
Arch Appl Mech (2018) 88:1791–1803
https://doi.org/10.1007/s00419-018-1404-8

ORIGINAL

Guanxixi Jiang · Zailin Yang · Cheng Sun · Baitao Sun ·
Yong Yang

Dynamic response of a circular inclusion embedded
in inhomogeneous half-space

Received: 25 February 2018 / Accepted: 26 May 2018 / Published online: 5 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract Dynamic response of a shallow circular inclusion under incident SHwave in radially inhomogeneous
half-space is researched by applying complex function theory and multipolar coordinate system. Considering
that the mass density of the half-space varies along with the radius direction, the governing equation is
expressed as a Helmholtz equation with a variable coefficient. Based on the conformal mapping method, the
Helmholtz equation with a variable coefficient is transformed into its normalized form. Then, the expressions
of incident wave, reflectedwave and scatteringwave are obtained, and the standingwave function is deduced by
considering the circular inclusion subsequently. According to displacement and stress continuous condition of
the inclusion, the undetermined coefficients in scattering wave and standing wave are solved. Finally, dynamic
stress concentration factor around the inclusion is calculated and discussed. Numerical results demonstrate the
validity of the method and influential factors of dynamic stress concentration factor.

Keywords SH wave scattering · Inhomogeneous half-space · Complex function theory · Circular inclusion ·
Dynamic stress concentration factor (DSCF)

1 Introduction

The problem of elastic wave propagation in continuous medium is an important issue in elastodynamics.
Research about wave propagation can provide help for many fields in practical engineering, such as geological
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exploration, structure seismology and damage identification. As defects, including cavities, inclusions and
cracks, always exist in continuous medium, scattering of elastic waves and dynamic stress concentration
around defects are often discussed in wave motion researches. Early in 1973, Pao and Mow [1] researched the
problems of dynamic stress concentration around several kinds of defects. Then, lots of numerical examples
were given. Similar problems were also discussed based on complex function theory by Liu et al. [2] in 1982.
Moreover, because most materials and media in nature are inhomogeneous, researches of wave propagation
in inhomogeneous medium have become increasingly popular in wave motion field in recent years. However,
analytical solutions of governing equations with variable coefficients are tough to obtain because mass density
or modulus is no longer constant in inhomogeneous medium, so solving problems of wave propagation in
inhomogeneous medium confronts new challenges.

