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Abstract In brittle or quasi-brittle materials, mechanical fracture phenomenon occurs suddenly and without
any warning. Therefore, prediction of brittle materials failure is an essential challenge confronting design
engineers. In this research, using the conventional finite element method (CFEM) and extended finite element
method (XFEM) based on linear elastic fracture mechanics, rupture behavior of U-notch specimens under
mixed mode loadings are numerically and practically studied. As the main contribution and objective of the
current study, two different fracture criteria established on CFEM and six various criteria founded on XFEM
are employed to numerically predict load carrying capacity and crack initiation angle of the U-notch samples.
Also, the load carrying capacity and crack initiation angle are experimentally obtained from tensile tests of the
U-notch instances under planar mixed mode loading to verify the simulation results. The empirical results are
compared with the corresponding estimated values achieved by CFEM and XFEM methods which permit to
assess the accuracy of the mentioned criteria in predicting the load carrying capacity and crack initiation angle
of U-notch coupons subjected to mixed mode loadings, as the novelty of the investigation. The comparison
shows that although both the CFEM and XFEM can properly predict the load carrying capacity and crack
initiation angle, applying the XFEM in addition to reduce the computational costs and mesh sensitivity is more
precise. Besides, a comparison between the XFEM results denotes that stress-based models are significantly
more accurate than strain-based types in predicting the load carrying capacity and crack initiation angle of the
U-notch instances under mixed mode loading.

Keywords U-notch specimens · Mixed mode loading · Conventional finite element method (CFEM) ·
Extended finite element method (XFEM) · Linear elastic fracture mechanics (LEFM)

Abbreviations

APE Averaged percentage of errors
ASTM American society for testing and materials
BD Brazilian disk
BK Benzeggagh and Kenane
CFEM Conventional finite element method
FEM Finite element method
FFM Finite fracture mechanics
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LEFM Linear elastic fracture mechanics
MNE Maximum nominal strain
MNS Maximum nominal stress
MPE Maximum principal strain
MPS Maximum principal stress
MSED Minimum strain energy density
MTS Maximum tangential stress
NSIF Notch stress intensity factor
PMMA Polymethylmethacrylate
QNE Quadratic nominal strain
QNS Quadratic nominal stress
SERR Strain energy release rate
VCCT Virtual crack closure technique
XFEM Extended finite element method

1 Introduction

Nowadays, brittle or quasi-brittle materials are significantly more employed in various industries such as
automotive and aerospace for their particular properties. Hence, researching on the fracture behavior of these
materials is an important issue for designers, engineers, and manufacturers. The occurrence of mechanical
rupture in the brittle materials happens unexpectedly and without any caution. Empirical study of fracture
behavior is usually time-consuming, expensive, and needs numerous tests. Therefore, realizing the material
behavior and using the validated numerical simulations leads to time and costs reduction of experimental tests.

Unlike cracks which are not desired, U-shape and V-shape notches are often utilized in engineering com-
ponents for particular aims. A notch in a part increases the amount of stress concentration, causes cracks and
failures or decreases the structural life.

Different failure criteria have been proposed to estimate the brittle rupture in engineering parts with U, V,
and key-hole notches under in-plane loading. For instance, Seweryn [1], Gomez et al. [2], Gomez and Elices
[3], Ayatollahi and Torabi [4], and Torabi [5] focused on the mode I of fracture in U-shaped and V-shaped
notches. Recently, important researches on the mixed mode I/II brittle rupture of notched components were
performed by Yosibash et al. [6], Ayatollahi and Torabi [7,8], Torabi and Pirhadi [9], Gomez et al. [10,11],
and Berto et al. [12,13]. Additionally, to probe the brittle fracture in the pure mode II, Ayatollahi and Torabi
[14] examined the Brazilian disk (BD) with a central U-notch. As already mentioned, most of these scholars
took into account the in-plane loading and few works such as Zheng et al. [15] and Berto et al. [16] carried
out on the pure mode III, mixed mode I/III, and II/III.

In the above investigations, the approach is founded on determining the critical value for the notch stress
intensity factors (NSIF), so-called notch fracture toughness and the equations are established based on the
linear elastic fracture mechanics (LEFM) that ignores non-linear effects and energy balance considerations.
Meanwhile, it is assumed that crack growth step consumes a few proportion of the total energy required for final
rupture and all energy consumption is almost spent for the crack initiation step. Since rupture quickly happens
in fully brittle materials and parts with sharp notches, it is reasonable to neglect the energy consumption in the
crack growth step. But, in quasi-brittle and ductile materials, and also for components with curved notches,
ignoring the energy consumption in the crack growth step generates further discrepancies.

