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Abstract Based on the generalized England’s method, the three-dimensional elastic response in a transversely
isotropic functionally graded elliptical plate with clamped edge subject to uniform load is investigated. The
material properties can arbitrarily vary along the thickness direction of the plate. The expressions of the mid-
plane displacements of the plate are constructed tomeet the clamped boundary conditions inwhich the unknown
constants are determined from the governing equations. The expressions of four analytic functions α(ζ ), β(ζ ),
φ(ζ ) and ψ(ζ ) corresponding to this problem are then obtained using the complex variables method. As a
result, the three-dimensional elasticity solution of a functionally graded elliptical plate with clamped boundary
subject to uniform load is derived. Finally, numerical examples are presented to verify the proposed method
and discuss the effects of different factors on the deformation and stresses in the plate.

Keywords Elliptical plates · Functionally graded materials ·Complex variables method · Elasticity solutions

1 Introduction

Elliptical plates are frequently encountered in many engineering fields. The bending of elliptical plate has
long been one of the important classical topics in the theory of elasticity [1]. Meanwhile, functionally graded
materials (FGMs) are a novel type of microscopically inhomogeneous composites in which the material
composition and mechanical properties exhibit gradient change in one or more directions. Therefore, a large
number of research activities have been directed to the study of elastic responses of FGM plates under various
conditions [2].

There are several methods that have been adopted to analyze the bending problem of FGM plates, most of
which are based on certain simplified plate theories. For example, Reddy et al. [3] studied the axisymmetric
bending of FGM circular and annular plates and presented the relationships between the solutions of the
classical plate theory (CPT) and the first-order shear deformation plate theory (FSDT). Various higher-order
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shear deformation theories were used to model the FGM rectangular plates by Xiang and Kang [4], and a
meshless method based on thin plate spline radial function was suggested. Based on the extended Kantorovich
method combined with the FSDT, Aghdam et al. [5] and Fallah and Khakbaz [6] presented highly accurate
bending solutions for moderately thick functionally graded (FG) fully clamped sector plates and functionally
graded annular sector plates with arbitrary boundary conditions, respectively.

As we all know, only a relatively few problems can be solved to obtain the exact analytical solutions based
on the elasticity theory. However, these analytical solutions can be used as benchmarks to access the validity of
various plate theories or numerical methods. Based on the three-dimensional (3D) elasticity theory, Cheng and
Batra [7] used an asymptotic expansion method to analyze the isotropic FGM elliptic plate with clamped edge.
Li et al. [8] obtained the solution of pure bending of FGM circular plates using stress function method.Wang et
al. [9] investigated the axisymmetric bending of transversely isotropic FGMcircular plates subject to arbitrarily
transverse loads. Alibeigloo [10] presented 3D thermoelastic solution of a simply supported sandwich panel
with FG core using Fourier series expansions and state-space technique. Numerical or semi-analytical methods
based on elasticity theory have also been used in the literature. For instance, Adineh and Kadkhodayan [11]
recently carried out a thermoelastic analysis of a multi-directional functionally graded thick rectangular plate
with different boundary conditions. To the authors’ knowledge, however, no closed-form solution has been
reported for the bending of transversely isotropic FGM elliptical plates based on 3D theory of elasticity.

In the authors’ previous work [13–16], based on a generalization of the England’s theory [12], equilibrium
problems of transversely isotropic FGM plates with circular and elliptical holes, sectorial plates and annular
sectorial plates were investigated based on 3D elasticity, respectively. In the present study, the generalized
England’s theory is further utilized to study the bending of transversely isotropic FGM elliptical plates with
clamped boundary subject to uniform load. Inspired by the skill of solving clamped elliptical plate in the
classical book by Timoshenko andWoinowsky-Krieger [17], the expressions of themid-plane displacements of
the clamped elliptical plate are explicitly constructed firstly. Using the complex variables method, four analytic
functions α(ζ ), β(ζ ), φ(ζ ) and ψ(ζ ) are then determined to express the 3D elasticity solution. Finally, the
proposed method is verified in the numerical examples, and the effects of different factors on the deformation
and stress distributions in the plate are investigated in detail through a comprehensive parametric study.