Wave propagation problems have still widely been discussed in the past few years. Ultrasonic waves
scattering by closed cracks subject to contact acoustic nonlinearity (CAN) was researched by Blanloeuil et al.
[3]. The scattering was nonlinear, and 2D finite element coupled with analytical approach was applied to solve
the problem. Then, directivity patterns were analyzed and the characteristics of the nonlinear scattering from a
closed crack were identified. The time-harmonic response of a laterally loaded fixed-head pile group embedded
in a transversely isotropic multilayered half-space was studied by Ai, Li and Wang [4] by using finite element
and indirect boundary element coupling method. Then the validity of the method in this work was verified and
the influences of the soil’s anisotropy and layering on the dynamic response of pile groups were investigated.
Liu et al. [5] studied the theoretical solutions of SH waves propagating in periodically layered piezomagnetic
structure. When the piezomagnetism was ignored or the magnetic circuit was closed and open, the dispersion
equation and transmission coefficients were derived in order to reveal the wave behavior. Same features were
observed for the band gaps of the magnetically closed and open cases except the zero-order mode. Barnwell
et al. [6] discussed the effect of nonlinear elastic pre-stress on antiplane elastic wave propagation in a two-
dimensional periodic structure. Based on the plane-wave-expansion method, the permissable eigenfrequencies
were determined. Numerical results showed that pre-stress significantly affects the band gap structure for
Mooney–Rivlin-type and Fung-type materials. It also leads to the possibility of phononic cloaks for a specific
class of materials. Free vibration analysis of nonuniform rectangular membranes was researched by Bahrami
and Teimourian [7] based on wave propagation approach. The obtained hints are useful for the analysis of
energy transmission in micro-/nano-devices. Shi et al. [8] investigated the wave propagation characteristics of
double-layer grapheme sheets (DLGSs). By using nonlocal Mindlin–Reissner plate theory, cutoff frequency
and escape frequencywere analyzed in the study. The study provides a better representation ofwave propagation
in DLGSs. It also has implications in their application as electromechanical oscillators. Eskandari et al. [9] paid
their attention on the elastodynamics response of a surface-stiffened transversely isotropic half-space subjected
to a buried time-harmonic normal load. The half-space was reinforced by a Kirchhoff thin plate on its surface.
Some plots of practical importance were depicted based on the proposed numerical scheme. Sheikhhassani and
Dravinski [10] discussed the dynamic stress concentration factor around the multiple multilayered inclusions
whichwere embedded in an elastic half-space. The BEM results were contrasted with the analytical results, and
the other cases of scatteringwere considered aswell. The dispersive behavior of finite-amplitude time-harmonic
Love waves propagating in a pre-stressed compressible elastic half-space was investigated by Kayestha et al.
[11]. The half-space was overlaid with two compressible elastic surface layers of finite thickness, and the layers
were different composed of the half-space. Then, numerical results demonstrated the variation of the Love
wave speed with the pre-stress and the propagation angle. Khurana and Tomar [12] studied the propagation
of Rayleigh-type surface waves in nonlocal micropolar elastic solid half-space. Frequency equations of two
modes of Rayleigh-type waves and their conditions of existence were derived. Phase speeds of these waves
were computed, and their variation against wavenumber is presented subsequently. An improved analytical
approach of scattering of Lamb waves was researched by Poddar and Giurgiutiu [13]. The method is efficient
and accurate to calculate the scattering of straight-crested Lamb waves from geometric discontinuities. A
perfectly matched layer formulation for the GFDMwas obtained by Salete et al. [14]. The stability of perfectly
matched layer regions was also guaranteed to solve the problem of wave propagation.

In the past decade, more and more problems on wave propagation in inhomogeneous medium were
researched by many scholars. Achenbach and Balogun [15] discussed the problem of antiplane surface waves
on a half-space. The half-space was inhomogeneous, and the mass density and the shear modulus were depth
dependent. The dependence function was arbitrary, and then the restrictions for the existence of surface waves
were discussed. Anisotropic and dispersive wave propagation within linear strain-gradient elasticity was inves-
tigated by Rosi and Auffray [16]. The problem is derived theoretically, and then numerical results on hexagonal
chiral and achiral lattices were discussed. Hei et al. [17,18] researched the dynamic response of elastic waves
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Fig. 1 Scattering model of a circular inclusion in inhomogeneous half-space

Fig. 2 Verification of DSCF by the degeneration procedure (β = 1.0, μ2 = 0, α = 0, d/a = 50)

by cavity or inclusion in exponentially inhomogeneous medium. By applying the complex function theory
and conformal mapping technique, the dynamic behavior of the inhomogeneous medium was investigated.
Then, dynamic stress concentration factor around the cavity and the inclusion was calculated. Doc et al. [19]
studied the multimodal sound propagation in a waveguide with varying cross section based on the Bremmer
series method. The accuracy and convergence of the solution were inspected, and a comparison was made. The
solution showed that the first-order Bremmer series was a relevant alternative to classical WKB or one-way
approximations. The problem of localization of random acoustic sources in an inhomogeneous medium was
considered by Khazaie et al. [20] via different source localization methods. The sound source position was
described by a random variable. The sound propagation mediumwas assumed to have spatially varying param-
eters with known values. The results indicated that the source identification methods have different robustness
in the presence of uncertainties. Leiderman et al. [21] presented an analytic numerical method to simulate
the interaction of ultrasonic guided waves with nonuniform interfacial imperfections in elastic multilayered
structures. The method could suit the condition of anisotropic and isotropic layers, and the upper and lower
substrates may be solid, fluid or vacuum.

