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Abstract The equilibrium problem of a nonlinearly elastic medium with a given dislocation distribution is
considered. The system of equations consists of the equilibrium equations for the stresses, the incompatibility
equations for the distortion tensor, and the constitutive equations. Deformations are considered to be finite.
For a special distribution of screw and edge dislocations, an exact spherically symmetric solution of these
equations is found. This solution is universal in the class of isotropic incompressible elastic bodies. With the
help of the obtained solution, the eigenstresses in a solid elastic sphere and in an infinite space with a spherical
cavity are determined. The interaction of dislocations with an external hydrostatic load was also investigated.
We have found the dislocation distribution that causes the spherically symmetric quasi-solid state of an elastic
body, which is characterized by zero stresses and a nonuniform elementary volumes rotation field.

Keywords Nonlinear elasticity · Dislocation density · Eigenstresses · Large deformations · Exact solution ·
Quasi-solid states

1 Introduction

Universal solutions, or universal deformations, in the mechanics of a continuous medium are the solutions
of equilibrium equations which are valid for any constitutive equations from a certain class of materials. The
importance of universal solutions is in their convenience for the experimental determining of the constitutive
equations and also in their use in numerical solution testing. An example of a universal solution for a homoge-
neous nonlinearly elastic medium in the absence of mass forces is an arbitrary uniform deformation at which
the stresses are constant. For the nonlinear elasticity of incompressible isotropic nonlinearly elastic bodies, five
families of nonuniform universal deformations are known [8,11,18,24,26–28,31,32]. The concept of univer-
sal solutions was originally introduced for static problems of the elasticity theory without taking mass forces
into account, but later it was extended to static problems with mass forces, as well as to dynamic problems
[25]. Universal deformations of nonlinear solid bodies with constraints that differ from the incompressibil-
ity condition have been investigated in [25,29,30]. Currently, generalized models of continua with complex
physico-mechanical properties (see, e.g., [7,19,20,22], etc.) are widely used. Universal solutions for some of
these models are constructed in [6,40].

In this paper, we have found and analyzed a new solution of the nonlinear elasticity theory taking into
account distributed dislocations. This solution is of spherical symmetry and is universal in the class of isotropic
incompressible materials. The solution supplements a small list of known exact solutions of the nonlinear con-
tinuum theory of dislocations [33–35,37,39] and describes the effect of distributed screw and edge dislocations
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on large spherically symmetric deformations of an elastic medium. While taking into account the distributed
edge dislocations, a spherically symmetric solution of nonlinear elasticity for a particular model of a com-
pressible material was found [37].

Dislocations are a common element of the solid structure. Dislocation models are useful in describing
phenomena such as crystal growth, fatigue, destruction, plastic flow, and inelasticity [3,4,10,21]. If there are
a lot of dislocations in the body, then it makes sense to pass from the discrete dislocation distribution to the
continuous one. In this case, the continuum theory of continuously distributed dislocations is used.

2 Input relations

Statics system of equations for nonlinear elastic medium in the absence of mass forces consists [18,24,31] of
the equilibrium equations for stresses

divD = 0, (1)

the constitutive equations

D(F) = dW (G)/dF, G = F · FT, (2)

and the geometric equations
F = gradR, R = Xk ik, (3)

where D is the asymmetric Piola stress tensor (the first Piola–Kirchhoff stress tensor), W is the energy of
deformation, F is the deformation gradient, G is the metric tensor, also called the Cauchy strain measure, Xk
(k = 1, 2, 3) are the Cartesian coordinates of body particles in the deformed configuration, and ik are the
fixed coordinate orts. In (1) and (3) and further, we use the operators of gradient, divergence, and rotor in the
reference configuration:

grad� = rs ⊗ ∂�

∂qs
, div� = rs· ∂�

∂qs
, rot� = rs × ∂�

∂qs
;

rs = im
∂qs

∂xm
, s,m = 1, 2, 3 .

Here, xm are the Cartesian coordinates of the reference configuration of the material body, qs are some
curvilinear coordinates, and � is the arbitrary differentiable tensor field.