2 Theoretical formulations

For a transversely isotropic FGM elliptical plate with thickness h, and semimajor and semiminor axes a and b,
respectively, we employ a system of rectangular Cartesian coordinates (x, y, z). As shown in Fig. 1, the z-axis
coincides with the material axis of symmetry and is perpendicular to the mid-plane (i.e., the x − y plane) of
the plate.

In the absence of body forces, the equations of equilibrium are

σi j, j = 0, (1)

where the subscript comma denotes differentiation with respect to the coordinate variable that follows.
The relations of stresses and displacements for transversely isotropic materials can be expressed as [18]:

σx = c11u,x + c12v,y + c13w,z, σy = c12u,x + c11v,y + c13w,z, σzx = c44(w,x + u,z),

σz = c13u,x + c13v,y + c33w,z, σyz = c44(v,z + w,y), σxy = c66(u,y + v,x ), (2)
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Fig. 1 Schematic diagram of FGM elliptical plate and the coordinates: a 3D model, b front view and c mid-plane
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where ci j with 2c66 = c11 − c12 denotes the elastic coefficients, which are functions of z, i.e., ci j = ci j (z) for
FGMs. If c11 = c33, c12 = c13, and c44 = c66, the material becomes isotropic.

We express the displacement field as [12]

u(x, y, z) = ū + R1�,x + R0w̄,x + R2∇2w̄,x + R3∇4w̄,x + R4∇6w̄,x ,

v(x, y, z) = v̄ + R1�,y + R0w̄,y + R2∇2w̄,y + R3∇4w̄,y + R4∇6w̄,y,

w(x, y, z) = w̄ + T1� + T2∇2w̄ + T3∇4w̄ + T4∇6w̄, (3)

where R j ( j = 0, . . . , 4) and Tk(k = 1, . . . , 4) are functions of z; ū = ū(x, y), v̄ = v̄(x, y) and w̄ = w̄(x, y)
are the mid-plane displacements; and

� = ū,x + v̄,y, ∇2 = ∂2

∂x2
+ ∂2

∂y2
, ∇4 = ∇2∇2, ∇6 = ∇2∇4. (4)

The expressions of the z-dependent functions R j ( j = 0, . . . , 4) and Tk (k = 1, . . . , 4) can be determined
from the stress boundary conditions on the top and bottom surfaces of the plate; they can be readily found in
Yang et al. [12]. The governing equations of the mid-plane displacements are

S1(h/2)∇4w̄ = −p(x, y) + S21∇2 p(x, y). (5)
∂E(x, y)

∂x
− ∂


∂y
= 0,

∂E(x, y)

∂y
+ ∂


∂x
= 0. (6)

where S21 = S2(h/2)/S1(h/2), p(x, y) is an arbitrary biharmonic load applied on the surface z = h/2 of the
plate, and

E(x, y) = κ1� + κ2∇2w̄ + κ3∇4w̄ + κ4∇6w̄, 
 = v̄,x − ū,y . (7)

S1(z) = c33T
′
3 + c13

(
R2 − κ2

κ1
R1

)
, S2(z) = c33T

′
4 + c13

(
R3 − κ3

κ1
R1

)
. (8)

in which κ1, κ2, κ3 and κ4 are constants defined in Yang et al. [12].
According to Yang et al. [12], the mid-plane displacements of the plate can be expressed by four complex

functions α(ζ ), β(ζ ), φ(ζ ) and ψ(ζ ) as:

w̄ = α(ζ ) + α(ζ ) + ζ̄ β(ζ ) + ζβ(ζ ) + W (ζ, ζ̄ ). (9)

D = ū + i v̄ = κ1 + 1

κ1 − 1
φ(ζ ) − ζφ′(ζ ) − ψ(ζ ) − 2

κ2

κ1

[
β(ζ ) + ζβ ′(ζ )

]

− 2

κ1

(
κ2 + κ3∇2 + κ4∇4) ∂W

∂ζ̄
. (10)

where W (ζ, ζ̄ ) is a particular solution related to load in Eq. (5) and

ζ = x + iy, ζ̄ = x − iy, 2
∂

∂ζ
= ∂

∂x
− i

∂

∂y
, 2

∂

∂ζ̄
= ∂

∂x
+ i

∂

∂y
. (11)