In brittle materials, crack initiation is not detected by the conventional finite element method (CFEM)
which only deals with the growth of pre-existing cracks. To face this challenge, a new approach of the finite
fracture mechanics (FFM) has been suggested. Founded on the FFM approach, a fracture criterion assumes
that crack grows by finite steps. The length of this finite extension is achieved by a consistency condition of
both energy and stress requirements. Thus, the crack advancement is not a material constant and taken into
account as a structural parameter [17].

Moreover, in numerical simulations of the CFEM, other limitations in the calculation of the NSIF are
the sensitivity of results to mesh and singularity in stress field at crack front, which imposes the use of tiny
elements in this zone. Although employing the singular elements allow applying of larger elements, number of
the needed elements will be added and the computational costs increase. Constructed on the concept of partition
of unity, Belytschko and Black firstly offered the extended finite element method (XFEM) and modeled the
discontinuities by the special enriched functions in conjunction with additional degrees of freedom [18]. The
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XFEM reduces the shortcomings of the CFEM, especially in the step of crack growth by engaging local
enrichment functions. Besides, it is able to specify crack initiation length with consideration of both crack
initiation and crack growth formulas.

In the previous researches, prediction of fracture in notched specimens under mixed mode loading is
established based on theoretical formulas. In most of them, toughness and crack initiation angle in notched
specimens are two topics which have been studied. The main contribution and objective of the current paper
is to utilize several fracture criteria constructed on the CFEM and XFEM methods, in order to numerically
predict the load carrying capacity and crack initiation angle for the polymethylmethacrylate (PMMA) U-notch
coupons under mixed mode loading. Furthermore, the novelty is to reveal accuracy of the CFEM- and XFEM-
based method criteria in predicting the load carrying capacity and crack initiation angle of U-notch specimens
subjected to the mixed mode loading. It should be noted that the present study focuses on the prediction of
load carrying capacity as well as crack initiation angle, and the crack initiation length is not determined. Due
to predicting the load carrying capacity of the material, the results of the current investigation can be certainly
used by sheet polymer industries and assist engineers to manufacture safer products.

2 XFEM theory

In 1999, the XFEM theory and modeling the discontinuities via the special enriched functions, combined with
extra degrees of freedom and regarding the concept of partition of unity, was initially proposed by Belytschko
and Black [18], and then completed by Moes et al. [19]:

The considered domain � is surrounded by boundary Γ which is composed of the sets Γu, Γt , and Γc such
that Γ = Γu ∪ Γt ∪ Γc. Prescribed displacements and tractions are imposed on Γu, Γt , respectively, while
the crack surface Γc is assumed to be free of traction. The equilibrium equations and boundary conditions are
represented as follows:

∇. σ + b = 0 in �

σ . n = t̄ on Γt
σ . n = 0 on Γc

(1)

where n , σ , b in sequence are the unit outward normal, the Cauchy stress, and the body force per unit volume.
The strain–displacement equation is written as:

ε = ∇Su (2)

∇S is the symmetric part of the gradient operator and the boundary conditions are:

u = ū on Γu (3)

Additionally, the constitutive equation is specified by Hooke’s law:

σ = C : ε (4)

In which, C is the Hooke’s tensor.
On the other hand, the enriched functions consist of discontinuous functions, illustrating the displacement

jump across the crack surfaces and the near-tip asymptotic functions to overcome the crack-tip singularity.
The displacement vector defined within the unity enrichment is given through the next equation:

u =
∑

i∈N
uiϕi +

∑

j∈M
b jϕ j H(x) +

∑

k∈L
ϕk

(
4∑

α=1

cα
k Fα(x)

)
(5)

In which, ui , ϕi , b j , H(x), cα
k , and Fα(x), respectively, are the vector of usual nodal displacements asso-

ciated with the continuous part of the finite element method (FEM) solution, the usual nodal shape functions,
the vector of the nodal enriched degree of freedom, the associated function of discontinuous jump across the
crack surfaces, extra degrees of freedom associated with the asymptotic crack-tip functions, and the elastic
asymptotic crack-tip functions. Furthermore, it is emphasized that the first term in the right-hand side of Eq.
(5) is used for all nodes of the FE model, while the middle and the last terms are, respectively, engaged for
nodes whose shape function support is cut by the crack interior and the crack tip. Respecting Fig. 1 [18] which
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Fig. 1 Normal and tangential coordinates for a smooth crack [18]

displays the normal and tangential coordinates for a smooth crack, the discontinuous jump function, H(x) , is
defined by:

