction factors
are taken into account. Analytical FRFs and vibration fatigue results for various cases are shown in Fig. 5.

By comparing FRFs, i.e. displacement amplitudes from Fig. 5a and number of cycles to fatigue from
Fig. 5b, similitude of responses can be observed which arises from the fact that spring displacement is linearly
proportional to stress, which is nonlinearly, i.e. exponentially proportional to number of cycles to failure, as
shown in Eq. (30). Thus, observations for Fig. 5a are also valid for Fig. 5b. Sub-optimal and super-optimal
damping are also considered for comparison where csub = copt/100 and csup = 100 · copt. For additional
reference, case with optimum inertance b2 = bopt is also plotted for zero damping, i.e. c2 = c0 = 0. The
improvement in the number of cycles to failure Nf is evident at most frequencies when using the optimum
damping copt in comparisonwith lowdamping csub = copt/100, or high damping csup = 100·copt. Additionally,
a significant further improvement in the fatigue life Nf is observed at most frequencies, in case where the
optimum inerter bopt is implemented in combinationwith the optimum damper copt2. Interesting anti-resonance
phenomenon at frequency ΩA is observed for the case with the optimum inerter bopt and without damping
(c2 = c0 = 0), which specifically demonstrates inerter b2 influence that otherwise cannot be achieved on
the receiving body by using only classic elements of MDS system [38]. Contrary to that, if using very large
damping in the isolator, i.e. csup = 100 · copt, new resonance Ωa can be observed, as two masses m1 and m2
vibrate together in phase with equal displacements, velocities, and accelerations, acting as a quasi-rigid body.
Same effect can be observed if a very large spring stiffness k2 is used in the isolator, as isolator effectively
locks and its proper functionality is consequently permanently compromised. Similar conclusion is already
drawn based on Ikopt structure of Eq. (12).

In summary, six characteristic circular frequencies denoted further in Fig. 6 are observed. These are:
two circular natural frequencies for the case without inerter (b2 = 0), i.e. ωn1b0 and ωn2b0 in Fig. 6a, two
circular natural frequencies for the case with inerter (b2 = bopt), i.e. ωn1bopt and ωn2bopt in Fig. 6b, anti-
resonant circular frequency ΩA(b2 = bopt) in Fig. 6b and isolator-locking resonant circular frequency Ωa(c2,
k2 → ∞) in Fig. 6a. Circular natural frequencies can be obtained by solving the eigenvalue problem for the
given 2-DOF as [

K − (
ωn1,2

)2 M
]

x (t) = 0 (31)
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Table 5 Characteristic circular frequencies: a without inerter (b2 = 0), b with optimum inertance (b2 = bopt)

ωn1b0, rad/s ωn2b0, rad/s Ωa, rad/s ωn1bopt, rad/s ωn2bopt, rad/s ΩA, rad/s

(a) 183.017 262.015 203.154 (b) 178.373 244.852 212.571

Table 6 The 2-DOF isolator vibration fatigue optimization results

Isolator type Ω , rad/s |x02(Ω)|, mm Nf (Ω), –

Sub-optimal damping (c2 = copt/100, b2 = 0) ωn1b0 47.583 << 1
Super-optimal damping (c2 = 100 · copt, b2 = 0) Ωa 14.539 < 1
Optimal damping (c2 = copt, b2 =0) ωn1b0 0.640 134,539
Optimal damping and inertance (c2 = copt2, b2 = bopt) ωn1bopt 0.524 1,002,948

where M and K matrices are denoted in Eq. (2a,c). Inserting data from Table 2 into Eq. (31) yields with

(
ωn1,2

)2 =
33
10m0k0 + 2b2k0 ∓

√
129
100m2

0k20 − 6
5b2m0k20 + 4k20b22

2
(
2m2

0 + 3m0b2
) , (32)

where inertance b2 can be arbitrarily defined, or set to zero nevertheless. Following expressions

ΩA =
√

k2
b2

, lim
c2,k2→∞ Ωa =

√
k1 + k3

m1 + m2
, (33a,b)

denote anti-resonance ΩA and locking resonant circular frequency Ωa, respectively. Table 5 shows Eqs. (32)
and (33a,b) algebraic solutions by inserting data from Table 4 for the cases without, and with inerter where
b2 = bopt.

