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Abstract An enhanced efficient zigzag theory is presented for the static response in elastic composite plates
under mechanical loading. The number of variables is six, which is one more than the conventional zigzag
theory. Transverse shear stresses have been obtained through the use of constitutive equations in both symmetric
and antisymmetric laminates under uniformly and sinusoidally applied mechanical load. The theory has a good
representation of all the three displacement components. This is obtained by using individual descriptions for
each layer as is observed in three-dimensional elasticity solution. Interlaminar continuity conditions on all
displacement components, all transverse stresses and on the gradient of transverse normal stress as well as
transverse shear-free conditions on the top and the bottom surfaces have been utilized to make the primary
variables independent of number of layers in the laminate. Equilibrium equations and boundary conditions are
derived from variational principle. Navier solution is obtained for simply supported square and rectangular
plates. The accuracy of the present theory is assessed by comparison with three-dimensional (3D) elasticity
solution. It is found that refinement of the transverse displacement alone is not sufficient to make the new
theory capable of providing good accuracy in calculation of transverse stresses from constitutive equations,
though some improvement is obtained in case of symmetric laminates.

Keywords Static analysis · Composite plate · Zigzag theory · Navier solution · Transverse shear stress

1 Introduction

The specific advantages for composite laminates such as high strength-to-weight ratio, stiffness-to-weight ratio
and easy tailorability to any shape make them suitable for use in aircraft, spacecraft, space structures, marines,
automobiles and medical applications. It leads to high-performance lightweight structures with much high
reliability and durability in their service life. However, there remains the risk of interfacial delamination due to
induced transverse shear stresses at interfaces [1]. The stresses must be accurately calculated at every point in
the laminate and suitable failure theory be used to ensure that the structuremaintains the required factor of safety
before actual testing is conducted. The displacements and stresses are evaluated through analytical modeling
and numerical modeling using classical laminate theory (CLT), first-order shear deformation theory (FSDT),
third-order theory (TOT), higher-order theory (HOT), layerwise theory (LWT), zigzag theory (ZIGT) and
global–local theory (GLT), or more accurately by using three-dimensional (3D) elasticity solution. Obtaining
3D solutions for general loading and general boundary conditions is very difficult or in some cases not possible.
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Displacement-based 2D theories, which employ different degrees of approximations in the displacement field,
are more simple to formulate and use.

The CLT [2–4] assumes that the straight lines normal to the mid-surface before deformation remain straight
and normal to the mid-surface after deformation; in other words, the deformation of the plate is due to bending
and inplane stretching. It results in under-prediction of deflections. The FSDT [5–10] allows constant rotation
of the transverse normals. Arbitrary shear correction factors, which are dependent on lamination, geometric
parameters, loading and boundary conditions, are taken into account to provide a better evaluation of the
transverse shear deformability on a strain energy basis. Thus, its accuracy is greatly dependent on the choice
of the shear correction factors. The CLT and FSDT are based on the state of plane stress and use the reduced
form of constitutive equation. The TOT [11–13] utilizes quadratic variation of the transverse shear strains in its
displacement field approximation and satisfies vanishing transverse shear stress conditions on the bottom and
top surfaces. Thus, there is no need of shear corrections factors and the accuracy of the results is improved than
the FSDT although the computational effort is increased. The HOT [14–18] introduces additional unknowns
to the displacement field. The CLT, FSDT, TOT and HOT are categorized as equivalent single-layer theories
(ESLTs), since they make suitable assumptions for the kinematics of deformation through the entire thickness
of the laminate. The ESLTs are often found to yield sufficiently accurate global response for thin to moderately
thick laminates. However, their accuracy deteriorates when the laminate becomes thicker. And also they are
incapable of predicting state of stress at the layer interfaces which are responsible for failure or success of
the laminates during their service life. The reviews [19–21] provide further details on these ESL theories. The
inability of these non-layerwise ESLTs to accurately predict the transverse shear stresses directly from the
constitutive equations has remained a great concern [22].

To improve the predictions of displacements and stresses in thick laminates, layerwise theory [23,54,55] is
employed. This theory introduces discrete-layer transverse shear effects by allowing the inplane displacements
to vary in layerwise manner through the laminate and can very well capture the zigzag distribution of inplane
displacements particularly for thick laminates which have been observed from the exact 3D solutions [25–27].
The computational expense is huge for the LWT, since the number of unknowns increases proportionately with
the increase in number of layers. The ZIGT [28–32,45–50] is an efficient counterpart of LWT. Murakami’s
zigzag theory [31] is based on the geometric zigzag functions which do not satisfy continuity of transverse
shear stresses across laminate thickness, rather it satisfies displacement continuity. This theory was extended
by Toledano and Murakami [32] by choosing inplane and transverse displacements to be a superposition of
Murakami zigzag functions with cubic polynomials. This resulted in yielding continuous and piecewise fourth-
order transverse shear stresses and a continuous fifth-order transverse normal stress. The effect of choosing and
not choosing Murakami zigzag function in any equivalent single-layer model was thoroughly researched by
Carrera et al. [33,35,37,38,58,60], Demasi [56], Ali et al. [40], Ganapathi and Mackecha [41], Umasree and
Bhaskar [42], D’Ottavio et al. [43] and Vidal and Polit [44]. It is established that inclusion of Murakami zigzag
functions to the displacement field has selective advantage in obtaining accuracy, not universal advantage.

Apart from considering same approximation for displacements as done by LWT, the zigzag theory includes
additional quadratic and cubic variation or trigonometric variation globally for inplane displacement field. The
zigzag pattern variation in inplane displacement is taken a priori in each layer of the multilayered laminate. The
computational expensiveness is eleminated/reduced drastically by enforcing continuity of displacements and
stresses at all interfaces. The efficiency is restored back to the same as that of an equivalent single-layer theory.
This theory presents a better representation of the actual deformation in anisotropic laminated composite
structures. A historical review of various approaches used for zigzag theories is given by Carrera [52]. As a
general classification, a zigzag theory can be a Lekhnitskii-type multilayered theory extended from beams to
plates byRen [53]. The second category is calledAmbartsumian-typemultilayered theory, which is extended to
anisotropic as well as non-symmetric plates byWhitney [54], Chou andCarleone [55] and byDi Sciuva [30,45]
for anisotropic multilayered plates and shells. This approach was furthered by Cho and Parmerter [48] for
general laminate configurations. The third category of zigzag theory can be called as Reissner multilayer theory
which considers transverse stresses and displacements as primary unknowns [28,29] and uses the popularly
known Reissner’s mixed variational theorem. Murakami [31] employed a kinematic-based zigzag function in
the inplane displacement field, and this approach was championed by Carrera [51], Demasi [56,81], Brischetto
et al. [58,59] and Rodrigues et al. [60]. Many zigzag theories suffer from the drawback while implementing
in finite elements for plates and shells [61] that C1-continuity is required in transverse displacement but is
not desirable. It has also been noticed that transverse shear stresses vanish along clamped boundaries when
calculated from constitutive equations, which should not be the case. This led to a refined zigzag theory by
Tessler et al. [62]. In this refined theory, layerwise zigzag functions were added to the FSDT approximations



