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Abstract This paper focuses on development of a new mathematical model and its analytical solution for the
buckling analysis of elastic longitudinally cracked columns with finite axial adhesion between the cracked
sections. Consequently, the analytical solution for buckling loads is derived for the first time. The critical
buckling loads are calculated for different crack lengths and various degrees of the contact adhesion. It is
shown that the critical buckling loads can be greatly affected by the crack length and degree of the connection
between the cracked sections. Finally, the presented results can be used as a benchmark solution.
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1 Introduction

Columns are compression members that are extensively used in structural, mechanical, aerospace, aeronautic,
offshore and ocean engineering. In construction, columns are supporting elements for beams, floors, and roofs.
They are typical examples of structural elements of building frames, trusses, bridges, multi-storey buildings,
and superstructures with new technology, and construction materials. Columns are generally constructed from
materials with good compressive strength, such as concrete, timber, steel, and so on.

Nevertheless, stability of compressed columns is one of themain design issues. In otherwords, long columns
in compression are generally prone to buckling. Thus, the stability of slender columns must be controlled to
ensure their safety or safety of the entire structure against collapse.

In practice, perfect columns do not exist. They always contain imperfections and unavoidable defects, such
as cracks, which are due to mechanical vibrations, cyclic and impact loads, material processing, component
manufacturing, structural poor working environment, and others. The presence of cracks reduces the flexural
rigidity of a column, its compressive strength, and load-bearing capacity. Consequently, the influence of cracks
should be certainly taken into consideration in the stability analysis of cracked columns under compression.

The buckling of cracked columns has received considerable attention, and there exist many interesting
investigations in the literature. For example, analytical solutions have been developed for studying the buck-
ling behavior of elastic columns with transverse cracks [1–8], and several numerical models as well [9–13].
However, all those studies have been studying the buckling behavior of columns with transverse cracks. Nev-
ertheless, columns may also have internal longitudinal cracks which can have a crucial impact on their stability
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and load carrying capacity. Only a few analytical [14–16] and numerical [17–21] investigations have been
proposed for analyzing the stability of longitudinally cracked columns. Furthermore, it should be noted that
some researches have included in their analysis relaxed kinematics such as different joint models at the crack
or delamination tips which, see e.g., [15,16,22–25]. However, it should be noted that all of these studies
developed so far have dealt with perfectly open longitudinal cracks. In reality, almost all cracks are not fully
open and generally crack bridging or some finite adhesion between the cracked sections exists.

However, as the authors’ knowledge is concerned it seems that there exists no analytical solution in the
open literature for the buckling analysis of longitudinally cracked columns with finite longitudinal interface
adhesion between the cracked segments. Hence, the aim of this paper is to derive a novel mathematical model
and its analytical solution for studying the buckling behavior of longitudinally cracked columns with finite
longitudinal interface adhesion between the cracked segments. Therefore, this novel analytical formulation
proposed in this paper will definitely contribute importantly to the knowledge about the buckling behavior of
longitudinally cracked columns with incomplete interaction between adjacent cracked segments.

Finally, an illustrative example is given to present the analytical solution of a timber column with a
longitudinal crack and finite longitudinal adhesion between the cracked sections.

2 Theoretical formulation and governing equations

Consider an initially straight, planar, column of undeformed length L and an arbitrary but symmetric cross
section, see Fig. 1. The column is cracked in longitudinal direction. A longitudinal crack divides the column
into three segments I, II, and III. The crack is located at the tip of the column. The crack length Lcrack is arbitrary.
Besides, the crack width extends across the entire width of the column. Hence, a relative crack length is defined
as L̄crack = Lcrack/L . The column is placed in the (X, Z) plane of a spatial/global Cartesian coordinate system
with coordinates (X, Y, Z) and unit base vectors EX ,EY and EZ . The undeformed reference axis of the
longitudinally cracked column is common to all segments. It is defined as an intersection of the (X, Z)-plane
and their crack plane. It is parameterized by the undeformed arc-length x . Local coordinate system (x, y, z)
is assumed to coincide initially with global coordinates. The column is loaded with a concentric conservative
compressive load P .