This paper aims to research scattering of SH wave by a circular inclusion in radially inhomogeneous half-
space. Themass density of the backgroundmedium is no longer constant, and theHelmholtz equation becomes a
partial differential equationwith a variable coefficient. Based on the conformalmappingmethod, theHelmholtz
with a variable coefficient is converted into its normalized form. Then incident wave, reflected wave, scattering
wave and standing wave are obtained. Considering different parameters, dynamic stress concentration around
the circular inclusion is calculated and discussed. The validity of the method is confirmed, and the influential
factors of dynamic stress concentration factor are determined.

2 Statement of inhomogeneity

The model of the radially inhomogeneous half-space with a circular inclusion under SH wave with arbitrary
incident angle α is shown in Fig. 1. The horizontal surface is at y1 = 0, and the origin of the coordinate xoy
is supposed to be located at the center of the inclusion. The radius of the inclusion is a, and the burial depth is
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Fig. 3 Distribution of DSCF around the circular inclusion (β = 1.0, α = 0, d/a = 50)

Fig. 4 Distribution of DSCF with different βa (k∗ = 0.5, μ∗ = 0.25, d/a = 2)

d . Hence, xoy coordinate system has the following connection with x1o1y1 coordinate

{
x1 = x
y1 = y + d.

(1)

The inhomogeneous background medium of the half-space (medium I) is different with the shallow inclu-
sion (medium II). The circular inclusion is homogeneous. ρ1 and μ1 are the mass density and shear modulus
of medium I, while ρ2 and μ2 are mass density and shear modulus of medium II. The wave number ratio k∗
is k∗ = k2/k1, and shear modulus ratio μ∗ is μ∗ = μ1/μ2. In polar coordinate, the density of medium I is a
function which can be expressed as

ρ1 (r) = ρ1β
2r2(β−1), (2)

where ρ1 is a constant, β is the inhomogeneity parameter of medium I, and β > 0.
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Fig. 5 Distribution of DSCF with different βa (k∗ = 2.0, μ∗ = 4.0, d/a = 2)

Fig. 6 Distribution of DSCF with βa = 0.8 (k∗ = 0.5, μ∗ = 0.25, d/a = 2)

Based on the property of the inhomogeneous half-space, the wave velocity in medium I is given by

c1 (r) = c1
β
r1−β, (3)

where c1 = √
μ1/ρ1 is the reference wave velocity in medium I.

3 Governing equations

Considering the radial inhomogeneity of the half-space and the harmonic and steady excitation, then supposing
that the body force equals to zero, the wave equation in polar coordinate can be written as

∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2
∂2w

∂θ2
+ k21β

2r2(β−1)w = 0, (4)

where w = w(x, y) is the displacement function and k1 = ω/c1 is the reference wave number.
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Fig. 7 Distribution of DSCF with βa = 0.9 (k∗ = 0.5, μ∗ = 0.25, d/a = 2)

Fig. 8 Distribution of DSCF with βa = 1.0 (k∗ = 0.5, μ∗ = 0.25, d/a = 2)

Introducing the complex variable system z = reiθ , Eq. (4) becomes

∂2w

∂z∂ z̄
+ 1

4
β2(zz̄)β−1k21w = 0. (5)

Based on the transformation method applied in [18], a conformal transformation is introduced

χ = zβ, χ̄ = z̄β. (6)

Substituting Eq. (6) into Eq. (5) yields the normalized Helmholtz equation

∂2w

∂χ∂χ̄
+ 1

4
k21w = 0. (7)
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Fig. 9 Distribution of DSCF with βa = 1.1 (k∗ = 0.5, μ∗ = 0.25, d/a = 2)

Fig. 10 Distribution of DSCF with βa = 1.2 (k∗ = 0.5, μ∗ = 0.25, d/a = 2)

4 Displacement fields and stress components

Based on the derivation in the section above, the incident wave which propagates with α in medium I can be
expressed as

w(i) = w0 exp

[
ik1
2

(
χ1e

−iα + χ̄1e
iα)]

