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Abstract A method for analyzing the influence of temperature on the dynamic characteristics of structures
with viscoelastic dampers is proposed in this paper. Dampers which are described by so-called fractional
rheological models are considered. The temperature–frequency superposition principle is used to describe the
influence of temperature on the dynamic characteristics. The concept of continuous dependence of damping
on an artificially introduced parameter is adopted for solving, in an approximate way, the nonlinear eigenvalue
problem from which dynamic characteristics are determined. The correctness and effectiveness of the method
was verified by means of two examples.

Keywords Viscoelastic damper · Nonlinear eigenvalue problem · Temperature influence ·
Fractional rheological model

1 Introduction

Theproblemof reduction of structural vibration due to environmental factors such as strongwind or earthquakes
has been studied for many years. A number of methods which have been developed for this purpose are divided
into three categories: methods of active, semi-active and passive control. These methods are reviewed in [1]
and other papers. One of the most widely known, the passive method, is based on the use of amorphous
polymers that exhibit viscoelastic properties [2] in dampers. The use of viscoelastic dampers is characterized
by high cost-effectiveness. But the major disadvantage of viscoelastic dampers is that the damping properties
of the polymers depend on temperature and vibration frequency. Studies on the effects of temperature on
the performance of viscoelastic dampers installed in building structures are reported in [3,4], presenting the
results of experiments on the seismic behavior of a viscoelastically damped steel frame under various ambient
temperatures. The experimental results were compared with analytical calculations of equivalent damping
ratios and seismic response of the structure. The damping ratios were calculated using the modal strain energy
method. The influence of temperature on the dampers’ properties was taken into account by using empirical
formulae based on regression analysis. In papers [5,6], a one-dimensional viscoelastic finite element with a
modified fractional model coupled to an empirical temperature model was presented. In paper [7], viscoelastic
damperswere described using the fractional derivativeKelvinmodel. The effects of temperature on viscoelastic
materials were accounted for by adopting the temperature–frequency superposition principle. The results of
calculations were validated by comparison with the experimental results obtained for the three-story damped
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steel framemodel. The analysis was done in the time and the frequency domain, but the dimensionless damping
ratios and natural frequencies were not determined.

It should be noted that changes in the temperature of the viscoelastic material in the damper are the
result of external influences on the one hand and of the so-called self-heating phenomenon on the other. This
phenomenon, consisting in the rise in temperature due to energy dissipation in the viscoelastic material, has
been the subject of numerous studies. A number of coupled thermal-mechanical models have been developed,
which are described in [8–12].

It is well known that temperature changes have a significant impact on the parameters of the damper
model adopted [3–6]. The most commonly used models of viscoelastic dampers are classic rheological models
described by the Prony series, fractional derivative models or power–law representations [10,13,14]. In recent
times, fractional derivative models have often been used because of the small number of parameters needed to
be identified. Model parameters are identified using the values of the so-called complex modulus, measured in
experimental tests (for example, in dynamic mechanical analysis tests [14,15]). From the experimental results,
the so-called master curves of the real part (storagemodulus) and imaginary part (loss modulus) of the complex
modulus are created. The values of the complex modulus for other temperatures are obtained by shifting the
master curves [2,14–17]. Shifting the master curves changes the model parameters, and this requires their
re-identification. This paper presents an easy method for determination of the fractional derivative model
parameters of the viscoelastic damper for different temperatures without their re-identification.

Themain purpose of the paper is to develop amethod for determining the basic dynamic characteristics, i.e.,
natural frequencies and dimensionless damping factors, for structures with viscoelastic dampers depending on
temperature changes. The calculation of these characteristics requires the solution of a nonlinear eigenvalue
problem. This type of eigenvalue problem can be solved using the mathematically advanced continuation
method [18]. In [19], the method of approximating an eigenvalue problem solution was presented. It was
extended in [20] to the case where the viscoelastic properties of the attenuators are described by fractional
derivatives.

In order to determine the dynamic characteristics of a system with viscoelastic dampers for different
temperatures, it is necessary to solve the eigenvalue problem repeatedly due to changes in the parameters
of the damper models. However, on the basis of the method described in [20], a method of solving the
nonlinear eigenvalue problemwill be developed that takes into account the effect of temperature changes on the
parameters of the dampermodels in a direct way. Details of the proposedmethodwill be presented in this paper.