Enhanced zigzag theory for static analysis of composite plates 1597

of inplane displacement field. Such zigzag functions did not require imposition of transverse shear stress
continuity condition, yet yielded accurate results. Since this refined theory possessed first derivatives in the
strain field, it led to successful development of C0-continuous finite elements for beams and plates [63,64],
and a correct description of non-vanishing transverse shear forces at clamped boundaries. The refined zigzag
theory originally developed for laminated beams has been extended byTessler et al. [65] to laminated composite
and sandwich plates. This variationally consistent refined zigzag theory is seen to accurately reflect effect of
transverse shear flexibility in its through-the-thickness prediction of displacement and stress entities. Unlike
similar first- order zigzag theories, this refined zigzag theory accurately models clamped boundary conditions
in laminated beams and plates. Gherlone [67]made a critical comparative assessment onMurakami-type zigzag
function and the refined zigzag function [62]. It revealed that the two functions lead to identical results for any
two-layer laminate, three-layer symmetric laminate, periodic laminates ([0/90/0/90/…]). But if the periodic
laminate contains a weak interface, then the refined zigzag function is observed to yield more accurate results.
The superiority of refined zigzag function over Murakami zigzag function has also been observed in case of
non-symmetric laminates, which Murakami [66] has attributed to the fact that the periodicity in the laminate
breaks down, and hence, the very basis of his zigzag function approximation suffers casualty.

The more realistic kinematics- and material property-based zigzag theory of Di Sciuva [30] was refined by
Tessler and coresearchers [65,68] by adding a set of piecewise linear functions and was found to yield good
accuracy for bending, free vibration and buckling of laminated composite plates. Based on the approach of
deriving assumed transverse shear stresses [69], Iurlaro et al. [70] developed amixed refined zigzag theory using
Reissner’s mixed variational theorem. It is felt that linear piecewise functions alone are not sufficient to yield
correct descriptions of inplane displacements in thick plates, which are rather observed to be nonlinear across
thickness. In order to satisfy this observation, Di Sciuyva [71] and Cho and Parmerter [47,48] enhanced the
zigzag theory by addingquadratic and cubic terms in the inplanedisplacement field approximation for laminated
plates by a priori satisfying the interlaminar transverse shear stress continuity condition. Transverse normal
deformation was added in Toledano and Murakami’s zigzag theory [32]. Relaxing this conditions, Nemeth
[72] developed another cubic zigzag theory. Since Nemeth’s theory does not satisfy continuity of transverse
shear stresses, it yields piecewise quadratic distribution for these stresses. The thickness deformation being
more pronounced in thick laminated plates, Barut et al. [73] employed piecewise quadratic functions in inplane
displacement field and a global quadratic function in the transverse displacement component. The key idea
behind these zigzag formulations is of adding piecewise linear zigzag-shaped C0-continuous functions to the
linearly or quadratically varying global thickness functions to inplane displacements and of determining their
coefficients in such a way that equilibrium of transverse shear stresses is satisfied in the laminate thickness.

The transverse stresses are primarily responsible for causing interlaminar delamination in the laminate, thus
resulting in its damage. In order to provide improved prediction of these stresses, Icardi [74–77] has presented
several 3D zigzag theories and their sublaminate counterparts for elastic laminated beams, plates and sandwich
plates. The zigzag theory in Ref. [74] has considered zero transverse shear at top and bottom surfaces, and
interfacial continuity of transverse shear stresses and transverse normal stress, whereas this theory has been
further refined in Refs. [75–77] by adding continuity conditions on the transverse normal stress gradient.
Higher-order energy contribution has been incorporated in a parent FSDT-based C0 finite element through
strain energy updating, and this has resulted in overcoming the C2-continuity requirement in interpolation
functions based on this zigzag theory. In another study using refined zigzag theory, Icardi and Sola [78]
have demonstrated that inserting a reinforcing thread for stitching or tufting significantly reduces transverse
displacement as well as transverse shear stress. More recently, a discrete-layer model and a sublaminate model
have been developed by the same researchers [79] from five-variable equivalent single-layer zigzag theory for
laminated beam and plate structures by increasing the number of computational layers and variables.

A unified formulation approach proposed by Carrera [80] has been extensively used by Demasi [81–87] for
obtaining various layerwise models and equivalent single-layer models in a single formulation. The layerwise
models are basically needed for sandwich laminates involving very high inhomogeneity in the adjacent face
and core layers and are an alternative to computationally highly expensive solid finite elements.

Global–local theory (GLT) has been developed to accurately calculate the transverse shear stresses from the
constitutive equations. In the GLT of Li and Liu [88], local layerwise terms up to third order are superimposed
with a global third-order variation of inplane displacements.Williams [89] hasmade a general framework of this
theory for the analysis of delaminated elastic composite plates. However, the number of primary displacement
variables has been very large (44 for a five-layer laminate). Zhen and Wanji [90] further extended the GLT
for mth-order polynomial of the global thickness coordinate. However, it has been pointed out by Kapuria
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Fig. 1 Geometry of laminated composite plate

and Nath [91] that the GLT yields erroneous results for multi-material inhomogeneous composite laminate or
sandwich laminates with more than three layers.

It has been found that the zigzag theory [92] accurately calculates all displacements and stresses for
elastic as well as piezoelectric laminates. The accurate calculation of the transverse stresses is, however,
obtained by integrating the 3D equilibrium equations, not from the direct use of constitutive equations. The
proposed approach considers layerwise linear variation of inplane displacement field components along with
a global third-order variation. The global variation is intended to incorporate the accuracy of the third-order
theory (TOT), and the local layerwise linear variations are intended to predict slope discontinuity in inplane
displacements. The approach works well to yield accurate responses for displacements and stresses. The
existing model, of which the present model is an extension, is capable of predicting accurate transverse shear
stresses from equilibrium equations for simply supported and non-simply supported boundary conditions [93].
However, its accuracy is poor when transverse stresses are calculated from constitutive equations. The present
work proposes to modify the above-mentioned zigzag theory by incorporating layerwise cubic representation
of the deflection of each layer in the laminated plate. The present model is a displacement model, and it uses the
variational principle to derive equilibrium plate equations and variationally consistent boundary conditions.
This variationally consistent model can be solved analytically or using any numerical methods for any set
of boundary conditions. The classical Navier solution meant for simply supported plates is easy to apply
analytically than the more complex Levy solution meant to simulate clamped as well as other boundary
solutions. In this work, simply supported rectangular plates are used to assess accuracy of the proposed theory.
Its applicability to other types of boundary conditions is not explored in this work.

2 Formulation

Consider a cross-ply laminated elastic rectangular plate (Fig. 1) of dimensions a along x-axis, b along y-axis
and thickness h along z-axis consisting of L perfectly bonded orthotropic layers with the midplane chosen
as the reference x-y plane. The z-coordinate of the bottom surface of the kth layer is denoted as zk−1. The
layer in which the reference plane lies or is at the bottom of is denoted as the k0th layer. Mechanical loads of
intensity pz1 and pz2 are applied on bottom and top surfaces of the laminate.