2.1 Assumptions

The formulation of the governing equations for buckling analysis of longitudinally cracked columns is also
based on the following basic assumptions:

1. The column and its segments are planar, prismatic, homogeneous, isotropic, and linear elastic;
2. Each segment is modeled with a linearized Reissner planar beam theory [26];
3. The crack is longitudinal and exists before the column is subjected to compressive loading;
4. The segments II and III are continuously connected with an adhesive bonding layer of negligible thickness

and finite stiffness;
5. The segments II and III can slip relative to each other;
6. The interlayer slips are small;
7. The segments’ cross sections are not changing in shape and size during deformation;
8. Only global type of instability occurs;
9. Thermal, rheological, and inertia effects are ignored.

2.2 Governing equations

2.2.1 Algebraic-differential equations of the segments

Thegoverning algebraic-differential equations of a columnwith preexisted longitudinal crack are the kinematic,
equilibrium, and constitutive equations along with boundary conditions. Further, there are also constraining
equations which define the relations by which individual segment is composed into a complete structure. A
compact comma notation (•)i will be used throughout the paper, where superscript i = (I, II, III) indicates to
which segment the quantity (•) belongs to. In the same manner, (•)′ = d(•)/dx shall be used for the first
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derivative of the quantity (•)with respect to thematerial coordinate x . Thus, the governing differential-algebraic
equations of a longitudinally cracked column are as follows:

1 + ui ′ − (1 + εi ) cosϕi = 0, (1)

wi ′ + (1 + εi ) sin ϕi = 0, (2)

ϕi ′ − κ i = 0, (3)

Ri ′
X + piX = 0, (4)

Ri ′
Z + piZ = 0, (5)

Mi ′
Y − (1 + εi )(Ri

X sin ϕi + Ri
Z cosϕi ) = 0, (6)

Ri
X cosϕi − Ri

Z sin ϕi − Ci
11 εi − Ci

12 κ i = 0, (7)

Mi
Y − Ci

21 εi − Ci
22 κ i = 0, (8)

where ui and wi are the axial and transverse displacements, ϕi is the rotation, εi is the extensional strain, and
κ i is the pseudocurvature of the segment’s reference axis, Ri

X , Ri
X , and Mi

Y are the generalized equilibrium
internal forces of i th segment, piX and piZ are the contact tractions, Ci

11 = Ei Ai , Ci
12 = Ci

21 = Ei Si , and
Ci
22 = Ei J i are the material and geometric constants; where Ai is the segment i cross-sectional area, Ei is

the Young’s modulus, Si is the static moment, and J i is the segment i second moment with respect to the
reference axis. The corresponding boundary conditions to Eqs. (1)–(8) are: xi = 0:

Si1 + Ri
X (0) = 0 or ui (0) − ui1 = 0, (9)

Si2 + Ri
Z (0) = 0 or wi (0) − ui2 = 0, (10)

Si3 + Mi
Y (0) = 0 or ϕi (0) − ui3 = 0, (11)

xi = Li :

Si4 − Ri
X (Li ) = 0 or ui (Li ) − ui4 = 0, (12)

Si5 − Ri
Z (Li ) = 0 or wi (Li ) − ui5 = 0, (13)

Si6 − Mi
Y (Li ) = 0 or ϕi (Li ) − ui6 = 0, (14)

where uik and Sik (k = 1, 2, . . . , 6) are given values of generalized boundary displacements and their comple-
mentary forces at the segments’ edges, i.e., xi = 0 and xi = Li ; Li is the length of the i th segment.

2.2.2 Constraining equations of segments II and III

Note from Fig. 1 that the longitudinal crack divides the column into three segments, I–III. Generally, this
longitudinal crack is not perfect, which means that there still exists some adhesion or connection between the
segments II and III. Therefore, the deformations of these segments are not independent, but are constrained to
each other. As a result, during deformation of the segment II, a deformation of the segment III is constrained
to follow the deformation of the segment II, and vise versa. In the present paper, Sects. 2 and 3 can only slip
over each other, while relative deformation in transverse direction is neglected. In this case, contact tractions
evolve between the segments II and III. A detailed derivation of the contact model is here omitted, but the
interested reader is referred to [27–32]. Thus, a slip and the corresponding contact tractions in axial direction
develop between the segments II and III

ΔX = uII − uIII, (15)