The remaining part of the paper is organized as follows. The fractional damper model is described in
Sect. 2. The influence of temperature on the viscoelastic damper parameters is described in Sect. 3. The
nonlinear eigenproblem is formulated in Sect. 4. The analytical solution of the nonlinear eigenproblem for
proportionally damped systems is presented in Sect. 5. Section 6 describes the approximate method of solving
the nonlinear eigenproblem. Section 7 presents an approximation of the dynamic characteristics of a structure
according to the temperature changes in a direct way. An alternative method for approximating the dimension-
less damping ratios of a structure is described in Sect. 8. In Sect. 9, numerical examples are presented. The
final remarks are provided in Sect. 10.

2 Fractional damper model

Adopting a suitable viscoelastic damper model is a difficult problem: on the one hand, it should accurately
describe the dynamic behavior of the damper; on the other, it is important to minimize the number of model
parameters. The fulfillment of these two conditions can be facilitated by the use of fractional derivatives in the
mathematical damper model.

The simplest fractional damper models are the fractional Maxwell model and the fractional Kelvin model.
Each of them consists of the elastic element described by the stiffness parameter k, the Scott–Blair element
described by the viscosity parameter c, and the parameter α, which expresses the order of the fractional deriva-
tive in the damper motion equation. These models are relatively simple from a mathematical point of view but
in some instances they reproduce poorly the behavior of real viscoelastic materials. More complexmodels are a
combination of the Maxwell and Kelvin models. In this paper, the model shown in Fig. 1 is taken into account.
The considered model consists of the simple Maxwell and the simple Kelvin ones connected in parallel. Later
in this paper, these two simple parts of the model will be called theMaxwell and Kelvin elements, respectively.

The total damper response force is the sum of the forces of the Kelvin and Maxwell elements, i.e.:

u (t) = u0 (t) + u1 (t) , (1)
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Fig. 1 Generalized fractional model

where symbol u0 (t) denotes the response force of the Kelvin element and u1 (t) is the response force of the
Maxwell element, respectively. The response force of theKelvin element is described by the following formula:

u0 (t) = k0�q (t) + c0D
α
t �q (t) . (2)

where Dα
t (·) denotes the fractional derivative of theα orderwith respect to time t . Here, theRiemann–Liouville

definition of the fractional derivative is used. The symbol �q (t) is the relative damper displacement:

�q (t) = q j (t) − qi (t) , (3)

where qi (t) and q j (t) are the displacements of i th and j th nodes of the damper model (see Fig. 1). The
response force of the Maxwell element is governed by the equation:

ν1u1 (t) + Dα
t u1 (t) = k1D

α
t �q (t) , (4)

where ν1 = k1/c1.
After using the Laplace transformation with zero initial conditions to Eqs. (2) and (4), the transform of

total force of the fractional damper model response can be written as follows:

ū (s) =
(
k0 + sαc0 + k1sα

ν1 + sα

)
�q̄ (s) , (5)

where ū (s) and �q̄ (s) are the Laplace transforms of u (t) and �q (t), respectively, and s = iλ is the Laplace
variable. The symbol λ denotes the frequency of vibration.

The constitutive equation of damper (5) can also be written using the complex modulus K (λ):

ū (λ) = K (λ)�q̄ (λ) = [
K ′ (λ) + i K ′′ (λ)

]
�q̄ (λ) . (6)

A comparison of Eqs. (5) and (6) enables the storage modulus K ′ (λ) and loss modulus K ′ (λ) to be expressed
using the damper parameters:

K
′
(λ) = k0 + c0λ

α cos
απ

2
+ k1λ

α
λα + ν1 cos απ

2

ν21 + 2ν1λα cos απ
2 + λ2α

, (7)

K ′′ (λ) = c0λ
α sin

απ

2
+ k1ν1λα sin απ

2

ν21 + 2ν1λα cos απ
2 + λ2α

. (8)

3 Influence of temperature on viscoelastic damper parameters

The complex modulus depends not only on the frequency but also on the temperature of a viscoelastic material.
Formost viscoelasticmaterials, the dependence of the complexmodulus on temperature can be described by the
so-called temperature–frequency correspondence principle [21]. If the storagemodulus or loss modulus master
curve, which is its plot in the frequency domain, is known for a certain temperature T0, called the reference
temperature, then, according to this principle, it is possible to define the plot of this module for any other
temperature T . This is done by shifting the graph at the reference temperature. According to the temperature–
frequency correspondence principle, the following relationship for the complex modulus can be written:

K (λ, T ) = K (αTλ0, T0) , (9)

where αT denotes the so-called shift factor and λ0 is the reference frequency.