, (8)

where χ1 = (z + di)β and χ̄1 = (z̄ − di)β . w0 is the displacement amplitude of incident wave, and k1 is the
reference wave number of the background medium. Correspondingly, the reflected wave in medium I is

w(r) = w0 exp

[
ik1
2

(
χ1e

iα + χ̄1e
−iα)]

. (9)

Moreover, in medium I, the scattering wave excited by the homogeneous inclusion obeys

w(s) (χ, χ̄) =
∞∑

n=−∞
An

{
H (1)
n (k1 |χ |)

{
χ

|χ |
}n

+ H (1)
n (k1 |χ2|)

{
χ2

|χ2|
}−n

}
, (10)



1798 G. Jiang et al.

Fig. 11 Distribution of DSCF with k1a = 0.1 (k∗ = 0.5, μ∗ = 0.25, βa = 1.2)

Fig. 12 Distribution of DSCF with k1a = 0.5 (k∗ = 0.5, μ∗ = 0.25, βa = 1.2)

Fig. 13 Distribution of DSCF with k1a = 1.0 (k∗ = 0.5, μ∗ = 0.25, βa = 1.2)
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Fig. 14 Distribution of DSCF with k1a = 2.0 (k∗ = 0.5, μ∗ = 0.25, βa = 1.2)

Fig. 15 Variation of DSCFs with βa (k∗ = 2.0, μ∗ = 4.0, d/a = 2)

Fig. 16 Variation of DSCFs with βa (k1a = 1.0, d/a = 2)
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Fig. 17 Variation of DSCFs with d/a (k∗ = 2.0, μ∗ = 4.0, βa = 0.8)

Fig. 18 Variation of DSCFs with d/a (k1a = 1.0, βa = 0.8)

where An are undetermined coefficients and H (1)
n (·) is the first kind Hankel function of nth order. χ2 =

(z + 2di)β , and the scatteringwave can satisfy the zero-stress boundary condition at y1 = 0 and theSommerfeld
radiation condition at infinity automatically.

Because the inclusion is homogeneous, the standing wave in medium II can be expressed as

w(t) =
∞∑

n=−∞
Bn Jn (k2 |z|)

{
z

|z|
}n

, (11)

where k2 is the wave number corresponding to medium II. Jn is the Bessel function of the nth order, and Bn
are undetermined coefficients.

With the aids of a derivative method for compound function utilized in [18], then aiming at the radially
inhomogeneous half-space, the stress components have the form of

τr z = μ

(
∂w

∂χ

dχ

dz
eiθ + ∂w

∂χ̄

dχ̄

dz̄
e−iθ

)
(12)

τθ z = iμ

(
∂w

∂χ

dχ

dz
eiθ − ∂w

∂χ̄

dχ̄

dz̄
e−iθ

)
. (13)

Substituting different displacement fields into Eqs. (12) and (13), respectively, the detailed stress compo-
nents can be obtained.
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5 Boundary conditions and dynamic stress concentration factor

Considering the connection between the backgroundmediumand the circular inclusion, the boundary condition
is the continuity condition of displacement and stress at r = a, respectively,{

wI = wII
τr z,I = τr z,II,

(14)

where wI = w(i) + w(r) + w(s), wII = w(t), τr z,I = τ
(i)
r z + τ

(r)
r z + τ

(s)
r z , τr z,II = τ

(t)
r z . Hence, the boundary

condition can be expressed as ⎧⎪⎪⎨
⎪⎪⎩

∞∑
n=−∞

(Anεn + Bnδn) = ε

∞∑
n=−∞

(Anξn + Bnζn) = ξ,

(15)

where

εn = −
(
H (1)
n (k1 |χ |)

{
χ

|χ |
}n

+ H (1)
n (k1 |χ2|)

{
χ2

|χ2|
}−n

)
(16)

δn = Jn (k2 |z|)
{

z

|z|
}n

(17)