The idealized 3D linear constitutive equations with principal material axes x1, x2, x3 are given by

ε = S σ, σ = Cε (1)

where the components of stress σ and engineering strain ε are given with respect to the principal material axes
by

σ = [
σ1 σ2 σ3 τ23 τ31 τ12

]T

ε = [
ε1 ε2 ε3 γ23 γ31 γ12

]T
(2)
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S and C are matrices of elastic compliance and elastic stiffness with C = S−1 and

s11 = 1/E1,
s22 = 1/E2,
s33 = 1/E3,

s44 = 1/G23,
s55 = 1/G31,
s66 = 1/G12,

s12 = − ν21/E2 = − ν12/E1
s13 = − ν31/E3 = − ν13/E1
s23 = − ν32/E3 = − ν23/E2

Ei , Gi j , νi j are Young’s moduli, shear moduli and Poisson’s ratios, respectively.
Consider the reference axes x, y, z such that z = x3 and the material principal axes x1, x2 are oriented at

0◦ or 90◦ with respect to the inplane reference axes x, y. Using transformation relations among stresses and
strains from the material coordinate system (x1, x2, x3) to the global reference coordinate system (x, y, z), the
3D constitutive equations for each layer of the laminate are obtained as

⎡

⎢⎢⎢
⎢⎢
⎣

σx
σy
σz
τyz
τzx
τxy

⎤

⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢
⎣

c̄11 c̄12 c̄13 0 0 0
c̄12 c̄22 c̄23 0 0 0
c̄13 c̄23 c̄33 0 0 0
0 0 0 c̄44 0 0
0 0 0 0 c̄55 0
0 0 0 0 0 c̄66

⎤

⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢
⎣

εx
εy
εz
γyz
γzx
γxy

⎤

⎥⎥⎥
⎥⎥
⎦

(3)

The elements c̄i j of matrix C̄ are given in Ref. [94]. In the compact form, Eq. (3) can be written as

σ = Q̄ε + Q̄T
3 εz, τ = Q̂γ

σz = c̄13εx + c̄23εy + c̄33εz (4)

where inplane stress σ , inplane strain ε, transverse shear stress τ , transverse shear strain γ and the elastic
stiffnesses c̄i j are given by

σ =
⎡

⎣
σx
σy
τxy

⎤

⎦ , ε =
⎡

⎣
εx
εy
γxy

⎤

⎦ , Q̄ =
⎡

⎣
c̄11 c̄12 0
c̄12 c̄22 0
0 0 c̄66

⎤

⎦

τ =
[
τzx
τyz

]
, γ =

[
γzx
γyz

]
, Q̂ =

[
c̄55 0
0 c̄44

]
, Q̄3 = [

c̄13 c̄23 0
]

(5)

Let ux , uy and w be the inplane and transverse displacements. Small strain conditions are assumed in the
present work. By using the subscript comma for differentiation, the strain–displacement relations are given as

εx = ux,x
γyz = uy,z + w,y

εy = uy,y
γzx = ux,z + w,x

εz = w,z
γxy = ux,y + uy,x

(6)

A layerwise approximation is assumed for the transverse displacement:

w(x, y, z) = w0(x, y) + zwk
1(x, y) + z2wk

2(x, y) + z3wk
3(x, y) (7)

where the layerwise terms wk
1, wk

2 and wk
3 are taken so as to satisfy continuity of transverse displacement,

transverse normal stress and gradient of transverse normal stress at the interfaces. The inplane displacement
components ux and uy are written in the matrix form u as u = [

ux uy
]T, which are approximated layerwise

[92] as

u(x, y, z) = uk(x, y) + zψ∗
k (x, y) + z2ξ(x, y) + z3η(x, y) (8)

where

uk =
[
ukx
uky

]
, ψ∗

k =
[
ψ∗
kx

ψ∗
ky

]
, ξ =

[
ξx
ξy

]
, η =

[
ηx
ηy

]
(9)

uk and ψ∗
k represent the layerwise translation and shear rotation components. The expression for transverse

shear strain is obtained by substituting u from Eq. (8) and w from Eq. (7):

γ = ψ∗
k + 2zξ + 3z2η + w0d + zwk

1d
+ z2wk

2d
+ z3wk

3d
(10)
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where

w0d =
[
w0,x
w0,y

]

, wk
1d

=
[
wk
1,x

wk
1,y

]

, wk
2d

=
[
wk
2,x

wk
2,y

]

, wk
3d

=
[
wk
3,x

wk
3,y

]

(11)

In order to reduce the computational complexity in calculating transverse shear stresses, the derivatives of
the layerwise terms wk

1, w
k
2 and wk

3 are neglected [95]. Let us assume ψk(x, y) = ψ∗
k (x, y) + w0d (x, y) for

simplicity and write Eqs. (10) and (8) as

γ = ψk + 2zξ + 3z2η (12)

u = uk − zw0d + zψk + z2ξ + z3η (13)

Using the expression of γ from Eq. (12) and using Eq. (4)2, the transverse shear stress is obtained as

τ = Q̂k[ψk + 2zξ + 3z2η] (14)

It is known firstly that the transverse shear stresses τ on top and bottom surfaces are zero and secondly
that τ and u are continuous at layer interfaces. Using these conditions in Eqs. (13) and (14), we get

τ(z0) = 0 ⇒ ψ1 + 2z0ξ + 3z20η = 0 (15)

τ(z−i ) = τ(z+i ) ⇒ Q̂i+1ψi+1 − Q̂iψi + 2zi Q̂
i
1ξ + 3z2i Q̂

i
1η = 0 (16)

τ(zL) = 0 ⇒ ψL + 2zLξ + 3z2Lη = 0 (17)

u(z−i ) = u(z+i ) ⇒ ui+1 + ziψi+1 − ui − ziψi = 0 (18)

where i = 1, . . . , L − 1. Q̂i
1 is given as Q̂i

1 = Q̂i+1 − Q̂i . Equations (15)–(18) constitute 4L equations
involving 4L + 4 unknowns uk, ψk , ξ and η, which is written as

Ax̄ = 0 (19)

where A is a 4L × (4L + 4) matrix and x̄ is a column vector of (4L + 4) displacement variables given by

x̄ = [
uT1 ψT

1 uT2 ψT
2 . . . uTL ψT

L ξT ηT
]T

(20)

The matrix A is partitioned into 2×2 sub-matrices A(p, q) and have the following nonzero sub-matrices:

A(1, 2) = I2, A(2i + 1, 2i − 1) = −I2
A(1, 2L + 1) = 2z0 I2, A(2i + 1, 2i) = −zi I2
A(1, 2L + 2) = 3z20 I2, A(2i + 1, 2i + 1) = I2
A(2i, 2i) = −Q̂i , A(2i + 1, 2i + 2) = zi I2
A(2i, 2i + 2) = Q̂i+1, A(2L , 2L) = I2
A(2i, 2L + 1) = 2zi Q̂i

1, A(2L , 2L + 1) = 2zL I2
A(2i, 2L + 2) = 3z2i Q̂

i
1, A(2L , 2L + 2) = 3z2L I2

(21)

for i = 1, 2 . . . , L−1. The vector x̄ is partitioned into vectors x̄2 = [uT0 ψT
0 ]T containing four primary reference

variables of k0th layer and x̄1 containing the remaining variables. Accordingly, matrix A is partitioned into
sub-matrices A1(4L × 4L) and A2(4L × 4) as A = [A1 A2] with following 2 × 2 sub-matrices

A1( j, 2k − 1) = A( j, 2k − 1), A1( j, 2k) = A( j, 2k), for k < k0
A1( j, 2k − 1) = A( j, 2k + 1), A1( j, 2k) = A( j, 2k + 2), for k ≥ k0

(22)

A2( j, 1) = A( j, 2k0 − 1), A2( j, 2) = A( j, 2k0) (23)

where j = 1, 2, . . . , 2L , k = 1, 2, . . . , (L + 1). Thus, we have

[
A1 A2

] [
x̄1
x̄2

]
= 0 (24)