ΔZ = wII − wIII = 0, (16)

pIIX = −pIIIX = FX (ΔX ), (17)

where ΔX and ΔZ are the slip and uplift between the segments II and III, respectively, pIIX and pIIIX are the
contact tractions in axial direction, and FX is the nonlinear constitutive function determined experimentally
for the actual type of the contact. It will be shown next that by considering the relations (15)–(17) in Eqs.
(1)–(8), the governing algebraic-differential equations, Eqs. (1)–(8), and boundary conditions, Eqs. (11)–(14),
of the segments II and III, can be considerably simplified.
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Fig. 1 Longitudinally cracked column subjected to compressive load: a undeformed configuration, b deformed (buckled) con-
figuration with slipping between II and III

2.3 Linearized buckling equations of longitudinally cracked column

Linearized governing equations of the new mathematical model for the analytical investigation of the effect of
longitudinal cracks on buckling loads of cracked columns are derived using the first variation of the nonlinear
system of governing equations, Eqs. (1)–(17), see e.g., [33]

δΠ(x, δx) = lim
β→0

Π(x + βδx) − Π(x)

β
= d

dβ
Π(x + βδx)

⏐
⏐
⏐
⏐

β=0
, (18)

whereΠ is the functional, x and δx are the generalized displacements and their increments, respectively, and β
is the scalar parameter. The linearized buckling equations of the longitudinally cracked column can be derived,
if the linearized governing equations are evaluated at the primary configuration of the cracked column. Hence,
the primary configuration is any deformed but straight configuration of the longitudinally cracked column or
its segments, and is given as follows:

Section 1:

εI = − P

C I
11

, κ I = 0 uI = uI(0) − x P

C I
11

, wI = 0, RI
X = −P,

RI
Z = 0, M I

Y = 0.

(19)

Sections 2 and 3 in case of slipping, (i = II, III):

εi = − P
∑

i C
i
11

, κ i = 0 ui = ui (0) − x P
∑

i C
i
11

, wi = 0, Ri
X = − Ci

11P
∑

i C
i
11

,

Ri
Z = 0, Mi

Y = 0, ΔX = 0 piX = 0.

(20)
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Thus, the linearized equations and boundary conditions of each segment of the longitudinally cracked
column, when written at the primary configuration, Eqs. (19)–(20), are:

Section 1:

δuI′ − δεI = 0, (21)

δwI′ +
(

1 − P

C I
11

)

δϕI = 0, (22)

δϕI′ − δκ I = 0, (23)

δRI′
X = 0, (24)

δRI′
Z = 0, (25)

δM I′
Y −

(

1 − P

C I
11

)

(

δRI
Z − PδϕI) = 0, (26)

δRI
X − C I

11δε
I − C I

12δκ
I = 0, (27)

δM I
Y − C I

21δε
I − C I

22δκ
I = 0, (28)

SI1 + δRI
X (0) = 0 or δuI(0) − uI1 = 0, (29)

SI2 + δRI
Z (0) = 0 or δwI(0) − uI2 = 0, (30)

SI3 + δM I
Y (0) = 0 or δϕI(0) − uI3 = 0, (31)

SI4 − δRI
X (L I) = 0 or δuI(Li ) − uI4 = 0, (32)

SI5 − δRI
Z (L I) = 0 or δwI(Li ) − uI5 = 0, (33)

SI6 − δM I
Y (L I) = 0 or δϕI(L I) − uI6 = 0, (34)

Equations (21)–(28) constitute a system of 2 algebraic and 8 differential equations for 8 unknown functions
δuI, δwI, δϕI, δRI

X , δRI
Z , δM I

Y , εI, and κ I. Moreover, Eqs. (29)–(34) represent 6 boundary conditions, either
kinematic or static.