ε = w0

(
exp

[
ik1
2

(
χ1e

−iα + χ̄1e
iα)] + exp

[
ik1
2

(
χ1e

iα + χ̄1e
−iα)])

(18)

ξn = −μ1k1
2

{[
H (1)
n−1 (k1 |χ |)

(
χ

|χ |
)n−1

· dχ
dz

+H (1)
n−1 (k1 |χ2|)

(
χ2

|χ2|
)−n+1

· dχ2

dz

]
eiθ

−
[
H (1)
n+1 (k1 |χ |)

(
χ

|χ |
)n+1

· dχ̄
dz̄

+ H (1)
n+1 (k1 |χ2|)

(
χ2

|χ2|
)−n−1

· dχ̄2

dz̄

]
e−iθ

}
(19)

ζn = μ2k2
2

{
Jn−1 (k2 |z|)

(
z

|z|
)n−1

· eiθ

−Jn+1 (k2 |z|)
(

z

|z|
)n+1

· e−iθ

}
(20)

ξ = i

2
μ1k1w0

{[
dχ1

dz
ei(θ−α) + dχ̄1

dz̄
ei(α−θ)

]
· exp

[
ik1
2

(
χ1e

−iα + χ̄1e
iα)]

+
[
dχ1

dz
ei(θ+α) + dχ̄1

dz̄
e−i(θ+α)

]
· exp

[
ik1
2

(
χ1e

iα + χ̄1e
−iα)]}

. (21)

Multiplying e−imθ with both sides of Eq. (15) and integrating on the interval (−π, π) yields
∞∑

n=−∞

[
εmn δmn
ξmn ζmn

] [
An
Bn

]
=

[
εm
ξm

]
m = n = 0,±1,±2 . . . (22)

Hence, the undefined coefficients An and Bn can be solved.
Based on the definition of dynamic stress concentration factor (DSCF), the expression of DSCF is

τ ∗
θ z =

∣∣∣τ (·)
θ z /τ0

∣∣∣ , (23)

where τ
(·)
θ z = τ

(i)
θ z + τ

(r)
θ z + τ

(s)
θ z and τ0 = 1

2μ1k1w0 is the stress amplitude of incident wave.
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6 Numerical results and discussion

In order to verify the validity of the method presented in this paper, some degenerated results are considered
to compare with published results. In Fig. 2, we set β = 1.0, μ2 = 0, d/a = 50 to simulate the condition
of plane SH wave propagating in homogeneous infinite medium with a circular cavity. The numerical results
coincide with the results in [1] by Pao and Mow perfectly.

Figure 3 demonstrates the distribution of DSCF around the circular inclusion in homogeneous infinite
medium by setting β = 1.0, k1 = 1, d/a = 50. The degenerated results are the same as the results in [18].

Figures 4 and 5 show the distribution of DSCF at different k∗ and μ∗ when inhomogeneity parameter βa
equals 0.6, 0.8, 1.0 and 1.2. In the examples, the incident angle is supposed to be zero in order to simplify
the solving of the problem. The dimensionless wave number in the background medium is k1a = 1.0. When
the background medium is softer than the inclusion (Fig. 4), the DSCF is small, but when the background
medium is harder than the inclusion (Fig. 5), the DSCF turns bigger. In half-space, the distribution of DSCF
no longer has the property of symmetry because of the influence of the surface. The distribution of DSCF
becomes complex when the inhomogeneity parameter augments. This phenomenon which appears in both the
background medium is softer or harder than the circular inclusion.