It should be noted that the two analytic functions φ(ζ ) and ψ(ζ ) are related to the in-plane deforma-
tion and two analytic functions α(ζ ) and β(ζ ) are associated with the bending deformation of the plate. The
corresponding 3D displacement and stress components can then be given as
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w(x, y, z) = ζ̄ β(ζ ) + ζβ(ζ ) + α(ζ ) + α(ζ ) + W (ζ, ζ̄ )

+ 2T1
κ1 − 1

[
φ′(ζ ) + φ′(ζ )

]
+ 4

(
T2 − κ2

κ1
T1

)[
β ′(ζ ) + β ′(ζ )

]

+
(
T2 − κ2

κ1
T1

)
∇2W +

(
T3 − κ3

κ1
T1

)
∇4W +

(
T4 − κ4

κ1
T1

)
∇6W. (12)

u (x, y, z) + iv (x, y, z) = κ1 + 1

κ1 − 1
φ(ζ ) − ζφ′(ζ ) − ψ (ζ ) + 4

κ1 − 1
R1φ′′(ζ )

+ 2

(
R0 − κ2

κ1

)[
β(ζ ) + ζβ ′(ζ )

]
+ 2R0α′(ζ )

+ 8

(
R2 − κ2

κ1
R1

)
β ′′(ζ )

+ 2
∂

∂ζ̄

[(
R0 − κ2

κ1

)
W +

(
R2 − κ2

κ1
R1 − κ3

κ1

)
∇2W

+
(
R3 − κ3

κ1
R1 − κ4

κ1

)
∇4W +

(
R4 − κ4

κ1
R1

)
∇6W

]
. (13)

σx + σy =
(
c11 + c12 − 2

c213
c33

) {
2

κ1 − 1

[
φ′(ζ ) + φ′(ζ )

]

− 4

(
z + κ2

κ1

)[
β ′(ζ ) + β ′(ζ )

]
+

(
z + κ2

κ1

)
∇2W

}

+
[
(c11 + c12)

(
R2 − κ2

κ1
R1

)
+ 2c13T

′
3 −

(
c11 + c12 − 2

c213
c33

)
κ3

κ1

]
∇4W

+
[
(c11 + c12)

(
R3 − κ3

κ1
R1

)
+ 2c13T

′
4 −

(
c11 + c12 − 2

c213
c33

)
κ4

κ1

]
∇6W.

(14)

σy − σx + 2iσxy = 4c66
[
ζ̄ φ′′(ζ ) + ψ ′ (ζ )

] − 16c66
κ1 − 1

R1φ
′′′(ζ )

+ 8c66

(
z + κ2

κ1

)
ζ̄ β ′′(ζ ) + 8c66zα

′′(ζ )

− 32c66

(
R2 − κ2

κ1
R1

)
β ′′′(ζ )

+ 8c66
∂2

∂ζ 2

[(
z + κ2

κ1

)
W −

(
R2 − κ2

κ1
R1 − κ3

κ1

)
∇2W

−
(
R3 − κ3

κ1
R1 − κ4

κ1

)
∇4W −

(
R4 − κ4

κ1
R1

)
∇6W

]
. (15)

σxz − iσyz = 4c44
κ1 − 1

(
R′
1 + T1

)
φ′′ (ζ ) + 8c44

[
T2 + R′

2 − κ2

κ1

(
T1 + R′

1

)]
β ′′ (ζ )

+ 2c44
∂

∂ζ

{[
T2 + R′

2 − κ2

κ1

(
T1 + R′

1

)]∇2W

+
[
T3 + R′

3 − κ3

κ1

(
T1 + R′

1

)]∇4W

+
[
T4 + R′

4 − κ4

κ1

(
T1 + R′

1

)]∇6W

}
. (16)

σz = S1 (z)∇4w̄ + S2 (z)∇6w̄. (17)



3D elasticity solution for uniformly loaded elliptical plates 1833

3 An FGM elliptical plate with clamped edge subject to uniform load

Now consider an elliptical plate subject to a uniform load p(x, y) = q . The shape of the plate can be defined
by the equation

( x
a

)2 +
( y

b

)2 = 1. (18)