Sections 2 and 3 in case of slipping, (i = II, III):

δui ′ − δεi = 0, (35)

δwII′ +
(

1 − P
∑

i C
i
11

)

δϕII = 0 and δwIII = δwII, (36)

δϕII′ − δκ II = 0 and δϕIII = δϕII and δκ III = δκ II, (37)

δRII′
X − δpIIX = 0 and δRIII′

X − δpIIIX = 0 (38)

δR′
Z = 0, (39)

δM ′
Y −

(

1 − P
∑

i C
i
11

)

(δRZ − PδϕII) = 0 and δMY =
∑

i

δMi
Y (40)

δRi
X − Ci

11δε
i − Ci

12δκ
i = 0, (41)

δMi
Y − Ci

21δε
i − Ci

22δκ
i = 0 (42)

δΔX − δuII + δuIII = 0 (43)

δpIIX − K δΔX = 0 (44)

δpIIX + δpIIIX = 0 (45)
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Si1 + δRi
X (0) = 0 or δui (0) − ui1 = 0, (46)

∑

i

Si2 + δRZ (0) = 0 or δwII(0) − uII2 = 0, (47)

∑

i

Si3 + δMY (0) = 0 or δϕII(0) − uII3 = 0, (48)

Si4 − δRi
X (Li ) = 0 or δui (Li ) − ui4 = 0, (49)

∑

i

Si5 − δRZ (L II) = 0 or δwII(L II) − uII5 = 0, (50)

∑

i

Si6 − δMY (L II) = 0 or δϕII(L II) − uII6 = 0, (51)

Equations (35)–(45) constitute a system of 11 algebraic and 8 differential equations for 19 unknown functions
δuII, δuIII, δwII, δwIII, δϕII, δϕIII, δRII

X , δRIII
X , δRZ , δMY , δM II

Y , δM
III
Y , εII, εIII, κ II, κ III, δΔX , δpIIX , and δpIIIX .

Moreover, Eqs. (46)–(51) represent 8 boundary conditions, either kinematic or static.

2.4 Continuity conditions

At the junction of the segments I–III, namely at point T , see Fig. 1, the kinematic continuity conditions and
continuity in equilibrium forces and moments have to be assured. These conditions are expressed as follows,
(i = II, III):

δuI(L I) − δuII(0) = 0, (52)

δuI(L I) − δuIII(0) = 0, (53)

δwI(L I) − δuII(0) = 0, (54)

δϕI(L I) − δϕII(0) = 0, (55)

δRI
X (L I) −

∑

i

δRi
X (0) = 0, (56)

δRI
Z (L I) − δRII

Z (0) = 0, (57)

δM I
Y (L I) − δM II

Y (0) = 0. (58)

2.5 Analytical solution

An analytical solution of the buckling equations of a longitudinally cracked column can be found if the system
of the derived linearized buckling equations (21)–(28), (35)–(44), and the corresponding boundary conditions
(29)–(34), (46)–(51), and continuity conditions (52)–(58) are written as a homogeneous system of first order
linear differential equations as

Y ′(x) = AY(x), (59)

and
Y(0) = Y0, (60)

whereY(x) is the vector of 14unknownbasic functions of theproblem, i.e.,Y = (δuI, δuII, δuIII, δwI, δwII, δϕI,
δϕII, δRI

X , δRII
X , δRIII

X , δRI
Z , δRZ , δM I

Y , δMY )T , Y(0) is the vector of unknown integration constants, and A
is the constant real 14 × 14 matrix. An analytical solution of the problem (59)–(60) is simply obtained with
Mathematica [34] and given in compact form as, see e.g., [35]:

Y(x) = eAxY0. (61)

Using the appropriate boundary and continuity conditions yields a system of 14 linear, homogeneous algebraic
equations for the 14 unknown integration constants which are the initial values of the kinematic quantities and
equilibrium moments and forces

KY0 = 0, (62)
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Fig. 2 Geometric and material properties of a column with preexisted longitudinal tip crack

Fig. 3 Normalized buckling load, P̄cr, of a longitudinally crackedC–F column versus normalized crack length, L̄crack, for different
K s, where K (kN/cm2)

Fig. 4 Normalized buckling load, P̄cr, of a longitudinally cracked P–P column versus normalized crack length, L̄crack, for different
K s, where K (kN/cm2)



854 S. Schnabl, I. Planinc

Fig. 5 Normalized buckling load, P̄cr, of a longitudinally crackedC–P column versus normalized crack length, L̄crack, for different
K s, where K (kN/cm2)

Fig. 6 Normalized buckling load, P̄cr, of a longitudinally crackedC–C column versus normalized crack length, L̄crack, for different
K s, where K (kN/cm2)

where K denotes the tangent 14×14 stiffness matrix. For a non-trivial solution of (62) to exist, the determinant
of the matrix K must vanish. The characteristic equation is given by

⏐
⏐K

⏐
⏐ = 0. (63)

and the lowest eigenvalue is a measure of the critical buckling load Pcr. The analytical expressions for critical
buckling loads are generally too cumbersome to be presented as closed-form expressions. As a result, in the
next section, the results for buckling loads are presented in tabular and graphical form.