⇒ x̄1 = −A−1
1 A2 x̄2 = Ā1

2u0 + Ā2
2ψ0 (25)
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Using Eq. (25), the variables uk, ψk, ξ and η can be expressed explicitly as

uk = u0 + Ā2
2(2k

′ − 1)ψ0, ψk = Ā2
2(2k

′)ψ0

ξ = Ā2
2(2L − 1)ψ0, η = Ā2

2(2L)ψ0
(26)

with k′ = k for k < k0 and k′ = k − 1 for k > k0. Substituting these expressions of uk, ψk, ξ , and η into Eq.
(13) yields

u(x, y, z) = u0 − zw0d + Rk(z)ψ0 (27)

where Rk(z) is 2 × 2 matrix of function of z. For k �= k0

Rk(z) = Ā2
2(2k

′ − 1) + z Ā2
2(2k

′) + z2 Ā2
2(2L − 1) + z3 Ā2

2(2L) (28)

and for k = k0
Rk(z) = z I2 + z2 Ā2

2(2L − 1) + z3 Ā2
2(2L) (29)

Let us neglect the contribution of ε to normal stress and obtain the transverse normal stress σz using Eq.
(4)3 as:

σz = c̄33εz = c̄33[wk
1 + 2zwk

2 + 3z2wk
3] (30)

The gradient of the transverse normal stress becomes

σz,z = c̄33[2wk
2 + 6zwk

3] (31)

The continuity of w is now imposed to yield (w(z+i ) = w(z−i ))

zi (w
i+1
1 − wi

1) + z2i (w
i+1
2 − wi

2) + z3i (w
i+1
3 − wi

3) = 0 (32)

The continuity of σz and its gradient are imposed to yield

c̄i+1
33 [wi+1

1 + 2ziw
i+1
2 + 3z2i w

i+1
3 ] − c̄i33[wi

1 + 2ziw
i
2 + 3z2i w

i
3] = 0 (33)

c̄i+1
33 [2wi+1

2 + 6ziw
i+1
3 ] − c̄i33[2wi

2 + 6ziw
i
3] = 0 (34)

where i = 1, . . . , L − 1. Mechanical loads of intensity pz1 and pz2 are applied on bottom and top surfaces of
the plate. Using these conditions, we get

c̄133[w1
1 + 2z0w

1
2 + 3z20w

1
3] = pz1 (35)

c̄L33[wL
1 + 2zLwL

2 + 3z2LwL
3 ] = pz2 (36)

The 3L−1 equations given by Eqs. (32)–(36) alongwith the expressionw
k0
1 = w10 constitute 3L equations

involving 3L unknowns wk
1, w

k
2 and wk

3, which can be written in the compact form

Dȳ = Dm + Drw10 (37)

where D, Dm and Dr are of sizes (3L × 3L), (3L × 1) and (3L × 1) respectively and ȳ is a column vector of
all 3L variables

ȳ = [
w1
1 w1

2 w1
3 w2

1 w2
2 w2

3 . . . wL
1 wL

2 wL
3

]T
(38)

D, Dm and Dr have following nonzero elements for i = 1, 2 . . . , L − 1.

D(3i − 2, 3i + 1) = zi , D(3i, 3i − 1) = −2c̄i33
D(3i − 2, 3i − 2) = −zi , D(3i, 3i + 3) = 6c̄i+1

33 zi

D(3i − 2, 3i + 2) = z2i , D(3i, 3i) = −6c̄i33zi

D(3i − 2, 3i − 1) = −z2i , D(3L − 2, 1) = c̄133
D(3i − 2, 3i + 3) = z3i , D(3L − 2, 2) = 2z0c̄

1
33

D(3i − 2, 3i) = −z3i , D(3L − 2, 3) = 3z20c̄
1
33
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D(3i − 1, 3i + 1) = c̄i+1
33 , D(3L − 1, 1) = c̄L33

D(3i − 1, 3i − 2) = −c̄i33, D(3L − 1, 2) = 2zL c̄
L
33

D(3i − 1, 3i + 2) = 2c̄i+1
33 zi , D(3L − 1, 3) = 3z2L c̄

L
33

D(3i − 1, 3i − 1) = −2c̄i33zi , D(3L , 3k0 − 2) = 1

D(3i − 1, 3i + 3) = 3c̄i+1
33 z2i , Dm(3L − 2, 1) = pz1

D(3i − 1, 3i) = −3c̄i33z
2
i , Dm(3L − 1, 1) = pz2

D(3i, 3i + 2) = 2c̄i+1
33 , Dr (3L , 1) = 1 (39)

Now ȳ can be obtained by solving Eq. (37) as

ȳ = D̄m + D̄rw10 (40)

with D̄m = D−1Dm and D̄r = D−1Dr . The explicit expressions for wk
1, w

k
2 and wk

3 can be written using Eq.
(40) as

wk
1 = D̄m(3k − 2) + D̄r (3k − 2)w10

wk
2 = D̄m(3k − 1) + D̄r (3k − 1)w10

wk
3 = D̄m(3k) + D̄r (3k)w10 (41)

These expressions are substituted into Eq. (7) which yields

w(x, y, z) = w0(x, y) + R1k(z) + R2k(z)w10(x, y) (42)

where R1k(z) and R2k(z) are layerwise functions of z, given by

R1k(z) = z D̄m(3k − 2) + z2 D̄m(3k − 1) + z3 D̄m(3k)

R2k(z) = z D̄r (3k − 2) + z2 D̄r (3k − 1) + z3 D̄r (3k) (43)

Thus, the final displacement field defined by the inplane components u and transverse component w is
expressed in terms of only six mechanical variables u0x , u0y , ψ0x , ψ0y , w0 and w10 . In order to develop
a compact formulation for the present theory, a generalized strain–displacement relation is obtained for the
rectangular laminated elastic composite plate. This is done by expressing the assumed displacement field given
by Eqs. (27) and (42) as

u = f1(z)ū1, w = R1k(z) + f2(z)ū2 (44)

where

ū1 =
[
uT0 −wT

0d
ψT

0

]T
, ū2 = [

w0 w10

]T

f1(z) = [
I2 z I2 Rk(z)

]
, f2(z) = [

1 R2k(z)
] (45)

Thus, the original strain–displacement relations given in Eq. (6) can be reformulated as

ε = ε0 + zK + Φk(z)ψ0d (46)

γ = Rk
,z(z)ψ0 + R2k(z)I2w10d (47)

εz = R1k
,z (z) + R2k

,z (z)w10 (48)

where

ε0 = [
u0x ,x u0y ,y u0x ,y + u0y ,x

]T

K = [−w0,xx −w0,yy −2w0,xy
]T
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ψ0d = [
ψ0x ,x ψ0x ,y ψ0y ,x ψ0y ,y

]T

Φk(z) =
⎡

⎣
Rk
11(z) 0 0 0
0 0 0 Rk

22(z)
0 Rk

11(z) Rk
22(z) 0

⎤

⎦ (49)

The above expressions for strains given in Eqs. (46)–(48) can be rewritten in the compact form

ε = f3(z)ε̄1, γ = f4(z)ε̄2, εz = R1k
,z (z) + R2k

,z (z)w10 (50)

by writing generalized strains ε̄1 and ε̄2, and their coefficients f3(z) and f4(z) as