1698 R. Lewandowski, M. Przychodzki

K’(λ)

λ

T0
T

λλ0

K’

Fig. 2 Frequency–temperature superposition principle illustration

In general, the horizontal and vertical shift factors must be used for the description of viscoelastic materials
[2]. However, there are not enough experimental data concerning the vertical shift factor of the viscoelastic
material used in dampers (compare [8,9,11,13,22–24]). However, if the viscoelastic material can be classified
as a thermorheologically simple material, then only the horizontal shift factor is required [23].

The value of the horizontal shift factor αT is most often determined using the empirical William–Landel–
Ferry formula:

logαT = −C1�T

C2 + �T
, (10)

whereC1 andC2 are the empirical constants and�T = T −T0. Moreover, it is assumed that the fractional free
volume increases linearly with respect to time. An additional assumption is that, as the free volume of material
increases, its viscosity rapidly decreases (compare [14]). The temperature–frequency correspondence principle
for thermorheologically simple viscoelastic materials is illustrated in Fig. 2 and the following relationship can
be written:

λ0 = αTλ. (11)

The storage and loss moduli are described for the reference temperature T0 by the formulae:

K ′ (λ0, T0) = k0 + c0λ
α
0 cos

απ

2
+ k1λ

α
0

λα
0 + ν1 cos απ

2

ν21 + 2ν1λα
0 cos

απ
2 + λ2α0

, (12)

K ′′ (λ0, T0) = c0λ
α
0 sin

απ

2
+ k1ν1λα

0 sin
απ
2

ν21 + 2ν1λα
0 cos

απ
2 + λ2α0

. (13)

For temperature T , the damper model parameters are different, and Eqs. (12) and (13) take the form:

K ′ (λ, T ) = k̃0 + c̃0λ
α cos

απ

2
+ k̃1λ

α
λα + ν̃1 cos απ

2

ν̃21 + 2ν̃1λα cos απ
2 + λ2α

, (14)

K ′′ (λ, T ) = c̃0λ
α sin

απ

2
+ k̃1ν̃1λα sin απ

2

ν̃21 + 2ν̃1λα cos απ
2 + λ2α

. (15)

However, the moduli K ′ (λ, T ) and K ′′ (λ, T ) for any temperature T can be derived from Eqs. (12) and
(13) taking into account the temperature–frequency superposition principle. Replacing λ0 by αTλ gives the
relationships:

K ′ (λ0 = αTλ, T0) = k0 + c0 (αTλ)α cos
απ

2
+ k1 (αTλ)α

(αTλ)α + ν1 cos απ
2

ν21 + 2ν1 (αTλ)α cos απ
2 + (αTλ)2α

, (16)

K ′′ (λ0 = αTλ, T0) = c0 (αTλ)α sin
απ

2
+ k1ν1 (αTλ)α sin απ

2

ν21 + 2ν1 (αTλ)α cos απ
2 + (αTλ)2α

. (17)

The comparison of Eq. (14) with Eqs. (16) and (15) with Eq. (17) leads to the following results:

k̃0 = k0,
k̃1 = k1,
c̃0 = α̂T c0,
c̃1 = α̂T c1,

(18)

where α̂T = αα
T .
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4 Nonlinear eigenproblem

The equation of motion of structure with viscoelastic dampers could be written in the following form [18,20]:

Mq̈ (t) + Cq̇ (t) + Kq (t) = f (t) + p (t) , (19)

whereM,C andK are themass, structural damping and stiffnessmatrices of structure, respectively. The symbol
q (t) denotes the vector of displacements in a time domain. Moreover, p (t) is the vector of external load and
f (t) is the vector of interaction forces between the dampers and the structure (in short, the damping forces).
The vector f (t) can be written in the form of the sum of vectors of forces induced by the individual dampers:

f (t) = −
m∑

r=1

fr (t), (20)

where m is the total number of dampers.
As a result of the Laplace transformation of Eq. (19) for the zero initial conditions, the following expression

is obtained: (
s2M + sC + K

)
q̄ (s) = f̄ (s) + p̄ (s) . (21)

Taking into account Eq. (5), the vector of damping forces can be written as:

f̄ (s) = −
m∑

r=1

f̄r (s) = −
m∑

r=1

(
k0r + sαc0r + k1r sα

ν1r + sα

)
Lr q̄ (s), (22)

where Lr is the location matrix of the r th damper.
The equation of motion of structure with viscoelastic dampers in the frequency domain takes, finally, the

following form:
(
s2M + sC + K̃ + G (s)