3 Illustrative example

Inwhat follows, an illustrative example of analytical investigation is given to analyze the variation of the critical
buckling loads with a crack length and a degree of adhesion between the cracked segments. To this end, the
buckling loads of four different columns with classical boundary conditions are calculated using the present
analytical model. The analyzed columns are clamped-free (C–F), pinned-pinned (P–P), clamped-pinned (C–
P), and clamped-clapped (C–C). The geometric and material properties of the longitudinally cracked column
under consideration are given in Fig. 2. Note that the normalized buckling load is defined as P̄cr = Pcr/PE,
where Pcr is the critical buckling load of the cracked column and PE is the Euler buckling load for the uncracked
column. Besides, the normalized crack length is defined as L̄crack = L II/L , where L II = L III is the crack
length and L is the undeformed length of the column. The results are shown by Figs. 3, 4, 5, 6, 7 and 8 and
Tables1, 2, 3 and 4.

The results of a longitudinally cracked C–F column are given in Fig. 3 and Table1, respectively. It can
be seen from Fig. 3 and Table1 that the normalized buckling load of the C–F column, P̄cr, can decrease
significantly as the crack length Lcrack increases and/or the longitudinal stiffness K of the contact decreases.
The effect of the crack length is obviously dependent on K , and vice versa. It is interestingly to note that in
the limiting case, when the column is fully cracked, i.e., L̄crack = 1 and K = 0 kN/cm2, the critical buckling
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Fig. 7 Normalized buckling load, P̄cr, of a longitudinally cracked C–F column as a function of crack length L̄crack, and contact
stiffness K s, where K (kN/cm2)

Fig. 8 Contours of the normalized critical buckling load, P̄cr, of longitudinally cracked columns for various L̄crack and K s: a
C–F case, b P–P case, c C–P case, and d C–C case

load is only 43.75% of the Euler buckling load for the uncracked column. On the other hand, when there is
perfectly stiff connection between the segments I and III, or there is no longitudinal crack at all, the critical
buckling load is the Euler buckling load for the uncracked column. In all other cases, the critical buckling load
is affected appreciably by the presence of a longitudinal crack, except for L̄crack � 0.2 or K � 10 kN/cm2,
as can clearly be seen from Fig. 3 and Table1. It is also interesting to note that the relation between P̄cr and
L̄crack is clearly nonlinear.

The results of a longitudinally cracked P–P column are given in Fig. 4 and Table2, respectively. As would
be expected, the normalized buckling loads of the P–P column, P̄cr, decrease significantly as the crack length
Lcrack increases and/or the longitudinal stiffness K of the contact decreases, as well. Again, the effect of the
crack length is obviously dependent on K , and vice versa. In the limiting case, namely when the column is
fully cracked, i.e., L̄crack = 1 and K = 0 kN/cm2, the critical buckling load is again only 43.75% of the Euler
buckling load of the uncracked column. Similarly, for a perfectly stiff connection between the segments I and
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Table 1 Normalized buckling load, P̄cr, of a longitudinally cracked C–F column for different normalized crack lengths, L̄crack,
and K s, where K (kN/cm2)