ε̄1 =
⎡

⎢
⎣

ε0

K

ψ0d

⎤

⎥
⎦ , ε̄2 =

[
ψ0

w10d

]
(51)

f3(z) = [
I3 z I3 Φk(z)

]
, f4(z) = [

Rk
,z(z) R2k(z)I2

]
(52)

The variational principle is now applied to obtain the equilibrium equations and variationally consistent
boundary conditions,

∫
V σi jδεi j dV = 0, for all virtual generalized displacements. V denotes the volume of

the plate. The components T n
i of the traction vector on the surface Γ with outward normal n = ni ei are given

by T n
i = σ j i n j . Using the notation 〈. . .〉 = ∑L

k=1

∫ z−k
z+k−1

(. . .) dz for integration across the laminate thickness,

it results in the following variational equation:
∫

A
[〈δεT σ + δγ T τ + δεzσz〉 − p1z δw(x, y, z0) − p2z δw(x, y, zL , t)] dA

−
∫

ΓL

〈σnδun + τnsδus + τnzδw〉 ds = 0 (53)

for all δu0, δw0, δw10 and δψ0. The stress resultants and load terms are derived from this expression as follows.
Using Eqs. (50), the strain energy terms in Eq. (53) can be expressed as

〈δεT σ + δγ T τ + δεzσz〉 = δε̄T1 F1 + δε̄T2 F2 + δw10 M̄ (54)

The stress resultants F1 of σ , F2 of τ and M̄ of σz are defined as

F1 =

⎡

⎢⎢
⎣

N

M

P

⎤

⎥⎥
⎦ = 〈 f T3 (z)σ 〉 =

⎡

⎢⎢
⎣

〈σ 〉
〈zσ 〉

〈Φk(z)
T
σ 〉

⎤

⎥⎥
⎦ (55)

F2 =
[
Q

Q̄

]

= 〈 f T4 (z)τ 〉 =
⎡

⎣
〈Rk

,z
T
(z)τ 〉

R2k(z)I2τ 〉

⎤

⎦ (56)

M̄ = 〈R2k
,z (z)σz〉 (57)

with

N = [
Nx Ny Nxy

]T
, M = [

Mx My Mxy
]T

P = [
Px Pyx Pxy Py

]T
, Q = [

Qx Qy
]T

, Q̄ = [
Q̄x Q̄y

]T
(58)

Let us define resultant of transverse shear stresses as

Vx = 〈τxz〉, Vy = 〈τyz〉, Vn = 〈τnz〉, Vs = 〈τsz〉
V2x = 〈R2kτxz〉, V2y = 〈R2kτyz〉, V2n = 〈R2kτnz〉, V2s = 〈R2kτsz〉 (59)
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The mechanical load terms in Eq. (53) on the bottom and top surfaces can be expressed as

−p1z [δw0 + R2k(z0)δw10 ] − p2z [δw0 + R2k(zL)δw10 ] = −F3δw0 − F4δw10 (60)

by defining F3 = p1z + p2z , F4 = p1z R
2k(z0) + p2z R

2k(zL). The terms in Eq. (53) due to mechanical loads at
the lateral surface of the plate can be expressed in terms of stress resultants defined in Eqs. (55) and (56) as

〈σnδun + τnsδus + τnzδw〉 = 〈σnδun + τnsδus〉 + Vnδw0 + V2nδw10 (61)
∫

ΓL

〈σnδun + τnsδus〉 ds =
∫

ΓL

[Nnδu0n + Nnsδu0s − Mnδw0,n

+ Mns,sδw0 + Pnδψ0n + Pnsδψ0s ] ds +
∑

i

ΔMns(si )δw0(si ) (62)

where the lateral surface has corners at s = si . Now using Eqs. (61) and (62), the lateral surface loads in Eq.
(53) contribute

−
∫

ΓL

[Nnδu0n + Nnsδu0s − Mnδw0,n + (Vn + Mns,s)δw0 + V2nδw10

+ Pnδψ0n + Pnsδψ0s ] ds −
∑

i

ΔMns(si )δw0(si ) (63)

Thus, variational equation (53) reduces to the following form in terms of the plate variables only:
∫

A
[δε̄T1 F1 + δε̄T2 F2 + δw10 M̄ − F3δw0 − F4δw10 ] dA

−
∫

ΓL

∗[Nnδu0n + Nnsδu0s − Mnδw0,n + (Vn + Mns,s)δw0 + V2nδw10

+ Pnδψ0n + Pnsδψ0s ] ds − ∗ ∑

i

ΔMns(si )δw0(si ) = 0 (64)

The terms inside the symbol ∗[ ] are the contributions of loads acting at lateral surface of the plate. The area
integral in Eq. (64) is expressed in terms of generalized virtual displacements δu0x , δu0y , δw0, δw10 , δψ0x
and δψ0y by using Eqs. (45) and (51) and by employing Green’s theorem wherever required. This yields

∫

A
[−δu0x (Nx,x + Nxy,y) − δu0y (Nxy,x + Ny,y)

− δw0(Mx,xx + 2Mxy,xy + My,yy) − δψ0x (Px,x + Pyx,y)

− δψ0y (Pxy,x + Py,y) + δψ0x Qx + δψ0y Qy

− δw10(Q̄x,x + Q̄y,y) + δw10 M̄ − F3δw0 − F4δw10 ] dA
+

∫

ΓL

[δu0x (Nxnx + Nxyny) + δu0y (Nxynx + Nyny)

− δw0,x (Mxnx + Mxyny) − δw0,y(Mxynx + Myny)

+ δw0{(Mx,x + Mxy,y)nx + (Mxy,x + My,y)ny}
+ δψ0x (Pxnx + Pyxny) + δψ0y (Pxynx + Pyny)

+ δw10(Q̄xnx + Q̄yny) − ∗{Nnδu0n + Nnsδu0s
− Mnδw0,n + (Vn + Mns,s)δw0 + V2nδw10

+ Pnδψ0n + Pnsδψ0s }] ds − ∗ ∑

i

ΔMns(si )δw0(si ) = 0 (65)

The terms involving δu0x , δu0y , δψ0x , δψ0y , δw0,x and δw0,y in the integrand of ΓL are expressed in terms
of components n, s as follows:

∫

ΓL

[δu0x (Nxnx + Nxyny) + δu0y (Nxynx + Nyny) − δw0,x (Mxnx + Mxyny)

− δw0,y(Mxynx + Myny) + δψ0x (Pxnx + Pyxny) + δψ0y (Pxynx + Pyny)
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=
∫

ΓL

[Nnδu0n + Nnsδu0s − Mnδw0,n + Mns,sδw0 + Pnδψ0n + Pnsδψ0s ] ds

+
∑

i

ΔMns(si )δw0(si ) (66)

Each of the coefficients of the generalized virtual displacements appearing in the area integral of Eq. (65)
have been equated to zero to yield following equations for the elastic laminated plate:

Nx,x + Nxy,y = 0 (67)

Nxy,x + Ny,y = 0 (68)

Mx,xx + 2Mxy,xy + My,yy + F3 = 0 (69)

Q̄x,x + Q̄y,y − M̄ + F4 = 0 (70)

Px,x + Pyx,y − Qx = 0 (71)

Pxy,x + Py,y − Qy = 0 (72)

The following boundary conditions are obtained from the boundary integral in Eq. (65):

u0n = u∗
0n or Nn = N∗

n

u0s = u∗
0s or Nns = N∗

ns

w0 = w∗
0 or Vn + Mns,s = V ∗

n + M∗
ns,s

w0,n = w∗
0,n or Mn = M∗

n

w0
1 = w0∗

1 or V2n = V ∗
2n

ψ0n = ψ∗
0n or Pn = P∗

n

ψ0s = ψ∗
0s or Pns = P∗

ns (73)

The superscript ∗ denotes a prescribed value. The first set of boundary conditions are the essential boundary
conditions, and the second set are the natural boundary conditions.