H(x) =
{
1 (X − X∗) · n ≥ 0
−1 (X − X∗) · n < 0 (6)

X,X∗, and n in sequence are a desired Gauss point, the nearest point to X on the crack, and the unit outward
normal to the crack at X∗. Meanwhile, the asymptotic crack-tip functions for an isotropic elastic material are
specified by:

Fα(r, θ) =
{√

r sin

(
θ

2

)
,
√
r cos

(
θ

2

)
,
√
r sin

(
θ

2

)
sin(θ),

√
r cos

(
θ

2

)
sin(θ)

}
(7)

where (r, θ) represents the polar frame which origin is located at the crack tip, while θ = 0 is tangent to the
crack tip.

3 Prediction of crack initiation and propagation by CFEM and XFEM

In this section, two different approaches based on the CFEM and XFEM are employed to numerically predict
load carrying capacity and crack initiation angle in U-notch coupons under mixed mode loading.

• CFEM:

Numerous criteria constructed on the CFEM have been developed and implemented by many scholars to
numerically estimate the load carrying capacity and crack initiation angle. In this research, two of the most
common criteria including maximum tangential stress (MTS) and minimum strain energy density (MSED) are
applied to be compared with results of the XFEM criteria and experimental observations.

TheMTScriterion assumes that crackpropagates along adirection perpendicular to themaximum tangential
stress, σθθ (θc) in radial direction from the notch tip. Along this direction, fracture onsets when this maximum
stress reaches its critical value, σc which is determined by tensile strength. The conditions for crack growth
can be presented by following mathematical equations:

∂σθθ (r, θ)

∂θ
= 0 ; ∂2σθθ (r, θ)

∂θ2
≤ 0 (8)

σθθ (θc) = σc (9)

Regarding Torabi et al. investigation [20], a U-notch can be geometrically considered as a rounded-tip V-notch
with zero notch angle, but the stress field must be rewritten for around the notch. It means that the formulations
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of U-notches can be fundamentally obtained from those of blunt V-notches. In this paper, the stress field for
U-notched specimens proposed by reference [20] is used.

According to the MSED criterion, brittle fracture occurs when the strain energy density averaged over a
given control volumeW meets a critical magnitudeWc that depends on material property, not notch geometry
or sharpness. For the brittle materials subjected to static loading, the control volume is related to the ultimate
tensile strength, σu, the fracture toughness, KIC and for the U-shaped notch, it is crescent in shape. The critical
volume under mixed mode loading condition is centered on the point where the principal stress reaches its
maximum values along the notch edge with the radius of:

R0 = (5 − 3ν)

4π

(
KIC

σu

)2

; (Plane stress)

R0 = (1 + ν)(5 − 8ν)

4π

(
KIC

σu

)2

; (Plane strain) (10)

The critical value for strain energy density is achieved by [13]:

Wc = σ 2
u

2E
(11)

• XFEM:

In this theory, the failure mechanism is different from the two previous criteria, including the two steps of
crack initiation and crack growth. The crack initiation happens when degradation of the traction–separation
response at the enriched elements begins. In other words, when the stress or strain meets a crack initiation
criterion, the initiation process starts and the initiated crack propagates until final failure. As illustrated in
the following, several proposed fracture criteria [18,21–23] are utilized to numerically investigate the crack
initiation in U-notch samples under planar mixed mode loading:

1. Maximum principal stress (MPS):

The MPS criterion is defined by the next equation:

f =
{ 〈σmax〉

σ 0
max

}
(12)

σmax and σ 0
max in sequence denote the maximum principal stress and maximum allowable principal stress. The

Macaulay bracket symbol 〈 〉 is applied to omit effect of a purely compressive stress on crack initiation via the
relation:

〈σmax〉 =
{

σmax σmax > 0
0 σmax ≤ 0 (13)

2. Maximum principal strain (MPE):

Similar to the MPS criterion, the MPE criterion is expressed as:

f =
{ 〈εmax〉

ε0max

}
(14)

In which, εmax and ε0max represent the maximum principal strain and maximum allowable principal strain,
respectively.

3. Maximum nominal stress (MNS):

The MNS criterion is written by:

f = max

{ 〈tn〉
t0n

,
ts
t0s

,
tt
t0t

}
(15)

where tn is the normal component of nominal stress and ts , tt are shear components of nominal stress in the
crack plane. Moreover, t0n , t

0
s , t

0
t signify peak values of nominal stress in the probable crack surface, related to

the material properties and determined by practical tests.
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4. Maximum nominal strain (MNE):

This criterion is similarly illustrated by the next equation:

f = max

{ 〈εn〉
ε0n

,
εs

ε0s
,

εt

ε0t

}
(16)

In which, εn is the normal component of nominal strain and εs , εt are shear components of nominal strain in
the crack plane. Also, ε0n , ε

0
s , ε

0
t denote peak values of nominal strain in the probable crack surface, depending

on the material properties and estimated through empirical tests.