If dislocations with a given tensor density α(qs) are distributed in the body, then the coordinates of the
particles in the deformed state Xk(qs) and the vector field R(qs) do not exist, and the geometric equations (3)
are replaced by the tensor incompatibility equation [9,15,23,38]:

rotF = α . (4)

For α �= 0, nonsingular tensor F is called the distortion tensor. The dislocation density tensor α cannot be
specified completely arbitrary, but must satisfy the solenoidality condition

divα = 0 . (5)

The physical meaning of the second-rank tensor field α is that the flux of this tensor through any surface
is equal to the total Burgers vector of all dislocations crossing this surface [23].

In the nonlinear continual dislocation theory, there are other incompatibility equations [1,2,12,14] con-
taining the dislocation density tensor that differ from (4). They represent a nonlinear system of second-order
differential equations with respect to the metric tensor G, and as shown in [5], they are the consequences of
the first-order incompatibility equations (4). Because of the complexity of the second-order incompatibility
equations, their use for solving boundary value problems of the nonlinear dislocation theory involves severe
difficulties. Therefore, in the present paper, the incompatibility equations in the form (4) will be applied.

In the theory of finite elastic deformations, along with the Piola stress tensor D, we use the symmetric
Cauchy stress tensor [18,24,31]

T = (detF)−1FT · D, (6)
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and the Kirchhoff stress tensor, also called the second Piola–Kirchhoff stress tensor

P = D · F−1 . (7)

In the absence of dislocations, that is, for α = 0, the equilibrium equations (1) can be rewritten in the form
[18]:

DivT = 0, (8)

where Div is a divergence operator in the coordinates of the deformed state. For a medium with distributed
dislocations, such coordinates do not exist and Eq. (8) does not make sense. At the same time, the concepts of
the Cauchy stress tensor and the Kirchhoff stress tensor as characteristics of the stressed state of the body do
not become invalid in the presence of distributed dislocations too.

We also note that the Piola identity known in the mechanics of finite deformations of the continuum [18]

div[(detF)F−T] = 0, F−T = (
FT)−1 = (

F−1)T (9)

in the presence of distributed dislocations, generally speaking, is not satisfied. It can be shown that the gener-
alization of the identity (9) to the case α �= 0 is the relation

div[(detF)F−T] = rs · (
α × FT) · rs,

where rs is a vector basis mutual to the basis rs , and the third-rank tensor B × C is defined as follows:
(
Bmn rm ⊗ rn

) × (
Cpq r p ⊗ rq

) = BmnCpq rm ⊗ (
rn × r p

) ⊗ rq .

3 Spherically symmetric state

Let us introduce the spherical coordinates r , ϕ, θ by the following formulas:

x1 = r cosϕ cos θ, x2 = r sin ϕ cos θ, x3 = r sin θ .

On a spherical surface r = const, the parameters ϕ and θ are the geographical coordinates: longitude and
latitude. We denote the unit vectors tangent to the coordinate lines by er , eϕ , eθ .

Suppose that the dislocation density tensor is given in the form

α = α1(r)g + α2(r)d + α3(r)er ⊗ er ,
g = eϕ ⊗ eϕ + eθ ⊗ eθ , d = eϕ ⊗ eθ − eθ ⊗ eϕ . (10)

The tensor field (10) is of spherical symmetry [39]. The first term in (10) describes the distribution of
screw dislocations, which lines coincide with the parallels and meridians, and the last term describes the
distribution of screw dislocations with a radial axis. The middle term in (10) corresponds to the distribution
of edge dislocations.

It was established in [39] that in the case of an isotropic material, the system of Eqs. (1), (2), (4), (10) has
the following solution:

F = F1(r)g + F2(r)d + F3(r)er ⊗ er , (11)

D = D1(r)g + D2(r)d + D3(r)er ⊗ er , (12)

and the vector equilibrium equation (1) reduces to a single scalar equation:

dD3

dr
+ 2(D3 − D1)

r
= 0 . (13)

By virtue of (11)–(13), the equilibrium problem for an elastic isotropic body with a spherically symmetric
dislocation distribution reduces to the nonlinear ordinary differential equations [39].