P̄cr L̄crack

K 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1.0000 0.9979 0.9831 0.9450 0.8808 0.7984 0.7108 0.6279 0.5543 0.4911 0.4375
10−3 1.0000 0.9979 0.9831 0.9450 0.8808 0.7985 0.7111 0.6283 0.5549 0.4919 0.4385
10−2 1.0000 0.9979 0.9831 0.9452 0.8815 0.8000 0.7137 0.6323 0.5604 0.4988 0.4468
10−1 1.0000 0.9979 0.9833 0.9468 0.8873 0.8136 0.7378 0.6683 0.6085 0.5590 0.5188
100 1.0000 0.9980 0.9854 0.9591 0.9245 0.8890 0.8577 0.8324 0.8133 0.7997 0.7908
101 1.0000 0.9985 0.9933 0.9874 0.9820 0.9775 0.9740 0.9714 0.9698 0.9689 0.9686
102 1.0000 0.9990 0.9989 0.9983 0.9978 0.9974 0.9971 0.9969 0.9968 0.9967 0.9967
103 1.0000 0.9999 0.9999 0.9998 0.9998 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997
∞ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2 Normalized buckling load, P̄cr, of a longitudinally cracked P–P column for different normalized crack lengths, L̄crack,
and K s, where K (kN/cm2)

P̄cr L̄crack

K 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1.0000 0.9914 0.9337 0.8157 0.6879 0.5872 0.5178 0.4737 0.4491 0.4391 0.4375
10−3 1.0000 0.9914 0.9337 0.8158 0.6880 0.5875 0.5181 0.4741 0.4497 0.4397 0.4382
10−2 1.0000 0.9914 0.9338 0.8163 0.6893 0.5897 0.5213 0.4783 0.4548 0.4457 0.4445
10−1 1.0000 0.9914 0.9348 0.8215 0.7017 0.6104 0.5505 0.5160 0.5005 0.4970 0.4962
100 1.0000 0.9917 0.9429 0.8608 0.7878 0.7422 0.7212 0.7159 0.7153 0.7078 0.6869
101 1.0000 0.9938 0.9745 0.9568 0.9463 0.9423 0.9417 0.9409 0.9359 0.9252 0.9099
102 1.0000 0.9982 0.9960 0.9944 0.9936 0.9934 0.9934 0.9930 0.9920 0.9901 0.9877
103 1.0000 0.9998 0.9996 0.9994 0.9993 0.9993 0.9993 0.9993 0.9991 0.9989 0.9987
∞ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3 Normalized buckling load, P̄cr, of a longitudinally cracked C–P column for different normalized crack lengths, L̄crack,
and K s, where K (kN/cm2)

P̄cr L̄crack

K 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1.0000 0.9809 0.8684 0.7136 0.6124 0.5680 0.5588 0.5557 0.5318 0.4874 0.4373
10−3 1.0000 0.9809 0.8684 0.7137 0.6125 0.5682 0.5590 0.5559 0.5320 0.4875 0.4374
10−2 1.0000 0.9809 0.8686 0.7144 0.6138 0.5700 0.5611 0.5578 0.5334 0.4886 0.4385
10−1 1.0000 0.9810 0.8704 0.7212 0.6262 0.5871 0.5807 0.5756 0.5469 0.4994 0.4485
100 1.0000 0.9817 0.8863 0.7753 0.7176 0.7035 0.7014 0.6787 0.6309 0.5767 0.5293
101 1.0000 0.9863 0.9491 0.9254 0.9195 0.9185 0.9076 0.8819 0.8500 0.8226 0.8055
102 1.0000 0.9958 0.9917 0.9900 0.9898 0.9892 0.9865 0.9818 0.9766 0.9728 0.9712
103 1.0000 0.9991 0.9987 0.9986 0.9986 0.9985 0.9981 0.9976 0.9971 0.9967 0.9966
∞ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

III, or there is no longitudinal crack at all, the critical buckling load is the Euler buckling load for the uncracked
column. In all other cases, the critical buckling load is affected appreciably by the presence of a longitudinal
crack, except for L̄crack � 0.24 or K � 8 kN/cm2, as can clearly be seen from Fig. 3 and Table1. It is also
interesting to note that the relation between P̄cr and L̄crack is clearly nonlinear.