)
q̄ (s) = p̄ (s) , (23)

where

K̃ = K +
m∑

r=1

k0rLr , (24)

G (s) = sα

m∑
r=1

(
c0r + k1r

ν1r + sα

)
Lr , (25)

The basic dynamic characteristics, such as natural frequencies and dimensionless damping factors, are calcu-
lated after solving the appropriately defined eigenproblem. The nonlinear eigenproblem of the structure with
viscoelastic dampers is obtained from Eq. (23) by subtracting the zero external load vector, i.e.:

D (s) q̄ (s) = 0, (26)

where

D (s) = s2M + sC + K̃ + G (s) . (27)

Taking into account Eq. (18), it is possible to introduce the influence of temperature on the damper parameters
into the equation of motion:

D
(
s, α̂T

)
q̄ (s) = 0, (28)

where

D
(
s, α̂T

) = s2M + sC + K̃ +
m∑

r=1

(
α̂T c0r s

α + k1r α̂T sα

ν1r + α̂T sα

)
Lr . (29)
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In a vast majority of cases, an analytical solution to the eigenproblem (26) is impossible. However, numerical
methods have been developed (see, for example [18]). In this paper, the method of which the main assumptions
were proposed by Lazaro [19] is presented and used.

The basic dynamic characteristics of structures are their natural frequenciesωk and dimensionless damping
factors γk , which are calculated from the formulae:

ωk =
√

μ2
k + η2k , γk = μk

ωk
, (30)

whereμk and ηk are the real and imaginary parts of the kth eigenvalue sk being the solution to the eigenproblem
(26).

5 Solution to eigenproblem of proportionally damped system

In general, the nonlinear eigenproblem (28) has to be solved numerically. But in the special case of a structure
in which the effect of dampers is proportional to the stiffness matrix, a “semi-analytical” solution can be given.
The “semi-analytical” solution means that the characteristic equation is obtained but is nonlinear and has to
be solved numerically.

If the system is proportionally damped, the eigenproblem (26) can be written in the following form:

[
s2M + K +

(
k0 + c0s

α + k1sα

ν1 + sα

)
κK

]
q̄ = 0, (31)

where κ denotes the proportionality coefficient. The coefficient κ fulfils the following relationship:

m∑
r=1

Lr = κK, (32)

After transformation, Eq. (31) can be written in the form of the linear eigenvalue problem:

(
K + s̃2M

)
q̄ = 0, (33)

where

s̃2 = s2

1 + κk0 + κc0sα + κ k1sα
ν1+sααT

. (34)

Taking into account that s̃ = iω, the solution of the eigenproblem (31) comes to the solution of the equation:

s2 + ω2
(
1 + κk0 + κc0s

α + κ
k1sα

ν1 + sα

)
= 0. (35)

Above, the symbol ω denotes the natural frequency of the system without damping.
The nonlinear characteristic Eq. (35) has to be solved numerically, for example, using the Newton method.
In Eq. (35), the influence of temperature change on the damper model parameters can directly be taken

into account by considering Eq. (18). Then, Eq. (35) takes the following form:

s2 + ω2
(
1 + κk0 + κc0α̂T s

α + κ
k1α̂T sα

ν1 + α̂T sα

)
= 0. (36)
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6 Approximate method of solving nonlinear eigenproblem

In the method proposed by Lazaro [19], the artificial parameter p is introduced to Eq. (26):

D (s, p) q̄ (p) = 0, (37)

where

D (s, p) = s2M + spC + K̃ + sα
m∑

r=1

(
pc0r + pk1r

ν1r + psα

)
Lr . (38)

The parameter p is treated as a variable, and its value is in the range from 0 to 1. For p = 0, Eq. (37) describes
the linear eigenproblem. For p = 1, the solution of nonlinear eigenproblem is obtained. It should be noted
that s is a function of p. The first derivative of Eq. (37) with respect to p is as follows:(

∂D (s, p)

∂s

ds

dp
+ ∂D (s, p)

∂p

)
q̄ (p) + D (s, p)

dq̄ (p)

dp
= 0. (39)

where the symbol ∂D (s, p)/∂s denotes the derivative of D (s, p) with respect to p occurring as an explicit
variable.