We consider a special case of the representation (10):

α = 1

r
(γ0g + β0d + 2γ0er ⊗ er ) . (14)
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Here β0, γ0 are the dimensionless constants. Expression (14) satisfies the solenoidality condition (5).
It can be verified that the incompatibility equation (4) with the dislocation density (10) has the following

solution:

F = C1g + γ0d + (C1 + β0)er ⊗ er , C1 = const . (15)

According to (15), the distortion tensor has constant components in the basis of the spherical coordinates
eϕ , eθ , er . This does not mean that the body experiences a uniform deformation, since gradF �= 0.

Furthermore, we consider an incompressible elastic medium. According to (15), the incompressibility
condition

detF = 1 (16)

leads to the following restriction on the distortion tensor field:

(C1 + β0)
(
C2
1 + γ 2

0

) = 1 . (17)

From (17) we obtain:

C1 + β0 > 0 . (18)

Using (15), (17), (18), we find a metric tensorG, a positive defined stretch tensor U, a properly orthogonal
rotation tensor A, and an inverse distortion tensor F−1:

G = F · FT = (
C2
1 + γ 2

0

)
g + (C1 + β0)

2 er ⊗ er , (19)

U = G1/2 =
√
C2
1 + γ 2

0 g + (C1 + β0)er ⊗ er , (20)

A = U−1 · F = 1
√
C2
1 + γ 2

0

(C1g + γ0d) + er ⊗ er , (21)

F−1 = C1

C2
1 + γ 2

0

g − γ0

C2
1 + γ 2

0

d + 1

C1 + β0
er ⊗ er . (22)

Introducing the notation

cosψ = C1√
C2
1 + γ 2

0

, sinψ = γ0√
C2
1 + γ 2

0

,

we can see that the orthogonal tensor (21) describes a rotation through an angle ψ about the vector er .
In the case of an isotropic incompressible elastic material, the specific energy W is given as a function

of the first and the second invariants (I1 and I2, respectively) of the Cauchy strain measure [18]. The third
invariant of the tensor G is equal to unity because of the incompressibility condition. Now the constitutive
equation (2) takes a more specific form

D = D∗ − pF−T, D∗ = (τ1 + I1τ2)F − τ2G · F;
τ1 = 2

∂W (I1, I2)

∂ I1
, τ2 = 2

∂W (I1, I2)

∂ I2
, I1 = trG, I2 = 1

2

(
tr2G − trG2) . (23)

Here, p is a pressure in an incompressible body, not expressed in terms of strain. In the problem we consider,
according to (19) the invariants I1, I2 are expressed as follows:

I1 = 2
(
C2
1 + γ 2

0

) + (C1 + β0)
2,

I2 = (
C2
1 + γ 2

0

)2 + 2(C1 + β0) .
(24)
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Using (15), (19), (22), (23), we find the components of the Piola stress tensor in the decomposition (12):

D1 = D∗
1 − p(r)

C1

C2
1 + γ 2

0

,

D2 = D∗
2 − p(r)

γ0

C2
1 + γ 2

0

,

D3 = D∗
3 − p(r)

1

C1 + β0
,

D∗
1 = τ1C1 + τ2C1[C2

1 + γ 2
0 + (C1 + β0)

2],
D∗
2 = γ0

(
τ1 + τ2

[
C2
1 + γ 2

0 + (C1 + β0)
2]) ,

D∗
3 = τ1(C1 + β0) + 2τ2 .

(25)

The quantities D∗
1 , D

∗
2 , D

∗
3 are constant, that is, they do not depend on the variable r .