The cylindrical boundary conditions at the clamped edge of the plate are approximated by

ū = v̄ = w̄ = 0,
∂w̄

∂n
= 0 (19)

here n denotes the outward unit normal to the edge of the elliptical plate.
Inspired by the skill of solving clamped elliptical plate in Timoshenko and Woinowsky-Krieger [17], we

may take the following forms for the mid-plane displacements

w̄ = C

(
1 − x2

a2
− y2

b2

)2

, ū = A

(
1 − x2

a2
− y2

b2

)
x, v̄ = B

(
1 − x2

a2
− y2

b2

)
y, (20)

where the first equation is taken as that in the book [17] and A, B and C are constants to be determined.
By substituting Eq. (20)1 into Eq. (5), we get

C = − qa4b4

8S1 (h/2)
(
3a4 + 3b4 + 2a2b2

) . (21)

which is the same as that in Timoshenko and Woinowsky-Krieger [17].
Substituting Eq. (20) into Eq. (7), we obtain

E (x, y) = κ1

[
A + B − (3A + B)

x2

a2
− (3B + A)

y2

b2

]

+ κ2C

[
−4

(
1

a2
+ 1

b2

)
+ 4

(
3

a4
+ 1

a2b2

)
x2 + 4

(
1

a2b2
+ 3

b4

)
y2

]

+ 8κ3C

[
3

a4
+ 2

a2b2
+ 3

b4

]
. (22)


(x, y) = 2

(
A

b2
− B

a2

)
xy. (23)

Substituting Eqs. (22) and (23) into Eq. (6) gives(
3κ1
a2

+ 1

b2

)
A +

(
κ1 − 1

a2

)
B = 4κ2C

(
3

a4
+ 1

a2b2

)
. (24)

(
κ1 − 1

b2

)
A +

(
3κ1
b2

+ 1

a2

)
B = 4κ2C

(
1

a2b2
+ 3

b4

)
. (25)

By solving Eqs. (24) and (25), we obtain

A = 4κ2C

a2κ1
, B = 4κ2C

b2κ1
. (26)

As can be found in Yang et al. [12], the expression of the constant κ2 is

κ2 = −h01 (h/2)

g6 (h/2)
. (27)

where

g6 (z) =
∫ z

− h
2

c66 (ξ)dξ, h01 (z) =
∫ z

− h
2

ξ

[
c11 (ξ) − c213 (ξ)

c33 (ξ)

]
dξ. (28)
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For a homogeneous material, it can be found from Eq. (27) that κ2 = 0. As a result, constants A and B and
hence ū = v̄ are all equal to zero, which are consistent with those in simplified plate theories for homogeneous
materials.

By integrating Eq. (5), we have

W
(
ζ, ζ̄

) = − q

64S1 (h/2)
ζ 2ζ̄ 2, (29)

which is a particular solution of Eq. (5).
Equation (20)1 is represented by the complex variables ζ as

w̄ = C

[
1 +

(
1

16a4
+ 1

16b4
− 1

8a2b2

)
ζ 4 +

(
1

2b2
− 1

2a2

)
ζ 2

+
(

1

16a4
+ 1

16b4
− 1

8a2b2

)
ζ̄ 4 +

(
1

2b2
− 1

2a2

)
ζ̄ 2 + ζ̄ ζ 3

(
1

4a4
− 1

4b4

)

− ζ̄ ζ

(
1

a2
+ 1

b2

)
+ ζ ζ̄ 3

(
1

4a4
− 1

4b4

)
+ ζ 2ζ̄ 2

(
1

4a2b2
+ 3

8a4
+ 3

8b4

)]
. (30)

By comparing Eq. (30) with Eq. (9), we obtain

α(ζ ) = C

2

[
1 + 1

8

(
1

b2
− 1

a2

)2

ζ 4 +
(

1

b2
− 1

a2

)
ζ 2

]
. (31)

β(ζ ) = C

2

[
1

2

(
1

a4
− 1

b4

)
ζ 3 −

(
1

a2
+ 1

b2

)
ζ

]
. (32)

The expressions of the mid-plane displacements can be rewritten in complex forms based on Eqs. (20)2,3

