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Abstract In this article, the size-dependent stress intensity factors in an elastic double cantilever beam (DCB)
are obtained using strain gradient theory. The surface effects are included, while theDCB is assumed to undergo
large deformation. Both cracked and uncracked parts (root effect) of the DCB are incorporated in modeling
and analyses. The Variational principle is employed to obtain the governing equation and the corresponding
boundary conditions. The deflections along the beam axis and stress intensity factors are obtained and plotted.
Results exhibit large deformation to be influential for slender beams at small scale. Strain gradient effect tends
to increase beam stiffness though reverse holds true for the root effect of the DCB. These effects on structure
stiffness are conspicuouswhen the beam thickness is less than thematerial characteristic length. Due to positive
surface residual stress, beam exhibits less stiff behavior in comparison with the negative surface residual stress.
This softening behavior may be credited to the sign of curvature that causes an additional distributed load and
alters beam stiffness. It is shown that even with the root effect, negative surface residual stress causes the DCB
to display stiffer response by lowering the stress intensity factors and vice versa.

Keywords Stress intensity factors · Double cantilever beam · Strain gradient theory · Surface effects

1 Introduction

Redesigned mixed mode bending (MMB) apparatus, based on geometrical nonlinearity, reduces the error
from 30 to 3% in determining its bending behavior [1,2]. The cantilever beam is one of the essential building
blocks used inmicro and nanoelectromechanical (MEMS andNEMS) devices and often undergoes geometrical
nonlinearity. Generally, the geometrical nonlinearity associated with cantilever beam is due to the nonlinear
curvature, effect of which is highly substantial [3] (due to the insignificance of Von Karman strain [4,5]). The
DCB specimen is widely used to determine the critical stress intensity factors (or strain energy release rate) of
homogenous, as well as non-homogenousmaterials under mode I loading configuration. Furthermore, a double
cantilever beam is generally analyzed by examining the bending behavior of a cantilever beam [6,7], since
it is considered to be made of two cantilevers attached with an uncracked part. Moreover, the consideration
of geometric nonlinearity in the mode I fracture toughness of non-homogenous materials is sufficed for long
cracks as shown by Devitt et al. [8] and Williams [9].

Contrary to the classical continuum elasticity theories, the non-classical theories assume that stress at a
material point is not entirely depended on the strain at that point but also on all other points in the body
[10,11]. This process in literature is referred as the strain gradient effect, and it is more evident when the
external and the internal dimensions of the structure become comparable such as in micro-electromechanical
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systems (MEMS) and nanoelectromechanical systems (NEMS). In that case, microstructural length scales of
a particular material become comparable to the length scale of the deformation field that eventually leads to a
non-homogenous and size-dependent structural behavior [6]. The strain gradient model employed in this work
was introduced by Aifantis [12], Ru and Aifantis [13], and Vardoulakis & Sulem [14], which is considered
more convenient in applications [6,15]. The Cauchy stress (τxx) and double stress (μxxx) for the 1-D case are

given as: τxx = Eεxx and μxxx = l2E dεxx
dx respectively [7]. Here, E is Young’s Modulus; εxx is the axial strain

in the beam due to bending, l is the material microstructural length constants related to the bulk strain energy.

The total stresses (σxx) for the beam bending can be evaluated as: σxx = τxx − dμxxx
dx = E(εxx − l2 d

2
εxx

dx2 ). The
application and validation of this simpler strain gradient theory are presented by Vardoulakis & Sulem [14]
and Giannakopoulos et al. [6], respectively. A comprehensive review of this gradient theory along with the
applications of internal length gradient across various scales is provided by Aifantis [16,17].