The incompressibility condition (17) is a cubic equation with respect to C1. This equation has one real
root, which can be found using the formulas given in [41]. We have

C1 = −β0

3
+ 9

3√
K 2 + β2

0 − 3γ 2
0

9 3
√
K

,

K = 27 − 2β3
0 − 18γ 2

0 β0

54
+

√√
√√

(
27 − 2β3

0 − 18γ 2
0 β0

54

)2

−
(

β2
0 − 3γ 2

0

9

)3

. (26)

According to (12), (15), (26), the distortion tensor components F1, F2, F3 are completely expressed in terms
of the scalar dislocation densities β0, γ0, while the quantities F1, F3 are the even functions of the parameter
γ0. From this, it follows that the strain measure G and stresses D1, D3 do not depend on the sign of γ0. This
suggests that a given screw dislocation distribution creates nonlinear elastic effects that cannot be detected in
the context of the linear elasticity theory.

On the basis of (12), (23), (25), the equilibrium equation (13) is reduced to an ordinary differential equation
with respect to the function p(r):

r
dp

dr
+ 2

[
1 − C1(C1 + β0)

2] p

−2(C1 + β0)
{
τ1β0 + τ2

[
γ 2
0 C1 + β0

(
2

(
C2
1 + γ 2

0

) − C1 (2C1 + β0)
)]} = 0 . (27)

Recall that the quantities τ1 and τ2 in (27) are the known functions of the invariants I1, I2 expressed in
terms of the parameters β0, γ0 with the help of (24), (26). Equation (27) has the following solution:

p = A1r
λ + τ1β0 + τ2

[
β0(2γ 2

0 − C1β0) + γ 2
0 C1

]

γ 2
0 − β0C1

, A1 = const, (28)

λ = 2
(
C1β0 − γ 2

0

)

C2
1 + γ 2

0

. (29)

Note that according to (29), the power function exponent λ does not depend on the material properties, but
it is completely expressed through the dislocation parameters.

Since the equilibrium equations are satisfied, the tensor distortion field (15), (26) and the stress field
(12), (25), (28) represent the nonlinear dislocation theory solution that is universal in the class of isotropic
incompressible elastic bodies.

The dislocation distribution given by the two-parameter family of tensor functions (14) is noteworthy
in that it allows one to construct an exact solution that reflects the nonlinear interaction of edge and screw
dislocations and is universal in the class of isotropic incompressible elastic bodies. Of course, formula (14)
does not describe many possible cases of dislocation distribution, in particular, the case when the dislocation
density is a strongly oscillating function of coordinates. We note that if the dislocation tensor field is taken in
the form α = β(r)

(
eϕ ⊗ eθ − eθ ⊗ eϕ

)
, then the solenoidality condition (5) imposes no restrictions on the
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function β(r). The function β(r) can be any function, including a strongly oscillating function and the Dirac
delta function. The solution of the spherically symmetric problem of the nonlinear dislocation theory for one
specific elastic material model with the given tensor dislocation density is found in [37].

Because the stress tensors of Cauchy and Kirchhoff are symmetric, in a spherically symmetric state of an
isotropic medium they have representations:

T = T1(r)g + T3(r)er ⊗ er , P = P1(r)g + P3(r)er ⊗ er .

In accordance with (6), (7), the components of these tensors are expressed in terms of the Piola stress tensor
components by the formulas:

T1 = C1D1 + γ0D2 = C−1
1

(
C2
1 + γ 2

0

)
D1, T3 = (C1 + β0)D3,

P1 = C1D1 + γ0D2(
C2
1 + γ 2

0

) = C−1
1 D1, P3 = D3

C1 + β0
.

(30)

Here, we have taken into account the relation followed from (11), (23):

C1D2 = γ0D1 .

Using (25), (26), (30), we write stresses in the form (31):

T1 = τ1(C
2
1 + γ 2

0 ) + τ2[(C2
1 + γ 2

0 )2 + C1 + β0] − p, T3 = (τ1 + 2τ2)(C1 + β0)
2 − p,

P1 = τ1 + τ2
[
C2
1 + γ 2

0 + (C1 + β0)
2] − (C1 + β0)p, P3 = τ1 + 2τ2 − p

(C1 + β0)2
,

(31)

where p is given by (28).
Note that the stress deviator

devT = T − 1

3
ItrT

has constant components in the basis er , eϕ , eθ . Here, I is a second-order unit tensor.
Next, we consider the application of the obtained universal solution for determining a stress state in some

equilibrium problems for elastic bodies containing dislocations.