The plate constitutive equations give the relations between plate stress resultants F1, F2 and M̄ with
generalized plate mechanical strains ε̄1, ε̄2 and w10 . In order to develop them, the stresses σ , τ and σz given
in Eq. (4) are expressed in terms of the generalized strains given in Eq. (50) and are substituted into Eqs. (55),
(56) and (57) which yield

F1 = Aε̄1 + Ã + Âw10

F2 = Āε̄2

M̄ = ÂTε̄1 + B + B̂w10 (74)

The coefficient matrices are given by

A = 〈 f T3 (z)Q̄ f3(z)〉, Â = 〈 f T3 (z)Q̄T
3 R

2k
,z (z)〉

Ā = 〈 f T4 (z)Q̂ f4(z)〉, B = 〈R2k
,z (z)c̄33R

1k
,z (z)〉

Ã = 〈 f T3 (z)Q̄T
3 R

1k
,z (z)〉, B̂ = 〈c̄33(R2k

,z (z))2〉 (75)

The explicit expressions for their elements are given below.

A =

⎡

⎢⎢
⎣

〈Q̄〉 〈z Q̄〉 〈Q̄Φk〉
〈z2 Q̄〉 〈z Q̄Φk〉
symm. 〈ΦkT Q̄Φk〉

⎤

⎥⎥
⎦ , Ã =

⎡

⎢
⎢⎢
⎣

〈Q̄T
3 R

1k
,z 〉

〈zNQT
3 R

1k
,z 〉

〈ΦkT Q̄T
3 R

1k
,z 〉

⎤

⎥
⎥⎥
⎦

Â =

⎡

⎢
⎢⎢
⎣

〈Q̄T
3 R

2k
,z 〉

〈z Q̄T
3 R

2k
,z 〉

〈ΦkT Q̄T
3 R

2k
,z 〉

⎤

⎥
⎥⎥
⎦

, Ā =
[
〈RkT

,z Q̂Rk
,z〉 〈RkT

,z Q̂R2k〉
symm. 〈Q̂(R2k)2〉

]

(76)
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The plate constitutive equations as given in Eq. (74) are now substituted into the governing equations in
Eqs. (67)–(72) to obtain equations in terms of the plate primary variables:

LŪ = [
0 0 −F3 −F4 + B 0 0

]T (77)

where

Ū = [
u0x u0y w0 w10 ψ0x ψ0y

]T (78)

L is symmetric matrix of linear differential operators in x and y. The elements of L are

L11 = − A11( ),xx − A33( ),yy

L12 = − (A12 + A33)( ),xy

L13 = A14( ),xxx + (A15 + 2A36)( ),xyy

L14 = − Â1( ),x

L15 = − A17( ),xx − A38( ),yy

L16 = − (A1,10 + A39)( ),xy

L22 = − A33( ),xx − A22( ),yy

L23 = (A24 + 2A36)( ),xxy + A25( ),yyy

L24 = − Â2( ),y

L25 = − (A27 + A38)( ),xy

L26 = − A39( ),xx − A2,10( ),yy

L33 = − A44( ),xxxx − (A45 + A54 + 4A66)( ),xxyy − A55( ),yyyy

L34 = Â4( ),xx + Â5( ),yy

L35 = A47( ),xxx + (A57 + 2A68)( ),xyy

L36 = (A4,10 + 2A69)( ),xxy + A5,10( ),yyy

L44 = − B̂ + Ā33( ),xx + Ā44( ),yy

L45 = ( Ā31 − Â7)( ),x

L46 = ( Ā42 − Â10)( ),y

L55 = Ā11 − A77( ),xx − A88( ),yy

L56 = − (A7,10 + A89)( ),xy

L66 = Ā22 − A99( ),xx − A10,10( ),yy (79)

Equation (77) represents a system of partial differential equations (PDEs), which can be solved by using
various analytical methods. Navier solutions have been obtained in the present work.

3 Navier solution for laminated rectangular plate

Analytical Navier solution is obtained for simply supported rectangular plate of sides a and b along the axes
x and y for the boundary conditions at x = 0, a

Nx = 0, u0y = 0, w0 = 0, Mx = 0

w10 = 0, M̄ = 0, Px = 0, ψ0y = 0 (80)

and at y = 0, b

Ny = 0, u0x = 0, w0 = 0, My = 0

w10 = 0, M̄ = 0, Py = 0, ψ0x = 0 (81)
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The solution and loading terms are expanded in a double Fourier series, satisfying the boundary conditions
identically, as

(w0, w10) =
∞∑

m=1

∞∑

n=1

(w0, w10)mn sin m̄x sin n̄ y

(u0x , ψ0x ) =
∞∑

m=1

∞∑

n=1

(u0x , ψ0x )mn cos m̄x sin n̄ y

(u0y , ψ0y ) =
∞∑

m=1

∞∑

n=1

(u0y , ψ0y )mn sin m̄x cos n̄ y (82)

with m̄ = mπ/a and n̄ = nπ/b. Substituting these expressions in Eq. (77) yields a system of equations for
the (m, n)th Fourier component:

KŪmn = [
0 0 −F3 −F4 + B 0 0

]T
mn (83)

K is symmetric stiffness matrix having elements

K11 = m̄2A11 + n̄2A33

K12 = m̄n̄(A12 + A33)

K13 = − m̄3A14 − m̄n̄2(A15 + 2A36)

K14 = − m̄ Â1

K15 = m̄2A17 + n̄2A38

K16 = m̄n̄(A1,10 + A39)

K22 = n̄2A22 + m̄2A33

K23 = − m̄2n̄(A24 + 2A36) − n̄3A25

K24 = − n̄ Â2

K25 = m̄n̄(A27 + A38)

K26 = m̄2A39 + n̄2A2,10

K33 = m̄4A44 + m̄2n̄2(A45 + A54 + 4A66) + n̄4A55

K34 = m̄2 Â4 + n̄2 Â5

K35 = − m̄3A47 − m̄n̄2(A57 + 2A68)

K36 = − m̄2n̄(A4,10 + 2A69) − n̄3A5,10

K44 = B̂ + m̄2 Ā33 + n̄2 Ā444

K45 = m̄( Ā31 − Â7)

K46 = n̄( Ā42 − Â10)

K55 = Ā11 + m̄2A77 + n̄2A88

K56 = m̄n̄(A7,10 + A89)

K66 = Ā22 + m̄2A99 + n̄2A10,10 (84)

After obtaining the displacements, the strains are calculated using strain–displacement equations and the
transverse shear stress components are calculated using constitutive Eq. (4).