The distribution of DSCF at different inhomogeneity parameter βa is presented in Figs. 6, 7, 8, 9 and 10
when k1a is 0.1, 0.5, 1.0 and 1.5. The DSCF increases as the wave number augments, but the distribution of
DSCF changes little when the wave number turns bigger. When βa = 0.8, the maximum of DSCF appears
at θ = π/2 and θ = 3π/2 except the case of k1a = 1.0. When βa = 0.9 and 1.0, the maximum of DSCF
is at θ = π/2 and θ = 3π/2 as well. Moreover, when βa = 1.0, the problem degenerates to the case of
homogeneous problem. When βa > 1.0, the distribution of DSCF becomes complicated. The maximum of
DSCF has the tendency to appear at θ = π . It can be inferred that the maximum of DSCF will move from
θ = π/2 and θ = 3π/2 to θ = π when the inhomogeneous parameter increases.

Because the surface has an effect on the propagation of SH wave, the depth of the inclusion will influence
the distribution of DSCF. Figures 11, 12, 13 and 14 demonstrate the distribution of DSCF with different k1a
when the depth of the inclusion d/a equals 2.0, 5.0, 10.0 and 15.0. The influence of the burial depth is little
when k1a = 0.1. That is because k1a = 0.1 approaches the problem of steady case. When the wave number
augments, the effect of burial depth appears. In the condition of k1a = 1.0 and k1a = 1.5, the distribution of
DSCF changes obviously with the depth of the inclusion increasing. Furthermore, the distribution of DSCF
has the tendency to be symmetric with the x-axis which approaches the full-space condition. The influence
of the depth on the DSCF indicates that deep inclusion embedded can be safer because of the lower dynamic
stress around it.

Figures 15 and 16 plot the variation of DSCFs at θ = π/2 with changing inhomogeneity parameter βa.
The dynamic stress concentration factors are almost the same when βa < 0.3 because the mass density of
the background medium is small. When βa > 0.3, the DSCFs under different k1a are different from each
other. In Fig. 15, the DSCFs increase when βa < 1.3 and decrease when βa > 1.3 except the condition
of k1a = 1.5. The dynamic stress concentration factor at high density is much bigger than the one at low
density, but when βa > 1.3, the phenomenon is opposite. That is because the maximum of DSCF moves to
θ = π when βa > 1.0 gradually. In the case of k1a = 1.5, the distribution of DSCF around the inclusion
is complicated, so the variation of DSCF with βa is complicated as well. Similarly in Fig. 16, the DSCFs
increase when βa < 1.3 and decrease when βa > 1.3. Moreover, when βa > 1.3, the DSCFs no longer
decrease monotonically under the condition of k∗ = 0.5 (μ∗ = 0.25) and k∗ = 4.0 (μ∗ = 16.0). The DSCFs
fluctuate with the inhomogeneity parameter changing.

The variation of DSCFs with changing depth of the inclusion d/a is given in Figs. 17 and 18. With the
depth varying, the DSCFs fluctuate regularly. When d/a is small, the value of DSCF is big due to the influence
of the surface. However, the value of DSCF becomes smaller and nearly stable when d/a > 20. That presents
the case of full-space problem. As the wave number k1a = 0.1, the DSCFs varies little with the increasing
burial depth because it approaches the problem of steady case. This conclusion is identical to the conclusion
in Figs. 11, 12, 13 and 14. When k1a becomes larger, the variation of DSCFs is significant.

7 Conclusions

Dynamic response of a circular inclusion in inhomogeneous half-space is researched in the present paper
based on the complex function theory and multipolar coordinates system. Considering the property of the
background medium, the Helmholtz equation with a variable coefficient is transformed into its normalized
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form. The general expressions of displacement fields and stress components are obtained, and dynamic stress
distribution induced by circular inclusion is calculated and discussed. According to the numerical results, some
inclusions are obtained:

(1) The high rigidity of the inclusion decreases the DSCF around it, while the soft inclusion enhances the
stress around it.

(2) The changing of inhomogeneity parameter influences the distribution of DSCF evidently, and it influences
the maximum of DSCF as well.

(3) The depth of the inclusion is a significant parameter to affect DSCF around the inclusion, especially under
high-frequency incident wave.

Generally, the inhomogeneity of the underground medium is nonnegligible in practical engineering, and
the rigid, deep-embedded inclusion is much safer than the soft, shallow-embedded one.
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