4 Eigenstresses in infinite space

When an elastic medium fills all the infinite space, then it is not necessary to satisfy any boundary conditions.
If A1 �= 0, then, according to (25), (28), the stresses increase unboundedly for r → 0 or r → ∞. In the infinite
space, a solution with bounded stresses exists only for A1 = 0. In this case, the stress components in the basis
of spherical coordinates are constant. This does not mean that the stress state is uniform.

From the equilibrium equation (13) for D1 = const, it follows that D1 = D3 at each point of the medium.
Also this equation results from the formulas (25), (28) for A1 = 0. At the same time, the coincidence of
different components of the stress tensors of Cauchy and Kirchhoff is not the case. Indeed, from (30) for
D1 = D3 we obtain that T1 �= T3, P1 �= P3.

Stresses are determined by (31). In this case, p is computed according to the formula (28) under the
assumption that A1 = 0.

5 Eigenstresses in a solid sphere

Consider the eigenstress problem for a solid sphere of radius r0. The boundary condition

T3(r0) = 0

means that the surface r = r0 is not loaded. Then, the integration constant A1 is determined by the formula
(32):

A1 = r−λ
0

{

(C1 + β0)
2τ1 + 2(C1 + β0)τ2 − τ1β0 + τ2

[
β0

(
2γ 2

0 − C1β0
) + C1γ

2
0

]

γ 2
0 − β0C1

}

. (32)
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Fig. 1 Domain of allowed values of the parameters β0 and γ0 for a sphere

Fig. 2 Radial eigenstress T3

We require that in the center of the sphere, that is, when r = 0, the stresses are limited. This requirement
is equivalent to the fact that expression (29) must be positive. Taking into account this restriction, as well as
the requirement (18) and the fact that C1 is real (suppose that |C1| ≤ 2), we plot the domain of allowed values
of the parameters β0 and γ0. It is shown in Fig. 1 in gray. From Eqs. (25), (28), it follows that in the center of
the sphere D1 = D3. At the same time, T1 �= T3, P1 �= P3 in the presence of dislocations.

The numerical results are plotted for the neo-Hookean material [18]. Therefore, we use τ1 = μ, τ2 = 0.
Since all the stresses are related to the shear modulus μ, we use μ = 1. In the calculations, it is assumed
that r0 = 1. Figures 2 and 3 show that at sufficiently low dislocation densities, the stresses are distributed not
uniformly with the maximum stress at the center of the sphere. For higher densities, the maximum stress is
also observed at the center of the sphere. Besides, as shown in Fig. 3, in a solid sphere there is a spherical
surface, on which the circumferential stress does not depend on the dislocation density.

Figures 4 and 5 present the Kirchhoff stresses. The radial Kirchhoff stress is lower than the radial Cauchy
stress, the Kirchhoff circumferential stress is slightly higher than the corresponding Cauchy stress.
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Fig. 3 Circumferential eigenstress T1

Fig. 4 Radial eigenstress P3

Fig. 5 Circumferential eigenstress P1



Universal spherically symmetric solution of nonlinear dislocation theory 417

Fig. 6 Radial stress T3 in a sphere loaded with pressure q0 = 0.001μ

Fig. 7 Circumferential stress T1 in a sphere loaded with pressure q0 = 0.001μ

6 Sphere loading with external pressure

The sphere is supposed to be loaded by a constant pressure q0. Then, the boundary condition for Eq. (27) takes
the form (33):

T3(r0) = −q0 . (33)

Hence, the constant A1 is defined by the formula:

A1 = Ã1 + r−λ
0 q0,

where Ã1 is the integration constant (32) found in the eigenstress problem.
According to Figs. 6, 7, 8, and 9 in the case of γ0 = 0 at the same pressure, the higher the dislocation

density, the higher the stress. For the stress T1, this fails only in the negligible neighborhood of the center of
the sphere.