After premultiplication by q̄T (p), Eq. (38) takes the form:

q̄T (p)

(
∂D (s, p)

∂s

ds

dp
+ ∂D (s, p)

∂p

)
q̄ (p) + q̄T (p)D (s, p)

dq̄ (p)

dp
= 0. (40)

The matrix D (s, p) is symmetrical. Thus, Eq. (37) can be written as:

q̄T (p)D (s, p) = 0, (41)

and from Eq. (40), the following expression is obtained:

ds

dp
= q̄T (p) ∂D(s,p)

∂p q̄ (p)

q̄T (p) ∂D(s,p)
∂s q̄ (p)

. (42)

It is assumed that the eigenvector q̄ is scaled in the following manner:

q̄T (p)
∂D (s, p)

∂s
q̄ (p) = 2a, (43)

where a is a scalar. After taking into account the condition (43) and deriving the derivative of a matrix D with
respect to p, Eq. (42) finally takes the form:

ds

dp
= − 1

2a

(
sD1 (q̄, p) + sαD2 (q̄, s, p)

)
, (44)

where

D1 (q̄, p) = q̄T (p)Cq̄ (p) , (45)

D2 (q̄, s, p) = q̄T (p)
m∑

r=1

(
c0r + k1rν1r

(ν1r + psα)2

)
Lr q̄ (p) . (46)

The next step of the presented method is to expand the D1 (q̄, p) and D2 (q̄, s, p) functions in the Taylor series
in vicinity of p = 0:

D1 (q̄, p) = D1 (a, 0) + p
dD1

dp

∣∣∣∣
p=0

, (47)

D2 (q̄, s, p) = D2 (a, iω, 0) + p
dD2

dp

∣∣∣∣
p=0

. (48)
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This operation leads to the following first-order ordinary differential equation:

ds

dp
= − 1

2a

[
s (d1 + pd2) + sα (d3 + pd4)

]
, (49)

where

d1 = aTCa, (50)

d2 = 2aTC
dq̄
dp

∣∣∣∣
p=0

, (51)

d3 = aT
m∑

r=1

(c0r + c1r )Lra, (52)

d4 = 2aT
m∑

r=1

(c0r + c1r )Lr
dq̄
dp

∣∣∣∣
p=0

− 2aT
m∑

r=1

(
k1r (iω)2

ν21r

)
Lra. (53)

Equation (49) is the nonlinear first-order differential equation which can be solved numerically. In this paper,
the Euler method [25] is used.

In order to calculate themagnitude dq̄
dp

∣∣∣
p=0

, i.e., the sensitivity of the eigenvector q̄ to changes in the param-

eter p, Eq. (39) and the first derivative of Eq. (43) with respect to p are used. After some simple mathematical
operations, the following matrix sensitivity equation is obtained:

[
A11 A12
A21 A22

] ⎧⎨
⎩

dq̄
dp

∣∣∣
p=0

ds
dp

∣∣∣
p=0

⎫⎬
⎭ =

{
b1
b2

}
, (54)

where

A11 = K̃ − ω2M, (55)

A12 = 2iωMa, (56)

A21 = 2iωaTM, (57)

A22 = aTMa, (58)

b1 = −
[
iωC +

m∑
r=1

(iω)α (c0r + c1r )Lra

]
, (59)

b2 = −1

2
aT

[
C +

m∑
r=1

α (iω)α−1 (c0r + c1r )Lra

]
. (60)

7 Analysis of temperature influence on dynamic characteristics of structures with viscoelastic dampers

Determining the dynamic characteristics of structures with viscoelastic dampers according to temperature
changes within their specific range requires multiple solving of the nonlinear eigenproblem (26) because recal-
culation of the parameters of dampers for each temperature is required. This is quite troublesome because, as
mentioned earlier, this task can only be solved by iterative methods. However, the use of the Lazaro assump-
tions [19] enables a direct determination of the course of the natural frequency and the dimensionless damping
factor functions within a certain temperature range. Namely, the shift factor α̂T in Eq. (29) can be treated as
a homotopy coefficient, as does the coefficient p in Eq. (38). After performing the corresponding mathematical
operations described in Sect. 6, the following equation is obtained:

ds

dα̂T
= − sα

2a
D

(
q̄, s, α̂T

)
, (61)
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where

D
(
q̄, s, α̂T

) = q̄T
(
α̂T

) m∑
r=1

(
c0r + k1rν1r(

ν1r + α̂T sα
)2

)
Lr q̄

(
α̂T

)
. (62)