Figure 6 presents characteristic frequencies data from Table 5 combined with belonging FRFs.
For small damping values, i.e. c2 ≈ 0, system response in wide frequency range is governed purely

by natural frequencies vicinity where very large vibration amplitudes occur. For very large values of either
damping c2 and/or spring stiffness k2, isolator effectively locks even with the inerter present, i.e. for c2,
k2 → ∞,Ωa(b2 = 0) = Ωa(b2 = bopt). This is unfavourable setup and should be avoided, because if excited,
locking frequency Ωa vibration amplitudes tend to infinity, as demonstrated in Figs. 5a, b and 6a (csup curves,
dotted line). In order to evaluate the quality of performed vibration isolation optimization, Table 6 is presented.
Four characteristic system results are denoted where the most destructive excitation frequency Ω is solely
considered.

For systems with sub- and super-optimal damping, violent spring rupture occurs for given loading imme-
diately, without even considering fatigue failure. Optimized damping copt shifts the life of observed spring in
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HCF range with over 105 expected life cycles. Finally, simultaneous optimization of damping and inertance
shifts the expected life cycles over the 106 range, which can be considered as a significant improvement.

The present optimization is based on a vibration-related specific kinetic energy criterion. A future work
could consider a type of optimization which would aim at directly maximizing fatigue life of the spring and
compare it to the present results. Considering that pitch angle in the present study is defined through relation
l = 2 · d and α = arctan[l/(π D)], it would be beneficiary to further investigate the influence of arbitrary large
pitch angle α on deflection and stress correction, as some of the expressions from Table 1 consider the pitch
angle influence, and some do not. That most notably applies to further evaluation of Wahl’s approximate stress
correction factor in detail. Continuation of this work could also be the investigation of mean stress σm influence
on the spring fatigue life optimization, as present calculations were performed for a simple harmonic fully
reversed loading R = −l where dead weight static load, or general pre-stress were not considered. In addition
to a demonstrated analytical study, numerical method for verification purposes will be further employed as a
continuation of this paper. Software packages which use FEM generated static/dynamic multi-axial complex
stress fields for predicting fatigue life will be used.

5 Conclusion

A cylindrical spring fatigue optimization method for inerter-based vibration isolation system is presented in
this paper. The method is demonstrated on a simple discrete two-degree-of-freedom system. A simplified
model for calculating cylindrical spring high-cycle fatigue life is established by adopting von Mises energy
criterion for shear governed biaxial proportional stress and relating it to spring displacement amplitudes in
Basquin’s equation. Most convenient deflection and stress correction factors are adopted for vibration fatigue
study, namely Ancker & Goodier deflection correction and Wahl stress correction factor. Two additional
displacement correction factors are derived and compared to other referent solutions.

Twomain benchmark isolators are investigated; one with inerter of optimal inertance and optimal damping,
and one with optimal damping but without the inerter. These two plain isolator systems are viewed as a
simplified model of a possibly more complicated dynamic structure. Parameters of the inerter-based isolator
are optimized to maximize the effect of vibration isolation, which also corresponds to significant reductions
of the stresses in the considered receiving body spring and an increase of its fatigue life as a consequence. It
is demonstrated that the vibration isolation effect of the isolator not containing the inerter can be substantially
improved by employing the ideal inerter in parallel with the isolator spring and viscous damper. Hence, it can
be concluded that minimizing the kinetic energy of the receiving body, by employing inerter of adequate, i.e.
optimized inertance, can convincingly prolong the coupling helical spring fatigue life. Specifically inerter anti-
resonance effects can also be potentially used to fine tune the system for one dominant excitation frequency,
and significantly reduce vibration amplitudes on that particular frequency.

As a direct continuation of this work, finite element method will be employed for results verification
purposes. Main challenges are to implement ideal inerter concept in the finite element model and to well
correlate spring displacements and stresses obtained by the developed analytical model to the results obtained
by the finite element analysis.
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41. Caiazzo, A., Alujević, N., Pluymers, B., Desmet, W.: Active control of turbulent boundary layer-induced sound transmission
through the cavity-backed double panels. J. Sound Vib. 422, 161–188 (2018)

42. James, H.M., Nichols, N.B., Phillips, R.S.: Theory of Servomechanisms. MIT Radiation Laboratory Series, vol. 25, First
edn. McGraw-Hill, New York (1947)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Optimization of an inerter-based vibration isolation system and helical spring fatigue life assessment
	Abstract
	1 Introduction
	2 2-DOF inerter-based vibration isolator mathematical model
	2.1 Isolation optimization without inerter
	2.2 Isolation optimization with inerter

	3 Helical spring displacement and stress correction factors
	4 Example: inerter-based isolator helical spring vibration fatigue study
	5 Conclusion
	References