There are certain molecular effects that are fascinatingly obvious when the structural dimensions are in
micro and nanometer range. Effect of the surface stresses is one of those effects that have thoroughly been
explained [18,19]. The atoms on or near the free surface have different equilibrium requirements as compared
to the ones in bulk. This difference causes an excess energy at the surface which is understood as a layer to
which that energy is attached [20]. Accordingly, the thermodynamic theory of solid surface revealed that the
relationship between the surface stress and surface free energy is obtainable [21–24]. Meanwhile, when the
size of the structure is reduced to micro/nanoscale, the ratio of the surface area to bulk volume may become
enormous. Therefore, the influence of surface effect on the mechanical behavior of the micro/nanomaterials
becomes prominent and hence cannot be neglected [25]. Surface effects on micro/nanostructures may be
characterized by two major types, i.e., the surface elasticity and the surface residual stress [26]. Gurtin and
Murdoch [27] firstly considered the effect of surface stress in their theoretical framework based on continuum
elasticity. In their work, the surface is considered as a mathematical layer of zero thickness with different
material properties as compared to an underlying bulk. This theory has shown an excellent capability to
successfully cater the surface effect on the mechanical behavior of the micro/nanostructures and is widely
employed by the researchers throughout [28–33]. The general expression for the surface stress–strain relation
is given as: σ s

αβ = τoδαβ + (τo + λs)εyyδαβ + 2(μs − τ s)εαβ + τousα,β , where λs and μs are the surface Lame
constants, δ is Kronecker delta, and τo is the surface residual stress in the unconstrained condition. In general,
the surface properties usually have anisotropic stress [34–36] depending upon the crystallographic direction
of the surface. However, it is shown in the literature that a surface may assume anisotropic nature and it is still
meaningful to use an appropriate average of the surface stresses [37–39].

The surface elastic model is effectively employed by the researchers with both surface residual stress and
surface elasticity effects in the continuum model [34,40]. Moreover, the surface elastic model along with
the generalized Young-Laplace equation has also been widely used to investigate the influence of surface
effects on the mechanical response of nanostructures such as nanobeams/wires [26,41,42], nanoplates [43–
45] and electrostatically actuated nanobeams [46–49]. However, the contribution of surface residual stress to
the total surface stresses is considerably more noticeable than the surface elasticity [33,50]. As mentioned
before that the DCB is a widely used specimen for the determination of fracture toughness of a particular
material. However, very few efforts have been devoted to study its fracture behavior with the consideration
of surface effect [25]. For precise fracture analysis, the future application of micro/nanomaterials demands an
inclusion of surface effects in the crack tip field quantities such as strain energy release rate or stress intensity
factor. This paper establishes the numerical analysis of a DCB specimen, subjected to large deformation, for
the characterization of micro/nanomaterials, with the simultaneous consideration of surface effects and strain
gradients. The schematic diagram of a DCB with surface residual stress is shown in Fig. 1a. Size-dependent
fracture analysis of a DCB in terms of stress intensity factors with various beam configurations is presented.
Finally, the role of uncracked part of the DCB (root effect) is elaborated to conclude this study.

2 Theoretical formulations of the size-dependent bending of a cantilever beam

Classical beam theory is inadequate to correctly evaluate the solution of a cantilever beam under large defor-
mation (at enhanced loads in particular), primarily as it ignores the shortening of moment arm as the free end
of the beam deflects. Due to this reason, the classical results deviate from the actual observations at elevated
loads. The correction for this shortening ofmoment arm plays a key role in solving large deformation problems.
For one dimension structure, the stress–strain relation for the bulk material (in case of large deformation) is
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Fig. 1 Schematic diagram of a a double cantilever beam with surface residual stress; b the uncracked part

given as: Ez dϕ

ds = σxx, where ϕ is the slope of beam and E is the Young’s Modulus. For surface layer, the
stress (τ s) can be expressed as [51];

τ s = τo + Esε
s
xx (1)

where τo is the surface residual stress, Es and εsxx are Young’s modulus and surface strain, respectively.
Accordingly, the bending moment of a beam is given as:

M =
∫

b

zσxxdA +
∫

C

Esε
s
xxdC = E Ieff

dϕ

ds
(2)

where C is the perimeter of the beam’s cross-section, E Ieff = Ebh3
12 + Esh3

6 + Esbh2

2 [26,42]. At any specified

point P(x, y) along a curved beam, moment is given as: M = F . (a– δx - x) (where a is the length of a beam
and δx is the horizontal deflection), which if differentiated (d(a − δx − x)/ds = − cosϕ) gives;