The results of a longitudinally cracked C–P column are given in Fig. 5 and Table3, respectively. For the
case of longitudinally cracked C–P column, the results reveal similar trends as in the previous two examples.
The critical buckling load is considerably affected by the presence of a longitudinal crack. Further, the critical
buckling load is also significantly affected by the contact stiffness K. Thus, for finite contact stiffness, the
normalized critical buckling load is in the range 0.4375 ≤ P̄cr < 1.0, while for L̄crack = 0 and/or K = ∞ the
P̄cr = 1.0. The effect of longitudinal crack on P̄cr can be neglected for L̄crack � 0.18 or K � 32 kN/cm2, as
can clearly be seen from Fig. 5 and Table3.
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Table 4 Normalized buckling load, P̄cr, of a longitudinally cracked C–C column for different normalized crack lengths, L̄crack,
and K s, where K (kN/cm2)

P̄cr L̄crack

K 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1.0000 0.8480 0.8320 0.7994 0.6879 0.5948 0.5554 0.5507 0.5351 0.4895 0.4375
10−3 1.0000 0.8480 0.8320 0.7994 0.6879 0.5949 0.5555 0.5509 0.5352 0.4895 0.4376
10−2 1.0000 0.8480 0.8321 0.7995 0.6882 0.5957 0.5567 0.5522 0.5362 0.4901 0.4381
10−1 1.0000 0.8482 0.8326 0.8000 0.6914 0.6033 0.5682 0.5648 0.5451 0.4960 0.4433
100 1.0000 0.8507 0.8373 0.8040 0.7156 0.6555 0.6405 0.6349 0.5949 0.5367 0.4863
101 1.0000 0.8707 0.8647 0.8341 0.7970 0.7831 0.7817 0.7655 0.7304 0.6966 0.6770
102 1.0000 0.9302 0.9261 0.9177 0.9120 0.9108 0.9101 0.9055 0.8979 0.8918 0.8899
∞ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

The results of a longitudinally cracked C–C column are given in Fig. 6 and Table4, respectively. Again,
for the case of longitudinally cracked C–P column the results reveal similar trends as in the previous three
examples. Nevertheless, it can be seen that P̄cr is decreased notably for L̄crack > 0 independently on K , except
for very stiff connections K > 103 kN/cm2.

The effect of a longitudinal crack and contact stiffness can be shown also by three-dimensional plot. For
example, Fig. 7 shows a normalized buckling load P̄cr of a longitudinally cracked C–F column as a function
of L̄crack and K . This way, it is clearly seen again that in the case of a longitudinally cracked C–F column the
effect of a longitudinal crack on buckling load can be neglected for L̄crack � 0.37 or K � 6 kN/cm2.

Finally, the results for all four types of boundary conditions are compared to each other. Thus, the different
contours for P̄cr are shown in Fig. 8.

It can be observed in Fig. 8 that increasing L̄crack decreases the critical buckling load, Pcr in all cases of
supporting conditions. This effect is the largest for C–F case, while for C–C case is the smallest. Furthermore,
the effect of the crack length on the critical buckling load can be neglected, namely, is less than 10% in C–F
case for L̄crack � 0.27 and/or K � 6 kN/cm2, in P–P case for L̄crack � 0.24 and/or K � 8 kN/cm2, in C–F
case for L̄crack � 0.18 and/or K � 32 kN/cm2, and in C–C case L̄crack � 0.04 and/or K � 1000 kN/cm2.

4 Conclusions

The paper presented a new mathematical model and its analytical solution for the buckling analysis of longi-
tudinally cracked columns and finite adhesion between the cracked sections. The critical buckling loads were
calculated for different types of boundary conditions. The parametric study was performed bywhich the effects
of crack length and degree of adhesion were analyzed in detail. Based on the result obtained, the following
conclusions can be drawn:

1. The analytical solution of the buckling behavior of elastic longitudinally cracked columns with finite axial
adhesion between the cracked sections was derived for the first time.

2. The critical buckling load decreases with the increasing of the crack length. Furthermore, the critical
buckling load also decreases with decreasing the contact stiffness in longitudinal direction.

3. The effect of the crack length on the critical buckling load can be neglected, namely, is less than 10%, in
C–F case for L̄crack � 0.37 and/or K � 6 kN/cm2, in P–P case for L̄crack � 0.24 and/or K � 8 kN/cm2,
in C–P case for L̄crack � 0.18 and/or K � 32 kN/cm2, and in C–C case L̄crack � 0.04 and/or K � 1000
kN/cm2.

4. The present mathematical model is general and relatively easy to comprehend.
5. The analytical results can be used as a benchmark solution.
6. Due to the length and complexity of the obtained analytical solution, the closed-form expressions cannot

be shown in the paper.
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