D = ū + i v̄

= 1

2
(A + B) ζ + 1

2
(A − B) ζ̄ + 1

8
(A + B)

(
1

b2
− 1

a2

)
ζ 3

+ 1

8
(A − B)

(
1

b2
− 1

a2

)
ζ̄ 3 +

[
1

8
(A − B)

(
1

b2
− 1

a2

)
− 1

4
(A + B)

(
1

a2
+ 1

b2

)]
ζ̄ ζ 2

+
[
1

8
(A + B)

(
1

b2
− 1

a2

)
− 1

4
(A − B)

(
1

a2
+ 1

b2

)]
ζ ζ̄ 2. (33)

Substituting Eqs. (29), (31) and (32) into Eq. (10) leads to

D = κ1 + 1

κ1 − 1
φ(ζ ) − ζφ′(ζ ) − ψ (ζ )

− κ2C

κ1

[
1

2

(
1

a4
− 1

b4

)
ζ 3 + 3

2

(
1

a4
− 1

b4

)
ζ ζ̄ 2 − 2

(
1

a2
+ 1

b2

)
ζ

]

+ κ2

κ1

q

16S1
ζ 2ζ̄ + κ3

κ1

q

2S1
ζ. (34)

By comparing Eq. (33) with Eq. (34), we obtain

φ(ζ ) =
[
κ1 − 1

4
(A + B) − κ1 − 1

κ1
κ2C

(
1

a2
+ 1

b2

)
− κ1 − 1

4κ1S1
κ3q

]
ζ. (35)

ψ(ζ ) = 1

2
(B − A) ζ + 1

8
(B − A)

(
1

b2
− 1

a2

)
ζ 3. (36)

So far, the expressions of four complex functions α (ζ ), β(ζ ), φ (ζ ) andψ(ζ ) have been determined. Then,
all 3D displacement and stress components of the plate can be obtained from Eqs. (12)–(17).
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4 Numerical examples

4.1 Validation study

In order to validate the present method, an isotropic FGM circular plate with clamped boundary is considered
by letting a = b in an elliptical plate. We take a = b = 0.1 m, h = 0.02 m and q = 106 N/m2. The elastic
coefficients vary along the thickness of the plate according to the following power function model [3,19,20]

E = ET (0.5 − z/h)λ + EZ [
1 − (0.5 − z/h)λ

]
, υ = const, (37)

where λ is the gradient index, ET = 110.25 GPa and EZ = 278.41 GPa are Young’s moduli of Titanium at
z = − h/2 and Zirconium at z = h/2, respectively, and υ = 0.288 is Poisson’s ratio. It is clearly shown that
λ = 0 or λ → ∞ corresponds to a homogeneous material of Titanium or Zirconium.

The deflection factor w0 = w(0, 0, 0)/w1 is introduced in this example where w1 = qa4/64DZ is
the central deflection of a uniformly loaded isotropic homogeneous circular plate with clamped edge and
DZ = EZh3/12(1 − υ2) is the bending stiffness of the plate [17]. Table 1 gives the deflection factor w0 of the
FGM circular plate with clamped edge, where comparison is made with the existing results. It can be found that
the present solution agrees well with those predicted by the FSDT [3] and those by the elasticity theory [19].
Just as commented by Li et al. [19], the deflection of the plate with this kind of clamped boundary condition
is independent of the thickness-to-radius ratio h/a, that is the deflection of the clamped plate is similar to that
based on the CPT which is illustrated by Eqs. (20) and (21).

4.2 Parametric study

A parametric study is then carried out to investigate the influences of the gradient index, thickness-to-radius
ratio and semiminor axis ratio on the deformation and stress fields in the transversely isotropic FGM elliptical
plate with clamped edge. Unless stated otherwise, we take a = 0.1 m, b = 0.05 m and h = 0.02 m and choose
the point at x = 0 and y = 0 for calculating the values of the deflection and normal stress. The following FG
model is adopted

ci j = c0(A)
i j (0.5 − z/h)λ + c0(T )

i j

[
1 − (0.5 − z/h)λ

]
(i, j = 1, 2, 3, 4, 5, 6) (38)

where c0(A)
i j are those of Al2O3 at z = − h/2 and c0(T )

i j are those of Titanium at z = h/2, both given in Table 2
[18,21].