E Ieff
d2ϕ

ds2
+ F cosϕ = 0 (3)

Vertical deflection Y and arc length s (along with the beam axis) may be evaluated as:

s =
√

E Ieff
2F

ϕ∫

0

dϕ√
sin ϕo − sin ϕ

(4)
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Y

a
= 1√

2α

ϕo∫

0

sin ϕdϕ√
sin ϕo − sin ϕ

; here α =
√

Fa2

E Ieff
and a = length of the beam (5)

Here,ϕo depicts an unknown slope at the free end. Eqs. (4) and (5) are usually solved numerically to evaluate
Y . Alternatively, numerical techniques are applied to Eq. (3) to get ϕ and deflection Y by the following relation;

Y =
a∫

0

sin(ϕ)ds (6)

These straightforward formulationsmay not be precisely applied atmicro/nanoscale due to the predominant
size effect. In order to cater this, several strain gradient theories are available in the literature (mostly dealing
with second-order strain gradients). The constitutive equation for the one-dimensional case in combination
with the linear elastic material behavior is written as [15,52,53];

σ = E(ε − l2∇2ε) (7)

where σ and ε are the axial stress and strain respectively, E is Young’s modulus, l is the material characteristic
length and ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian operator. Strain for the Euler–Bernoulli beam is

given as: ε = zκ = z dϕ

ds , where κ is the curvature and ϕ is the deformed angle. The ∇2 operator is reduced to
cater only 1D gradient since the deformation is entirely the function of “s” (although a beam is defined in 2D
geometrical space, i.e., xy-plane). For 1D cantilever beam, i.e., σyy = σzz = σyz = σxz = σxy = 0 (the beam
length should at least 10 times of its height [54]), according to Eq. (7), the total stress (σxx) may be written as:

σxx = Ez

[
dϕ

ds
− l2

d3ϕ

ds3

]
(8)

Bending moment at x is given as: M = ∫
A

σxxzdA. Using Eq. (8) in the bending moment (for the bulk)

equation and upon integration over the cross-section area A, one gets:

M = E I

[
dϕ

ds
− l2

d3ϕ

ds3

]
(9)

here l is the material characteristics length. Here, I = ∫
A
z2dA is the second moment of cross-sectional area.

Now, the governing equation and the corresponding boundary conditions of a strain gradient elastic cantilever
beam are evaluated through a variational principle given as: δ(Ub +Us)− δW = 0, whereW is the work done
by the external forces,Ub andUs are the strain energy of the bulk and surface, respectively. For one-dimensional
case, the bulk strain energy Ub may be written as:

Ub = 1

2

∫

A

a∫

0

[τxxεxx + μxxx.∇εxx] dsdA (10)

where τxx = Eεxx and μxxx = l2E(dεxx/ds) are the Cauchy and double stress, respectively, εxx is the
axial strain and ∇εxx = dεxx/ds denotes the strain gradient. Accordingly, Eq. (10) may be written as: Ub =
(E I/2)

∫ [(dϕ/ds)2 + l2(d2ϕ/ds2)2]ds, where I = bh3/12 is the moment of inertia. The variation of the

integral of the type U =
a∫
0
F(ϕ′, ϕ′′)ds (where ϕ′ = dϕ/ds and ϕ′′ = d2ϕ/ds2) is given as:

δU =
a∫

0

[{
− d

ds

(
∂F

∂ϕ′

)
+ d2

ds2

(
∂F

∂ϕ′′

)}
δϕ

]
ds +

[{(
∂F

∂ϕ′

)
− d

ds

(
∂F

∂ϕ′′

)}
δϕ′

]a
0

+
[{(

∂F

∂ϕ′′

)}
δϕ′′

]a
0

(11)
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From Eqs. (10) and (11) one gets:

δUb =
a∫

0

[
−E I

{(
∂2ϕ

∂s2
− l2

∂4ϕ

∂s4

)}
δϕ

]
ds +

[{
E I

{(
∂ϕ

∂s
− l2

∂3ϕ

∂s3

)}
δϕ

}
δϕ′

]a
0

+
[
E Il2

{
∂2ϕ

∂s2

}
δϕ′′

]a
0

(12)