The next step is to expand the function D
(
q̄, s, α̂T

)
in the Taylor series for α̂T = 1:

D
(
q̄, s, α̂T

) = D (q̄0, s0, 1) + (
α̂T − 1

) dD

dα̂T

∣∣∣∣
α̂T =1

, (63)

where q̄0 and s0 are the eigenvector and the eigenvalue of the system, respectively, for the reference temperature
T0

(
α̂T = 1

)
. Finally, Eq. (61) takes the following form:

ds

dα̂T
= − sα

2a

[
d1 + (

α̂T − 1
)
d2

]
, (64)

where

d1 = q̄T0

m∑
r=1

(
c0r + k1rν1r(

ν1r + α̂T sα
0

)2
)
Lr q̄0, (65)

d2 = 2q̄T0

m∑
r=1

(
c0r + k1rν1r(

ν1r + α̂T sα
0

)2
)
Lr

dq̄0
dα̂T

∣∣∣∣
α̂T =1

+

−2q̄T0

m∑
r=1

k1rν1r α̂Tαsα−1
0(

ν1r + α̂T sα
0

)3 Lr q̄0
ds0
dα̂T

∣∣∣∣
α̂T =1

− 2q̄T0

m∑
r=1

k1rν1rαsα
0(

ν1r + α̂T sα
0

)3Lr q̄0, (66)

The sensitivities of the eigenvector and eigenvalue due to changes in the parameter α̂T are calculated from the
following matrix sensitivity equation:

[
A11 A12
A21 A22

] ⎧⎨
⎩

dq̄
dα̂T

∣∣∣
α̂T =1

ds
dα̂T

∣∣∣
α̂T =1

⎫⎬
⎭ =

{
b1
b2

}
, (67)

where

A11 = s20M + s0C + K̃ +
m∑

r=1

k1r sα
0

ν1r + sα
0
Lr , (68)

A12 = A21 = 2s0M + C +
m∑

r=1

k1rν1rαs
α−1
0(

ν1r + sα
0

)2 Lr q̄0, (69)

A22 = 1

2
q̄T0 [2M+

m∑
r=1

k1rν1rαs
α−2
0

(α − 1) ν1r + sα
0 (α + 1)(

ν1r + sα
0

)3 Lr

]
q̄0, (70)

b1 = −
m∑

r=1

αsα−2
0

k1rν1r(
ν1r + sα

0

)2Lr q̄0, (71)

b2 = −1

2
q̄T0

m∑
r=1

k1rν1rαs
α−1
0

(
ν1r − sα

0

)
(
ν1r + sα

0

)3 Lr q̄0, (72)
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8 Modal strain energy method

The modal strain energy method is used to approximate the dimensionless damping ratios of a structure [3,4].
The damping ratios are calculated from the following formula:

γk = aTkDI kak
2aTkDRkak

, (73)

where ak is the kth modal shape vector of the structure without damping. The symbols DI k and DRk denote
the imaginary and real parts of the dynamic stiffness matrix D (s) described by Eq. (27).

In order to determine the matrices DI k and DRk , the following expression has to be substituted into Eqs.
(25) and (27):

sk = iωk, (74)

whereωk is the kth natural frequency of the structure without damping. After separating the real and imaginary
parts of the dynamic stiffness matrix D (s), the matrices DI k and DRk can be described as follows:

DI k = ωkC +
m∑

r=1

[
ωαc0r sin

απ

2
+ k1rν1rωα sin απ

2

ν21r + 2ν1rωα cos απ
2 + ω2α

]
Lr , (75)

DRk = K̃ +
m∑

r=1

[
ωαc0r cos

απ

2
+ k1rω

α
ν1r sin απ

2 + ωα

ν21r + 2ν1rωα cos απ
2 + ω2α

]
Lr . (76)

The influence of the temperature changes on the parameter of the viscoelastic damper model can be taken into
account using Eq. (18). Then, Eqs. (75) and (76) take the form:

DI k = ωkC +
m∑

r=1

[
α̂Tωαc0r sin

απ

2
+ k1rν1r α̂Tωα sin απ

2

ν21r + 2ν1r α̂Tωα cos απ
2 + (

α̂Tωα
)2

]
Lr , (77)

DRk = K̃ +
m∑

r=1

[
α̂Tωαc0r cos

απ

2
+ k1r α̂Tωα

ν1r sin απ
2 + α̂Tωα

ν21r + 2ν1r α̂Tωα cos απ
2 + (

α̂Tωα
)2

]
Lr . (78)