Table 3 gives the dimensionless deflection w(0, 0, − h/2)/h, normal stresses σx (0, 0, − h/2)/q and
σy(0, 0,− h/2)/q in the FGM elliptical plate with different values of λ. The thickness-to-radius ratio is
fixed at β = h/a = 0.2. The following observations can be obtained from the results:

(1) The deflection increases with λ. The reason is that the bending rigidity of the FGM plate decreases with
λ. Such an amplitude of increasing is obviously large at first and then becomes small when λ increases.

Table 1 The deflection factor w0 of the clamped circular plate subject to uniform load

λ 0 4 10 102 105

Present 2.5255 1.2688 1.1426 1.0175 1.0008
Li et al. [19] 2.525 1.269 1.143 1.018 1.001
Reddy et al. [3] 2.525 1.269 1.143 1.018 1.000

Table 2 Elastic constants of Al2O3 and Titanium (Unit: GPa) [18,21]

Materials c011 c012 c013 c033 c055

Al2O3 460.2 174.7 127.4 509.5 126.9
Titanium 162.4 92 69 180.7 46.7
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Table 3 Dimensionless deflection and stress of the clamped elliptical plate subject to uniform load

λ w(0, 0, − h/2)/h (×10− 5) σx (0, 0, − h/2)/q σy(0, 0, − h/2)/q

0 − 3.6297 2.2448 3.8968
2 − 7.0441 3.3044 5.6812
4 − 7.6656 3.4471 5.8321
10 − 8.4641 4.0293 6.7625
15 − 8.9168 4.5054 7.6118
20 − 9.2529 4.8822 8.2981
30 − 9.7098 5.4107 9.2714
50 − 10.2060 5.9966 10.3591

z h

0( )
11

Tc

0( )
11

Ac

c 1
1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

λ=0 λ=4 λ=10

Fig. 2 Variation of elastic constant c11 along the thickness with λ in power function model

z h

w
/h
×1
05

-9

-8

-7

-6

-5

-4

-3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

λ=0 λ=4 λ=10

Fig. 3 Distribution of dimensionless deflection w/h × 105 along the thickness direction of the plate with different values of λ

(2) At the plane of z = − h/2 where it is in a state of being stretched, the normal stresses are all positive. With
the increase of λ, the value of the normal stresses increases gradually. The value of normal stress σx/q is
smaller than that of normal stress σy/q for a given λ. This is attributed to a bigger size in the x direction
than that in the y direction of the plate.

Figure 2 shows the variation of elastic coefficient c11 along the thickness direction of the elliptical plate
with λ in power function model. It is clearly shown that λ = 0 corresponds to a homogeneous material of
Al2O3. The bending stiffness of the plate decreases when λ > 0 and the constant c11 falls faster along the
thickness direction of the plate with the increase of λ.
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Fig. 5 Distribution of dimensionless deflection w/h × 104 in the x-direction of the plate with different values of β

Figure 3 displays the dimensionless deflection w/h × 105 along the thickness direction of the clamped
elliptical plate. The deflection is roughly a constant throughout the thickness direction when λ = 0, 4, whereas
for λ = 10, it is more clearly a symmetric and nonlinear curve. It should be emphasized that the real deflection
distribution in the thickness direction can be naturally captured by the 3D elasticity theory, while in most plate
theories (classical, first-order and higher-order), the deflection is usually assumed to be constant along the
thickness direction.

Figure 4 illustrates the through-thickness distribution of dimensionless normal stress σx/q of the clamped
elliptical plate. The normal stress in the homogeneous plate changes linearly and antisymmetrically along
the thickness direction, while that for the two inhomogeneous plates changes nonlinearly. In addition, it is
observed that the difference in normal stress on the top surface is smaller than that on the bottom surface for
the three kinds of elliptical plate.