Similarly, the surface strain energy is written as:

Us = 1

2

∫

A

[τ sxxεsxx + μs
xxx.∇εsxx + τoε

s
xx]dA (13)

From Eqs. (11) and (13), one gets:

δUs =
a∫

0

[[
−E Is

{(
∂2ϕ

∂s2
− l2

∂4ϕ

∂s4

)}]
δϕ

]
ds +

[[
E Is

{(
∂ϕ

∂s
− l2

∂3ϕ

∂s3

)}]
δϕ′

]a
0

+
[[

E Isl
2
{

∂2ϕ

∂s2

}]
δϕ′′

]a
0

−
a∫

0

T sδϕds (14)

where Is = (bh2/2 + h3/6) and T s =
a∫
0
qds, with q(s) is the vertical load induced by the residual stress.

According to the Young-Laplace equation [34,40], stress jump across each surface depends on the surface
curvature that can be expressed as [34,40]; 〈σ+

ij − σ−
ij 〉nin j = τ sαβκαβ , where ni denotes the unit vector

normal to the surface, σ+
ij and σ−

ij are, respectively, the stresses above and below the surface, καβ is the surface
curvature. Therefore, equivalent vertical load q(x) induced by the residual stress is expressed as [26,42];

q = Hκ = H
dϕ

ds
(15)

with H = 2τob [26,42,55] where b is the width of the beam. The total force along the beam axis “s” is given as:

T s =
a∫
0
H ∂ϕ

∂s ds. The variation of the work done by the external forces is written as: δW =
a∫
0
F cosϕ(s)δϕds.

So, the variational principle δ(Ub +Us) − δW = 0 gives:

a∫

0

[[
−E Ieff

{(
∂2ϕ

∂s2
− l2

∂4ϕ

∂s4

)}
+ Hϕ − Hϕ(a) − Fcosϕ

]
δϕ

]
ds −

[[
E Ieff

{(
∂ϕ

∂s
− l2

∂3ϕ

∂s3

)}]
δϕ′

]a
0

+
[[

E Ieff

{(
∂2ϕ

∂s2

)}]
δϕ′′

]a
0

= 0 (16)

The governing equation can be written as:

E Ieff

[
d2ϕ

ds2
− l2

d4ϕ

ds4

]
= −F cosϕ + Hϕ − Hϕ(a) (17)

where E Ieff = E bh3
12 + Es(

h3
6 + bh2

2 ). It is necessary to mention for simplification that the size dependence of
E is not considered, as previously done in these references [56,57]. Our model applies to those materials that
do not show the significant dependence of E on size. The boundary conditions evaluated from the variational
principle require E Ieff [(∂ϕ/∂s) − l2(∂3ϕ/∂s3)] (moment) and E Ieff(∂2ϕ/∂s2) (higher order moment) to be
specified at s = 0 and s = a. So, one of the possible set of boundary conditions considered in this work is
as follows; At clamped end, i.e., s = 0, slope, i.e., rotation of the beam is zero ϕ = 0, and the non-classical
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terms (from variational principle) are written as: d
2
ϕ

ds2 = 0. Meanwhile, at the free end, i.e., s = a, the classical

moment (without strain gradient) would be zerowhich eventually gives;dϕ

ds = 0.On the other hand, themoment

(with strain gradient effect) would also be zero that further gives;dϕ

ds − l2 d
3
ϕ

ds3 = 0. In a nutshell, the boundary
conditions considered in this work are written as:

At s = 0;ϕ = 0,
d2ϕ

ds2
= 0 (18a)

At s = a; dϕ
ds

= 0,
dϕ

ds
− l2

d3ϕ

ds3
= 0 or

dϕ

ds
= 0,

d3ϕ

ds3
= 0 (18b)

The nonlinear fourth-order differential equation (Eq. 17) with the respective boundary conditions (Eq. 18a)
is solved using a three-stage Lobatto IIIa collocation formula. It is one of a widely used finite differencemethod
to solve the boundary value problems.Details of this and someother relevantmethods are provided byShampine
et al. [58].