9 Numerical examples

9.1 Example 1: the proportionally damped system

In the first numerical example, the results obtained by the approximate method described in Sect. 6 are com-
pared with the exact solution for proportional damping systems described in Sect. 5. The model of a four-story
shear frame, i.e., the system with rigid beams and elastic columns, was used for the analysis. The system is
shown in the schematic in Fig. 3a. The mass of the structure is lumped on the floor levels. The value of each
lumped mass ism=10,000kg. The bending rigidity of the system is described by the story rigidity coefficients,
k, which are also the same for each story (k = 1600 kN/m). Structural damping was omitted as irrelevant due
to the nature of the study. In order to implement the damping proportionality condition, the dampers of the
same parameters were located on all stories. The following parameters of the damper model were adopted:
k0 = 0.0 kN/m, c0 = 0.0 kNs/m, k1 = 10,000 kN/m, c1 = 60 kNsα/m, α = 0.7. The nonlinear equation (35)
was solved using the Newton method.

In the calculation by the approximatemethod, it was assumed that the increment in the homotopy parameter,
p, was �p = 0.01. The nonlinear differential equation (49) was solved using the implicit Euler method. The
results of the calculations are presented in Tables 1 and 2. For natural frequencies, the difference in the results
is a maximum of 0.05%. In the case of dimensionless damping ratios, the maximum difference is 0.17%. It
should be noted that the system with high damping is considered.

The example presented above shows that, although the method proposed by Lazaro [19] is an approximate
one, its accuracy for systems with proportional damping, including systems with high damping, is very good
at least in engineering applications.
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Fig. 3 Schematics of analyzed models: a proportionally damped system, b non-proportionally damped system

Table 1 Comparison of natural frequencies

Mode number Approximate method (rad/s) Exact method (rad/s) Difference (%)

1 4.504108554 4.504189925 0.0018
2 13.35812028 13.36015111 0.0152
3 20.89669154 20.90391194 0.0345
4 25.96444005 25.97753045 0.0503

Table 2 Comparison of dimensionless damping factors

Mode number Approximate method (%) Exact method (%) Difference (%)

1 4.5658090 4.5657885 0.0004
2 9.2389533 9.2357196 0.0350
3 12.1514439 12.1389445 0.1029
4 13.8106209 13.7874792 0.1678

Using the same model with proportional damping, the efficiency of the method of approximation of the
dynamic characteristics of the system depending on the temperature changes, described in Sect. 7, was further
analyzed. The temperature changes translate into changes in the coefficient α̂T . The range of α̂T is from 0.4
to 2.0 in calculations, which corresponds to the range of αT between 0.3 and 2.7. The increment of α̂T was
0.001. For example, for the material described in [10], the given range of αT corresponds to the temperature
range of −3.7– 5.5 ◦C at the reference temperature T0 = 0.2 ◦C. The results obtained from the numerical
solution of Eq. (64) were compared with those calculated from Eq. (36). These comparisons are illustrated in
Figs. 4 and 5. For proportionally damped systems, convergence of the results of the approximate method with
those obtained from the exact solution can be considered quite good: the maximum difference in results for
the natural frequencies is 0.63%, and that for the dimensionless damping factors is 3.81%.
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In addition, the plots of dimensionless damping ratios calculated using the modal strain energy method are
presented in Fig. 5. It can be seen that the convergence of the results obtained with this method with the exact
solution is worse than that for the method proposed in Sect. 7 for the proportionally damped system.

9.2 Example 2: the non-proportionally damped system

The effectiveness of the approximation method of calculating the dynamic characteristics of the non-
proportionally damped systems according to temperature changes was verified by performing numerical cal-
culations for the shear frame model of the building structure with ten degrees of freedom and six dampers. The
system is shown in the schematic in Fig. 3b. The values of the lumpedmasses are the same:m=230,000kg. The
bending rigidity of each story is also the same. The rigidity coefficient is k =130,000kN/m. The dimensionless
factor of structural damping of the first and second vibration modes is γ1,2 = 0.05. The dampers are located
on the three lowest and the three highest stories of the structure. The model parameters of each damper are:
k0 = 2000 kN/m, c0 = 0.0 kNs/m, k1 = 200,000 kN/m, c1 = 5000 kNsα/m, α = 0.7.