We determine the effect of the applied load and dislocations on a stressed state of an elastic body. With
respect to the presence of load and dislocations, we consider three cases listed in Table 1, where the stress
(radial / circumferential stress) is denoted as fi (i = 1, 2, 3), “+” denotes the presence of load / dislocations,
and “−” means the absence of those.

From Figs. 10 and 11, it follows that the superposition of the solutions f1 and f2 is not equal to the solution
f3. This indicates an essential nonlinearity of the problem.
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Fig. 8 Radial stress P3 in a sphere loaded with pressure q0 = μ

Fig. 9 Circumferential stress P1 in a sphere loaded with pressure q0 = μ

Table 1 Superposition principle (Is f1 + f2 equal to f3?)

Stress Load Dislocations

f1 − +
f2 + −
f3 + +

7 Eigenstresses in infinite space with a cavity

Let us consider infinite space with a cavity of radius r1. The boundary condition for this case is written as

T3(r1) = 0 .

From this, we find the integration constant (34):

A1 = r−λ
1

{

(C1 + β0)
2τ1 + 2(C1 + β0)τ2 − τ1β0 + τ2

[
β0

(
2γ 2

0 − C1β0
) + C1γ

2
0

]

γ 2
0 − β0C1

}

. (34)

Similar to the problem for the sphere (see Sect. 5), we plot the domain of allowed values of the parameters
β0 and γ0. It follows from Fig. 12 (in gray) that the range of possible values of the parameter γ0 is much wider
than the corresponding range for β0.
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Fig. 10 Radial stress T3 in a sphere loaded with pressure q0 = 0.1μ; β0 = γ0 = 0.01

Fig. 11 Circumferential stress T1 in a sphere loaded with pressure q0 = 0.1μ; β0 = γ0 = 0.01

Fig. 12 Domain of allowed values of the parameters β0 and γ0 for a space
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Fig. 13 Radial eigenstress T3, the case of an infinite space with a cavity

Fig. 14 Circumferential eigenstress T1, the case of an infinite space with a cavity

Considering a point at infinity, we obtain the stresses in the form (35):

T3 = (τ1 + 2τ2)(C1 + β0)
2 − τ1β0 + τ2

[
β0(2γ 2

0 − C1β0) + γ 2
0 C1

]

γ 2
0 − β0C1

,

T1 = τ1(C
2
1 + γ 2

0 ) + τ2[(C2
1 + γ 2

0 )2 + C1 + β0] − τ1β0 + τ2
[
β0(2γ 2

0 − C1β0) + γ 2
0 C1

]

γ 2
0 − β0C1

.

(35)

Hence, the stresses at the point at infinity are not equal. It was found that at the center of the sphere, the radial
and circumferential stresses are equal to the corresponding stresses at the point at infinity. These stresses are
written in the form (35).

For the neo-Hookean material, the Cauchy stresses are presented by Figs. 13 and 14. It is assumed that
r1 = 1. A comparison of the Cauchy stress and the Kirchhoff stress shows that the radial Kirchhoff stress is less
than the radial Cauchy stress, and the Kirchhoff circumferential stress is slightly larger than the corresponding
Cauchy stress. It has been established that for the same dislocation density, in the case of the Mooney material
[18] the stresses are in absolute value larger than the corresponding stresses for the neo-Hookean material.

Note that for r → ∞, the stresses converge to the values that are the solution of the infinite space problem
(see Sect. 4).
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Fig. 15 Radial stress T3 in a space with a cavity loaded with pressure q0 = 0.001μ

Fig. 16 Circumferential stress T1 in a space with a cavity loaded with pressure q0 = 0.001μ

8 Loading an infinite space cavity

If a constant pressure q0 is acting on the space cavity, then the boundary condition for the Eq. (27) is

T3(r1) = −q0 .