4 Results and discussion

The effect of addition of new layerwise terms in the approximation of the transverse displacement is investigated
by comparing the results of the present theory with exact 3D elasticity solution which is obtained from
piezothermoelasticity solutions [96] and the conventional zigzag theory (ZIGT) which is a special case of
Kapuria’s zigzag theory for piezoelectric hybrid cross-ply plates [92]. The 3D and ZIGT results are computed
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(a) (b) (c)

Fig. 2 Configurations of composite plates

Table 1 Material properties

Name E1 E2 E3 G23 G13 G12 ν12 ν13 ν23

Mat. 1 [25] 172.5 6.9 6.9 1.38 3.45 3.45 0.25 0.25 0.25
Mat. 2 [97] 150 10 10 3.378 5 5 0.3 0.3 0.48

Units: Young’s moduli Ei and shear moduli Gi j in GPa

using the computer programs of these theories, which are available with the present authors. Three laminated
composite plates, namely two-layer plate (a), three-layer plate (b) and four-layer plate (c), are consideredwhose
configurations are given in Fig. 2. The material 1 is a typical unidirectional graphite–epoxy material which is
used extensively in Pagano’s works [25] as well as by several other researchers. The graphite–epoxy material
2 is taken from works of Rower at al. [97]. Two-layer cross-ply composite plate (a) has laminas at [0◦/90◦]
with thicknesses 0.5h and 0.5h, and three- layer cross-ply composite plate (b) has laminas at [0◦/90◦/0◦]
with thicknesses h/3, h/3, h/3. These plates are made of graphite–epoxy material 1. The four-layer cross-ply
composite plate (c) has laminas at [0◦/90◦/0◦/90◦] with thicknesses 0.25h, 0.25h, 0.25h, 0.25h and is made
of graphite–epoxy material 2. The mechanical properties of composite materials 1 and 2 are given in Table 1.

Two load cases are considered.

Load case 1. Uniform load pz2 = − p0 applied on the top surface.
Load case 2. Sinusoidal load pz2 = − p0 sin(πx/a) sin(πy/b) applied on the top surface.

The displacement and stress entities are non-dimensionalized with S = a/h and E0 = 6.9 GPa for
plates (a), (b) and E0 = 10 GPa for plate (c): (ū, v̄, w̄) = 100(u, v, w/S)E0/hS3 p0, (σ̄x , τ̄yz, τ̄zx ) =
(σx , Sτyz, Sτzx )/S2 p0, σ̄z = σz/p0.

4.1 Convergence study for uniformly applied load

A convergence study is conducted to determine the number of terms for m and n in the double Fourier series
expansion under uniformly distributed load and is given in Table 2 for exact 3D, ZIGT and HZIGT theories
for three-layer square symmetric plate (b) at S = 10. The 3D exact solution yields converged results for
displacements and stresses at m = n = 91. In case of ZIGT, the convergence of transverse shear stress
(calculated from equilibrium equations) is found to be slow than that of inplane displacements and inplane
stresses. The result reported for ZIGT in all subsequent analysis is obtained with m = n = 201. The present
HZIGT is seen to produce convergence at m = n = 121 for all entities except σ̄y , which is seen to oscillate
between m and m + 10 terms. Henceforth, we report average value of σ̄y obtained by taking m = n = 121
and m = n = 131, whereas m = n = 121 is taken for all other entities.

4.2 Response to uniform load on top of plate

Table 3 shows responses for square laminated plates (a) and (b) under this uniform load for three aspect ratios
S = 5, 10 and 20. The results are obtained for 3D solution by takingm = n = 91, for ZIGTwithm = n = 201
and for present HZIGTwithm = n = 121. Percentage errors are listed in the table for theHZIGT and the ZIGT
for direct assessment. It is observed from the table that the inplane displacements are accurately calculated by
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Table 2 Convergence study for number of terms m = n for composite square plate (b)under uniformly distributed load at top
(S = 10)

m = n ū (0.5h) v̄ (0.5h) w̄ (0) σ̄x (− 0.5h) σ̄y (− 0.167h+) τ̄zx (0)

3D
51 1.1891 1.9790 − 1.1541 0.87078 0.36210 − 0.62841
61 1.1893 1.9795 −1.1541 0.87078 0.36210 − 0.62843
71 1.1893 1.9798 −1.1541 0.87078 0.36210 − 0.62843
81 1.1894 1.9801 −1.1541 0.87078 0.36210 − 0.62844
91 1.1894 1.9803 −1.1541 0.87078 0.36210 − 0.62844
93 1.1895 1.9803 −1.1541 0.87078 0.36210 − 0.62844
95 1.1895 1.9803 −1.1541 0.87078 0.36210 − 0.62844

ZIGT
111 1.2049 1.9439 −1.1583 0.87540 0.36057 − 0.58984
121 1.2050 1.9439 −1.1583 0.87540 0.36059 − 0.58968
131 1.2050 1.9439 −1.1583 0.87540 0.36057 − 0.58960
141 1.2050 1.9439 −1.1583 0.87540 0.36059 − 0.58949
151 1.2050 1.9439 −1.1583 0.87540 0.36057 − 0.58943
161 1.2050 1.9439 −1.1583 0.87540 0.36058 − 0.58934
171 1.2050 1.9439 −1.1583 0.87540 0.36058 − 0.58929
181 1.2050 1.9439 −1.1583 0.87540 0.36058 − 0.58922
191 1.2050 1.9439 −1.1583 0.87540 0.36058 − 0.58918
201 1.2050 1.9439 −1.1583 0.87540 0.36058 − 0.58913

HZIGT
61 1.2023 2.0019 −1.1468 0.85685 0.36163 − 0.96261
71 1.2023 2.0019 −1.1468 0.85684 0.36119 − 0.58782
81 1.2023 2.0019 −1.1468 0.85684 0.36160 − 1.2425
91 1.2023 2.0019 −1.1468 0.85684 0.36121 − 0.58728
101 1.2023 2.0019 −1.1468 0.85684 0.36159 − 1.6006
111 1.2023 2.0019 −1.1468 0.85684 0.36122 − 0.58694
121 1.2023 2.0019 −1.1468 0.85684 0.36158 − 0.64383
131 1.2023 2.0019 −1.1468 0.85684 0.36122 − 0.64383
141 1.2023 2.0019 −1.1468 0.85684 0.36158 − 0.64383
151 1.2023 2.0019 −1.1468 0.85684 0.36122 − 0.64383

Table 3 Exact 3D results and percentage errors in 2D theories for square composite plates (a) and (b) under uniformly distributed
mechanical load on top

S Entity 3D HZIGT % error ZIGT % error Entity 3D HZIGT % error ZIGT % error

Composite plate (a) Composite plate (b)

5 ū 4.5121 − 4.51 − 21.0 ū 1.4598 4.40 4.19
10 (0.5h) 4.1803 − 6.68 − 6.18 (0.5h) 1.1886 1.14 1.37
20 4.0938 − 2.44 − 1.66 1.1003 0.52 0.37
5 v̄ 1.6077 5.20 9.88 v̄) 3.3710 2.31 − 5.81
10 (0.5h) 1.4915 2.57 3.58 (0.5h) 1.9772 1.24 − 1.69
20 1.4708 − 0.86 1.01 1.4690 − 1.25 − 0.53
5 w̄ − 2.6372 − 7.76 − 6.61 w̄ − 2.3218 − 0.76 0.15
10 (0) − 1.9322 − 4.18 − 2.15 (0) − 1.1541 − 0.63 0.36
20 − 1.7547 − 2.89 − 0.58 − 0.7951 − 0.92 0.13
5 σ̄x 1.1227 15.4 8.91 σ̄x 1.0186 − 4.27 4.39
10 (−0.5h) 1.0875 − 0.82 2.19 (−0.5h) 0.8708 − 1.61 0.52
20 1.0790 − 0.96 0.53 0.8246 0.49 0.14
5 τ̄zx − 0.2882 − 30.1 τ̄zx − 0.4955 − 1.29
10 (0) − 0.2721 30.7 (0.167h) − 0.6233 − 1.65
20 − 0.2597 10.0 − 0.6808 − 1.91
5 σ̄z − 0.9475 4.75 − 0.46 σ̄z − 0.9537 − 4.15 − 2.11
10 (0.4h) − 0.9356 − 1.86 − 0.80 (0.4h) − 0.9437 − 0.35 − 1.08
20 − 0.9281 8.45 − 0.15 − 0.9360 − 4.49 − 0.32

the present theory HZIGT than the existing ZIGT. For thick plate (a) with S = 5, both these displacements are
consistently improved, whereas these are comparable or slightly improved for other aspect ratios.