It was assumed that changes in the temperature of the viscoelastic material affect the changes shift factor,
αT . Calculations were performed twice for the same αT interval. In the first series of calculations, the damper
model parameters were changed for the subsequent α̂T values according to Eq. 49, and then the problem was
solved by the method described in Sect. 6. In the second series of calculations, the method described in Sect. 7
was used, where the subsequent α̂T valueswere substituted for Eq. (64). As in Example 1, the parameter α̂T was
between 0.4 and 2.0, which translates into αT of 0.3–2.7. The limits of the α̂T range were determined in such
a way as to obtain a satisfactory consistency of the results. The increment of α̂T for the first calculation series
was assumed to be 0.01. For example, for the material described in [10], the given range of αT corresponds
to the temperature range of −3.7–5.5 ◦C at the reference temperature T0 = 0.2 ◦C. For the second series, the
value 0.001 was used to increase the accuracy of the calculation. It should be emphasized that despite the
decrease in the increment value of α̂T , the speed of computer-aided calculations of the second series was much
higher. For the first three natural frequencies, the maximum differences between the results were 0.45, 1.31
and 2.54%, respectively. For the dimensionless damping factors of the first three vibration modes, the effects
were a bit worse. Namely, the maximum differences in the results were 7.69, 7.87 and 9.36%, respectively. The
natural frequency functions versus αT are shown in Fig. 6. The graphs of the dimensionless damping ratios
are given in Fig. 7. The values obtained from the modal strain energy method are also shown in this figure. It
can be seen that the results obtained using all the presented methods are very similar.

Comparing the results for proportionally and non-proportionally damped frames, it is obvious that results
for the proportionally damped frame are noticeably more accurate.

10 Concluding remarks

Viscoelastic dampers are often used nowadays to reduce the excessive vibrations of structures. The modal
analysis in the frequency domain needs an eigensolution to the nonlinear eigenvalue problem resulting from
the equation of motion for a damped, free vibration problem. Although exact solutions to the above-mentioned
eigenvalue problem can be obtained numerically, approximated expressions for frequency of vibrations and
non-dimensional damping ratios are very valuable in reducing the computational effort. It is more important
in the case of systems with viscoelastic dampers because their parameters depend on temperature.

In this paper, the method of analysis of the influence of temperature on the dynamic characteristics of
structures with viscoelastic damper is presented. The method enables the calculation of the sequences of nat-
ural frequencies and dimensionless damping ratios of a structure in a certain temperature range without the
need of multiply solving the nonlinear eigenvalue problem. The obtained dynamic characteristics values are
approximate. The degree of consistency of the results with those obtained by directly solving the eigenvalue
problem for each set of damper’s parameters depends on the considered range of temperature.

Significant increase in the efficiency of the proposed approximation method in relation to the conventional
eigenvalue problem solution is due to the fact that instead of multiple complex matrix operations, the ordinary
differential equation (64) is solved only once. In addition, the effect of temperature changes is directly taken
into account when solving this equation. In the conventional approach, the eigenvalue problem would have to
be solved many times—for each temperature.

The effectiveness of the presented method was verified numerically for two examples of structures with
four and ten degrees of freedom, respectively. Several classic and fractional damper models were used to
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Fig. 4 Plots of natural frequencies for Example 1: case 1—the values calculated using the presented method taking into account
the temperature changes directly, case 2—the values calculated using the exact method
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Fig. 5 Plots of dimensionless damping factors for Example 1: case 1—the values calculated using the presented method taking
into account the temperature changes directly, case 2—the values calculated using the exact method, case 3—the values calculated
using the modal strain energy method
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Fig. 6 Plots of three first natural frequencies for Example 2: case 1—the values calculated using the presented method taking into
account the temperature changes directly, case 2—the values calculated for the case when the parameters of the damper model
were changed each time before solving the eigenproblem
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Fig. 7 Plots of dimensionless damping factors of three first vibration modes for Example 2: case 1—the values calculated using
the presented method taking into account the temperature changes directly, case 2—the values calculated for the case when the
parameters of the damper model were changed each time before solving the eigenproblem, case 3—the values calculated using
the modal strain energy method
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describe the properties of viscoelastic dampers mounted on structures. The results of computation show that
the suggested method can be successfully applied to proportionally and non-proportionally damped structures.
The relative error of approximately calculated eigenvalues depends on the damping level and on the range of
considered changes of temperature. The results obtained using the proposed method were also compared with
those obtained by themodal strainmethod, and the proposedmethodwas found to lead to smaller relative errors.
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