The integration constant A1 is defined by (36)

A1 = Ã1 + r−λ
0 q0, (36)

where Ã1 is the constant (34) found in the eigenstress problem.
As shown in Figs. 15, 16, 17, and 18, in the case of γ0 = 0 at the same pressure, the higher the dislocation

density, the higher the stresses. In the case of β0 = 0 at the same pressure, the radial stress decreases with
increasing dislocation density, and the circumferential stress increases.
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Fig. 17 Radial stress T3 in a space with a cavity loaded with pressure q0 = μ

Fig. 18 Circumferential stress T1 in a space with a cavity loaded with pressure q0 = μ

9 Quasi-solid spherically symmetric state

Let us consider a special case of dislocation distribution (14), in which β0 = 1 − cosω, γ0 = sinω, where ω
is any real value. Then, according to (16), we have C1 = cosω, and the distortion tensor (15) takes the form:

F = cosωg + sinωd + er ⊗ er . (37)

Distortion (37) is a proper orthogonal tensor describing the rotation by a constant angle ω around the vector er .
On the basis of (37), using formulas (19)–(22), we obtainG = I, U = I, F = A, ψ = ω. Distortion (37) is an
example of a quasi-solid state [34] of an elastic body, in which each elementary volume moves like a perfectly
rigid body, and the rotation field is nonuniform. Other examples of quasi-solid states are given in [34–36].

For a compressible elastic body, the reference configuration of which coincides with the natural unstressed
state, in the absence of external loads, the stresses in the quasi-solid state are identically equal to zero, since
the elongations of the material fibers and the shearing strains are zero at each point of the body. In this case,
the body can occupy an arbitrary region.

Quasi-solid states can exist only in the presence of distributed dislocations, since the incompatibility
equation (4) for α = 0 has only constant solutions in the class of proper orthogonal tensors.

According to (26), (28), (31), (32), at a dislocation density determined by the parameters β0 = 1− cosω,
γ0 = sinω, in the incompressible body the stresses are identically equal to zero. Thus, dislocations, expressed
through the rotation angleω, do not create stresses in themselves, but their influence can be detected by loading
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Fig. 19 Stresses in a sphere loaded with pressure q0 = 0.1μ at a dislocation density determined by the parameters β0 = 1−cosω,
γ0 = sinω

the body, as shown in Fig. 19. Moreover, for any isotropic incompressible material, the circumferential and
radial stresses are identically equal, that is, the dislocation density creates a locally hydrostatic state, while the
internal pressure is not equal to the applied load.

10 Conclusion

In the present paper, we have found a new exact solution of the nonlinear continuum theory of dislocations.
This solution describes a spherically symmetric stress state of elastic medium caused by the presence of
continuously distributed screw and edge dislocations. The constructed solution is valid for an arbitrary isotropic
incompressible material, that is, it is universal in this class of elastic bodies. For some models of materials, we
have presented the calculations of the eigenstresses in a solid sphere and in an infinite space with a spherical
cavity.We have also investigated the nonlinear effects caused by the interaction of dislocations with an external
load in the form of hydrostatic pressure. We have shown that there is a dislocation distribution which, in the
absence of an external load, does not create stresses, but affects the stress field caused by the action of external
forces.

In this paper, followingKröner [14],we have investigated the problemof eigenstresses caused by distributed
dislocations within the elastic body model framework without using the concept of plastic deformation. The
same approach, based on the elasticity theory, is used to determine the stresses caused by isolated (singular)
dislocations [9,15,38]. Singular dislocations are the limiting case of distributed dislocations, in which the
dislocation density is a generalized function concentrated on some line. The general theory of continuously
distributed dislocations based on the multiplicative decomposition of the distortion tensor on the elastic and
plastic components is developed in [13,16,17]. Boundary value problems on the determination of stresses in
the framework of models [13,16,17] are much more complicated than problems for the system of Eqs. (1),
(2), (4) and can be the subject of future research. One can assume that the methods presented in this paper can
be helpful in solving spherically symmetric and other problems of the general dislocation theory constructed
in [13,16,17].
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