Themidsurface deflections are of comparable magnitude in these thickness cases. Similar relative accuracy
is seen in three-layer composite plate (b).Moreover, the symmetric plate (b) is seen to have better predictions for
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Fig. 3 Through-the-thickness distributions of ū, w̄ and τ̄zx for three-layer square composite plate (b) under uniformly distributed
mechanical load on top

displacements than the two-layer antisymmetric plate (a). Due to the inclusion of layerwise terms in transverse
deflection, the resulting transverse normal strain is of non-negligible magnitude especially in thick laminates
and its influence decreases with increase in plate aspect ratio. For example, the error in w has reduced from
16.3 to 2.11% as S has changed from 5 to 10. The inplane normal stress and constitutively calculated transverse
shear stress are seen to be more accurate for symmetric plate (b) too.

The present model has yielded interlaminar transverse shear stress, using constitutive relations, with error
less that 2% in symmetric laminate, but not in the antisymmetric plate (a). The through-the-thickness dis-
tributions for τ̄zx in plate (b) are plotted in Fig. 3 using the present model that are calculated using both
equilibrium equations (marked short and long dash) and the constitutive equations (marked small dash and
indicated HZIGT-C). A significant deviation is observed in the two outer layers and are due to themathematical
simplicity imposed on γ in Eq. (12) to reduce the computational complexity. It is hoped that inclusion of these
terms in γ will improve transverse stresses in outer layers.

The response of the four-layer antisymmetric plate (c) to the uniform pressure load on top surface of
the laminate is shown in Table 4. It shows a mixed prediction of improved displacement u and worsened
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Table 4 Exact 3D results and percentage errors in 2D theories for composite square plate (c) under uniformly distributed
mechanical load on top

S Entity 3D HZIGT % error ZIGT % error

5 ū 3.1874 − 6.72 − 8.31
10 (0.5h) 2.6190 − 5.81 − 3.09
20 2.4631 − 6.10 − 0.91
5 v̄ − 3.2028 − 23.9 − 8.75
10 (− 0.5h) − 2.6377 − 14.1 − 3.78
20 − 2.4697 − 9.84 − 1.18
5 w̄ − 2.1733 − 4.82 − 0.86
10 (0) − 1.4508 − 6.21 − 0.52
20 − 1.2669 − 6.58 − 0.16
5 σ̄x 0.7230 27.4 2.71
10 (− 0.5h) 0.6859 − 11.6 0.72
20 0.6785 4.38 0.19
5 τ̄yz − 0.5204 − 5.55
10 (0) − 0.5619 − 5.06
20 − 0.5836 − 2.83
5 σ̄z) − 0.9677 6.67 − 1.59
10 (0.4h) − 0.9561 − 7.09 − 0.67
20 − 0.9483 25.4 − 0.13

Table 5 Exact 3D results and percentage errors in 2D theories for rectangular composite plate (c) under sinusoidal mechanical
load on top (b/a = 3)

S Entity 3D HZIGT % error ZIGT % error

5 ū 4.1458 − 10.70 − 9.44
10 (0.5h) 3.4890 − 10.99 − 3.13
20 3.3136 − 10.64 − 0.85
5 v̄) − 1.7748 − 17.31 − 6.30
10 (− 0.5h) − 1.3048 0.66 − 2.51
20 − 1.1720 7.05 − 0.73
5 w̄ − 2.9956 − 4.19 − 1.86
10 (0) − 2.0309 − 6.34 − 0.90
20 − 1.7816 − 7.03 − 0.27
5 σ̄x 1.0795 − 0.19 3.79
10 (− 0.5h) 1.0135 − 0.24 0.87
20 0.9956 − 0.19 0.21
5 τ̄zx − 0.5044 − 6.20
10 (0) − 0.5297 − 8.81
20 − 0.5367 − 9.50
5 σ̄z − 0.9908 0.24 0.17
10 (0.4h) − 0.9929 0.00 0.05
20 − 0.9934 − 0.06 0.01

displacement v. This can only be attributed to the cubic term inw which grows much rapidly than the quadratic
term with increase of distance from mid-surface. The present formulation (HZIGT) has predicted significant
deviations from the original ZIGT for all aspect ratios, though the transverse shear stress calculation has been
a significant improvement.

4.3 Response to sinusoidal load on top of plate

Static response of the four-layer composite rectangular plate (c) having length-to-breadth ratio b/a = 3 under
sinusoidally applied pressure load on top surface of the plate is obtained for displacements and stresses and
is given in Table 5 for S = 5, 10 and 20. The displacements predicted by the present HZIGT are found not
to be as accurate as that yielded by the ZIGT. The accuracy, however, improved for the inplane stress and the
transverse shear stress calculated using constitutive equations has fair accuracy with a maximum error below
10%. The transverse shear stress calculated from the use of equilibrium equations is matching very well with
the 3D exact solution, which is shown in Fig. 4. As it is observed for uniform loading in square plate (a), the
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Fig. 4 Through-the-thickness distributions of ū, w̄, and τ̄zx for four-layer rectangular (b/a = 3) composite plate (c) under
sinusoidal mechanical load on top

proposed nonlinear approximation of transverse displacement is not capable of providing correct estimate of
the transverse shear stress from constitutive equations when antisymmetric configurations are analyzed. Also,
it is anticipated that there needs to be further refinement in the inplane displacement field approximation by the
way of using double-superposition hypothesis as researched by Zhen and Wanji [90], and Kapuria and Nath
[91].

5 Conclusions

By proposing a layerwise approximation for the transverse displacement, a variationally consistent analytical
formulation is presented for laminated composite plates with a view to obtain transverse stresses by using
constitutive equations. Owing to layerwise representation of the displacement field, the displacement variables
increase proportionately with the number of layers in the laminate. An equivalent single-layer expression is
obtained by utilizing the continuity conditions on displacements, transverse stresses and the transverse normal
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stress gradient. Layerwise qubic functions are used for deflection in order to obtain quadratically varying
transverse stresses directly from constitutive equations. Static analysis is done using two-layer, three-layer and
four-layer composite plates which are applied with both uniform and sinusoidally varying pressure load on
their top surfaces. A mixed result is obtained in that the present theory provides comparatively better results
in symmetric laminates than in antisymmetric laminates. It is inferred that refinement of the existing ZIGT
is not alone sufficient by modifying the transverse displacement. The inplane displacement field has equal
significance in providing correct transverse stress values, since both these displacement fields are related to
the transverse stresses through their strain–displacement relations and constitutive equations.
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