3 Numerical results for the cantilever beam bending

For results, the material characteristic length (l) of epoxy, i.e., 17.6 µm [57] is taken to numerically evaluate
the large deformation bending behavior of a cantilever beam. The concentrated vertical force F and height h
are chosen in such a way that the beam remains elastic everywhere. In this study, the contribution of the surface
residual stress toward the total surface stresses is foundmore noticeable than the surface elasticity, as shown by
other researchers [33,50]. The end tip deflection for gradientmodel Yg, non-gradient (large deformation)model
Yl and the classical model Yo (FL3/3E I ) are plotted in Fig. 2. It is shown that when t1 << h, where t1 is the
ratio of the layer’s thickness to the height of the beam, the effect of surface elasticity is negligible and all three
models give similar results. Surface elasticity modulus is taken to be as: Es = E1t1 and E1 = E = 1.44 GPa
[26,42]. The similar conclusion is drawn in the references [33,50]. Therefore, for further study, Es and τo
are assumed to be zero [59] and 0.2 µN/µm, respectively. The effect of the large deformation with increased
load factor Fo (Fo = Fa2/2(E I )) is shown by Joseph et al. [15], demonstrating its pronounced effect at the
enhanced loads. The surface residual stress constant may be positive or negative [2]; therefore, results for both
positive and negative residual stresses are presented. The vertical deflection of a cantilever beam along its
axis, normalized with Yo (FL3/3E I ) (classical endpoint vertical deflection), is presented in Fig. 3a. It can be
seen, for smaller h/ l ratios, that the gradient beam models are stiffer than the classical ones. The normalized
deflections are shown to increase with increasing h/ l, while the maximum deflection (at s/a = 1) of the
strain gradient and classical model become comparable when h/ l ≈ 1 onwards. It is important to note that
the effect of strain gradient is more prominent when h/ l ≤ 0.2; therefore, the subsequent results are primarily
presented with h/ l ≤ 0.2. In Fig. 3b for h/ l ≤ 0.2, the results are obtained with strain gradient model with
no surface effects, strain gradient model with positive surface residual stress and strain gradient model with
negative surface residual stress. All effects have shown a significant contribution to the bending behavior of a
cantilever beam. For instance, with the positive surface residual stress, the beam exhibits less stiff behavior and
vice versa. This phenomenon is explained due to the sign of curvature associated with surface residual stress
that causes an additional distributed load and change beam [26,51,59]. In the case of a positive surface residual
stress, a positive curvature results in a positive distributed transverse force. This positive force increases the
rotation of bending cantilever and thus beam behaves like a softer material. Meanwhile, this behavior is totally
opposite when τo < 0 and hence, the cantilever beam may exhibit a stiffer response comparatively.

The normalized maximum deflections (maximum tip deflection) for various beams configurations are
numerically obtained using Eq. (6) and are shown in Fig. 4. Here, Yg, Yl and Yo (Fa3/(3E I )) represent the
deflection obtained with strain gradient model, non-gradient model and using the classical formulations (small
deformation). Additionally, for comparison, the maximum tip deflections for positive and negative residual
stresses are also included. The non-dimensional parameter (α = 3Fa2/(Eh4)) as abscissa is defined for
convenience. The normalized maximum deflection Yg/Yl against α is plotted in Fig. 4a. From Fig. 4a, the
strain gradient effect seems more pronounced for smaller (a/h), presenting smaller deflections and hence
exhibiting stiffer response for the gradient beams. The effect of the surface residual stress on the tip deflections
is shown to be more prominent for slender beams irrespective of h/ l ratio. For a certain beam height, the
effect of surface residual stress tends to increase with increasing beam length. Moreover, this behavior is also
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Fig. 2 Maximum tip deflection of the strain gradient model (Yg) and the non-gradient model (Yl), normalized with the classical
results (Yo) vs layer thickness to beam’s height ratio (t1 = t/h)