Figures 5 and 6 depict the distributions of the dimensionless deflection w/h × 104 and normal stress σx/q
at z = h/2 of the clamped elliptical plate along the x direction with λ = 2 and different values of the thickness-
to-radius ratio β. Here, the radius a keeps unchanged and the plate thickness h varies with β. Consequently,
the bending stiffness increases with β and the deflection corresponding to β = 0.1 shows the biggest value.
It can be found from Fig. 6 that the distribution of the dimensionless normal stress displays a symmetric and
parabolic characteristic which is the same as that of the dimensionless deflection. It is also noted that for
β = 0.1, the maximum value occurs both at the center and the boundary among the three kinds of plate.
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Figures 7 and 8 draw the effects of geometric dimension and gradient factor on the dimensionless deflection
w/h×104 and normal stress σx/q at z = h/2 in the elliptical plate. Here, themajor radius a keeps constant and
the minor radius b varies. It can be understood that the bending stiffness increases with a/b and the deflection
eventually approaches to a small value for the three kinds of plate. For the dimensionless normal stress shown
in Fig. 8, there is a little difference among the three kinds of plate, except for the case of a circular plate which
shows a relatively large difference.

In order to show the material properties can arbitrarily vary along the thickness direction of the plate, the
following FG exponential function model is adopted [8,9]

ci j = c0(A)
i j e

(z+h/2)
h λ (i, j = 1, 2, 3, 4, 5, 6) (39)

where c0(A)
i j are those of Al2O3 at z = − h/2.

Figure 9 shows the variation of elastic coefficient c11 along the thickness direction of the elliptical plate
with λ in exponential function model. It is verified again that λ = 0 corresponds to a homogeneous material
of Al2O3. The bending stiffness along the thickness direction decreases when λ < 0, and increases for λ > 0.

Figure 10 displays the dimensionless deflection w/h × 105 along the thickness direction of the clamped
elliptical plate. The deflection is roughly a constant throughout the thickness direction when λ = 0, 5, whereas
for λ = − 5, it is more clearly a nonlinear curve. Among three kinds of FGMplate, the dimensionless deflection
is the smallest for λ = 5 which corresponds to the largest bending stiffness of the plate and that is the largest
for λ = − 5 which corresponds to the smallest bending stiffness of the plate.
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Figure 11 illustrates the through-thickness distribution of dimensionless normal stress σx/q of the clamped
elliptical plate. The normal stress in the homogeneous plate changes linearly and antisymmetrically along the
thickness direction, while that for the two inhomogeneous plates changes nonlinearly. In addition, it is observed
that the maximum compressive stress occurs on the top surface when λ = 5 and the maximum tensile stress
occurs on the bottom surface when λ = − 5.

Figure 12 draws the through-thickness distribution of dimensionless shear stress σxz/q of the clamped
elliptical plate at x = a/2 and y = 0. As for λ = 0, the dimensionless shear stress is parabolic distribution
and symmetric about the mid-plane of the plate. As for FGM plates, the shear stress grows quickly and reaches
the maximum value near the bottom surface when λ = − 5 and decreases quickly from the maximum value
occurred near the top surface when λ = 5.

5 Conclusions

This paper studies the bending of a transversely isotropic FGMelliptical platewith clamped edge subject to uni-
form load based on a generalization of the England’s theory. The material coefficients can vary arbitrarily and
continuously along the thickness of the plate. The simplified boundary conditions in the CPT at the cylindrical
boundary are employed. By constructing explicitly the expressions of the mid-plane displacements to meet
the clamped boundary conditions and the governing equations, the 3D closed-form solution of a transversely
isotropic FGM elliptical plate with clamped edge subject to uniform load is successfully derived.



3D elasticity solution for uniformly loaded elliptical plates 1841

The validity and accuracy of the present method is verified by comparing the numerical results for a circular
plate with the available FSDT solution and the elasticity solution. Numerical results show that the gradient
index, thickness-to-radius ratio and semiminor axis ratio have important effects on the response of the FGM
elliptical plate. Therefore, the bending behavior of FGMelliptical plates can be optimized by adjusting properly
the factors mentioned above in engineering applications.

We finally emphasize that the present closed-form solutions exactly satisfy the 3D equilibrium equations
and the traction boundary conditions on the top and bottom surfaces of the plate. The cylindrical boundary
conditions in the plate are satisfied in the Saint-Venant sense. Thus, the proposed elasticity solutions can serve
as a benchmark for the mechanical bending solutions of FGM elliptical plates with clamped edge based on
various simplified plate theories or numerical methods.
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