evident for increasing h/ l ratio. It is clear that the positive surface residual stress induces larger tip transverse
displacement while the opposite holds true for the negative surface residual stress. Figure4b compares the
strain gradient results with the classical model (without strain gradient & small deformation). It is shown
for the smaller beam lengths that Yg/Yl and Yg/Yo are identical, indicating similar results for large as well
as the small deformation theory. However, with an increase in beam slenderness (a/h ratio), the beam will
undergo large deformation and hence the small deformation theory would over-estimate an endpoint vertical
deflection. This is evident from a peak point (in each curve) in Fig. 4b, indicating classical model inadequacy to
accurately predict the large deformation.Moreover, fromFig.4b, it is quite evident that the pattern ofmaximum
tip deflections, for the model with cumulative effects of strain gradient and surface residual stress, is similar
to that of the model without surface residual stress (only strain gradient effect), apart from the fact that for
positive surface residual stress the beam tends to exhibit softer behavior and vice versa. Nevertheless, from
Fig. 4a, b, it may fairly be concluded that the effect of surface residual stress is more prominent for slender
beams.

4 Fracture of a double cantilever beam with surface residual effect

Significant developments in the advance numerical methods have been made not only to accurately predict
the fracture of various complex geometries [60,61] but also to cater the size effect on the fracture properties
at smaller scale [6,7,62,63]. Adopting one of such numerical methods, in this section, the fracture property
of a DCB, i.e., the stress intensity factor is evaluated numerically by taking the crack length to be the length
of a beam as a and width b, the stress intensity factor (K ) of a DCB may be written as K = √

EG, where
G = F(dYmax/bda) and it is defined as the strain energy release rate of a DCB. Meanwhile, the classical result
is given by Go = 12F2a2/(Eh3b2) (Wang & Wang, 2013). Figure5 displays the normalized stress intensity
factors versus α. For comparison, as in Fig. 4, the results for the strain gradient model Kg, non-gradient model
Kl and classical theory Ko are given. Additionally, for further illustration, the stress intensity factors for the
model with the positive and negative residual stresses are also included. Evidently, from Fig. 5, the effect of the
surface residual stress is more prominent when h/ l ≥ 0.075 and for slender beams. It is clear that the positive
residual stress enhances the stress intensity factors and vice versa. Furthermore, the effect of the negative
surface residual stress is more noticeable as compared to the positive residual stress. For instance, in Fig. 5a,
for h/ l ≥ 0.1 beyond certain peak point the normalized stress intensity factor shows a swift decline, signifying
a stiffer beam response. However, this prompt observation is completely absent in the case of positive surface
residual stress. Moreover, the normalizations of strain gradient results with the classical ones are shown in
Fig. 5b. From Fig. 5b, apart from the strain gradient effects, it may clearly be seen that effect of negative
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Fig. 3 a The vertical deflection along the beam axis (normalization with the classical result at the tip) for strain gradient models
b The vertical deflection along the beam axis (normalization with the classical result at the tip) for the strain gradient models with
surface residual effect

surface residual stress is more noticeable than that of the positive surface residual stress. On the other hand,
the overestimation in the fracture characteristics is also evident following the trend as shown in Fig.4.

5 Effect of the uncracked part

The strain gradient effect of the uncracked part of DCB is neglected (since strains in the uncracked part would
be much lower than that in the cracked part). The schematic of uncracked part of a DCB is shown in Fig. 1b.
The governing equation and respective boundary conditions of an uncracked part are provided by Wang &
Wang [25] and Joseph et al. [15]. Here, it is necessary to mention the prominence of shear stresses at the
uncracked part that must be incorporated in the constitutive equations. Therefore, Timoshenko beam model is
more suitable to study the uncracked part of the DCB. Accordingly, the potential energy of an uncracked part
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Fig. 4 aEndpoint vertical deflection of the strain gradientmodel, normalizationwith the endpoint non-gradient vertical deflections
(large deformation) b End point vertical deflection of the strain gradient model, normalization with the end point classical vertical
deflections

(U2) of DCB is given as:

U2 = 2

0∫

−∞

M2

2E Ieff
dx + 2

0∫

−∞

Q2

2Gs A
dx (19)

Here E is the Young’s Modulus, Gs is the shear modulus, A is the area of cross-section and Ieff is the
effective moment of inertia. Following the rectangular coordinate system, the integrals vary from negative
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Fig. 5 a Stress intensity factors of the strain gradient model, normalization with the non-gradient stress intensity factors (large
deformation) b Stress intensity factors of the strain gradient model, normalization with the classical stress intensity factors

infinity to zero. From the references [15,25] and using M(o) = F.X(ϕo) we get:

U2 = 1√
E IeffGA

⎡
⎢⎣F2X2

(ϕo)
+

⎡
⎣

a∫

0

sH
dϕ

ds
ds

⎤
⎦
2
⎤
⎥⎦ (20)

Now, the influence of the root part of DCB is investigated numerically. Here, RK and RG are defined,
where RK is the ratio of the stress intensity factor associated with the uncracked part to that of the cracked
part of DCB, while RG is the ratio of the strain energy release rate of an uncracked part to the cracked part.
Variations of RK and RG versus a/h for different h/ l ratios are plotted in Fig. 6. The results are plotted for
strain gradient model without surface residual stress, strain gradient model with positive surface residual stress
and strain gradient model with negative surface residual stress. It can be seen in Fig. 6 that, for a particular
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Fig. 6 Comparison of RK and RG plotted against a/h

Fig. 7 Stress intensity factors with the consideration of uncracked part of DCB, normalization with the non-gradient stress
intensity factors (large deformation)

h/ l, all models show the identical results. Thus, it may be stated that ratios RK and RG depend on the DCB
geometry and it is independent of the surface residual stress. Moreover, it may equally be concluded that for
smaller DCBs, i.e., for h/ l ≤ 0.2, the value of RK and RG may not be neglected even though the beam length
to thickness ratio is higher (a/h ≈ 20) (which was the case in classical studies).

The comparison of two strain gradient models, i.e., with root effect and without root effect in terms of
stress intensity factors is shown in Fig. 7. The results are plotted for models incorporating strain gradient effect
without surface residual stress, strain gradient effect with positive surface residual stress and strain gradient
effect with negative surface residual stress. In general, results show that even with the incorporation of root
effect, the positive surface residual stress causes DCB to exhibit softer response by enhancing the normalized
stress intensity factor and vice versa. Again, this phenomenon may be explained due to the sign of curvature
associated with negative surface residual stress that causes an additional distributed load (opposite to the
direction of endpoint force), which in return cause the DCB to exhibit stiffer response. Hence, the influence
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of the root effect of DCB must be considered in mathematical modeling for accurate prediction of its fracture
properties. It seems true even for the slender beams (a/h > 20), lest an underestimated fracture behavior
would be expected.

6 Conclusion

The cumulative effects of the strain gradient and surface stress on the large deformation bending behavior of
a cantilever beam are investigated. Both surface elasticity and surface residual stress are incorporated in the
mathematical modeling. Due to the negligible influence of surface elasticity, most of the results are depicted
only with the consideration of surface residual stress. The results are obtained for the strain gradient model with
no surface effects, strain gradientmodel with positive surface residual stress and negative surface residual stress
individually. Due to the positive surface residual stress, the beam exhibits less stiff behavior. This softening
behavior may be attributed to the sign of curvature that causes an additional distributed load and change beam
stiffness. Meanwhile, this behavior is totally opposite in the case when τo < 0; hence, a cantilever beam
may exhibit a stiffer response comparatively. For the fracture property of DCB, i.e., stress intensity factor, the
effect of the surface residual stress is shown to be increasing with increasing beam dimensions. In general, the
influence of surface residual stress is more prominent when h/ l ≥ 0.075 and for slender beams. Moreover,
the effect of negative surface residual stress was shown to be more noticeable than the positive surface residual
stress. The root effect also enhances the normalized stress intensity factors. It was shown that the root effect
on the ratios RK and RG for all three models remain same and thus it may be stated that RK and RG depend
on the DCB geometry and are independent of the surface residual stress. It is observed for h/ l ≤ 0.2 that the
significance of root effect must not be ignored.
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