5. Quadratic nominal stress (QNS):

The QNS criterion is stated as:

f =
{ 〈tn〉

t0n

}2

+
{
ts
t0s

}2

+
{
tt
t0t

}2

(17)

6. Quadratic nominal strain (QNE):

Alike the previous one, this criterion is expressed as following:

f =
{ 〈εn〉

ε0n

}2

+
{

εs

ε0s

}2

+
{

εt

ε0t

}2

(18)

According to each of the above-discussed criteria, crack is expected to initiate when f reaches a value of
one. Additionally, among the mentioned criteria, only the first and second (MPS and MPE) are able to predict
the direction of crack initiation in a manner that when the fracture criterion is satisfied, crack onsets along
a direction orthogonal to the maximum principal stress/strain directions. In other cases (MNS, MNE, QNS,
and QNE), crack initiation direction cannot be specified because the related parameters should be given in the
expected crack surface. Hence, these criteria are not capable to predict the angle of crack initiation.

• Crack propagation:

Regarding the LEFM theory, when the strain energy release rate (SERR) founded on the virtual crack closure
technique (VCCT) at the crack tip, meets its critical magnitude then crack propagates. The Benzeggagh and
Kenane (BK) law firstly proposed in 1996 [24], works on estimating the equivalent fracture energy release rate
in mixed mode loading as the next formula:

Geq,C = GIC + (GIIC − GIC)

(
GII + GIII

GI + GII + GIII

)η

(19)

GIC,GIIC, respectively, indicate the critical SERR of mode I and II, obtained by standard rupture tests.
Meanwhile, GI, GII, GIII in sequence represent the SERR for mode I, II, and III, calculated by VCCT.
Exponent η is a power law coefficient, concerning mode mixity in mixed mode loading and is assumed to
be 2 for brittle materials [24]. Through this method, assigning a fracture criterion to the enriched elements,
the XFEM-based LEFM approach can be engaged to numerically simulate the propagation of a crack along
an arbitrary, solution-dependent path in the bulk material with or without an initial crack. For this purpose,
damage parameter (d) is defined. This parameter is zero for magnitudes of SERR less than the critical value,
while it is equal to one when the SERR reaches the critical value. Taking into account the damage parameter,
the elasticity matrix (C) at the surface of the crack is written as following [25]:

C =
{
K I d = 0
K Ic d = 1 (20)

where K , I, respectively, are the penalty stiffness and identity matrix, and Ic is a compression identifier matrix
as:

Ic =
⎡

⎣
0 0 0
0 0 0
0 0 〈−εn〉−εn

⎤

⎦ (21)

The constitutive equation is also specified by:

σ = Cε (22)
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4 Experimental tests

The commercial glassy polymer, polymethylmethacrylate (PMMA),which is relatively homogenous, isotropic,
and often fails in a brittle manner even at room temperature, is selected for preparing the specimens. In order
to identify the material properties, ASTMD638-03 standard [26] was employed and a high-precision 2D laser
cutting machine was used to provide the samples from a PMMA 2.2-mm-thick sheet. Then, the cut surfaces of
the instanceswere polished by a fine abrasive paper to remove the effects of local defects. For the reliability, five
coupons were prepared and tested at the velocity of 0.5mm/min by an electromechanical SANTAM tensile
test machine, equipped with a 50 KN load cell and strain gauge extensometer with 100mm gauge length,
+50%/−50% maximum strain.

Figure 2 depicts the PMMA standard specimen, fixed in the tensile test machine. The tensile tests were
continued until rupture of the samples. As Fig. 3 exhibits the fractured coupons, except the fourth specimen
(A4) which broke near the filleted section (probably due to existing a defect or stress concentration), all of the
instances ruptured at the expected and reasonable zones. Figure 4 displays load–displacement curves, while

Fig. 2 The PMMA standard specimen, fixed in the tensile test machine

Fig. 3 The fractured coupons after the tensile tests
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Fig. 4 Load–displacement curves for different acceptable fractured coupons

Table 1 Material properties of PMMA at room temperature

Specimen
number

Rupture load
(N)

Rupture
displacement
(mm)

Rupture
stress, σc
(MPa)

Rupture
strain, εc

Young’s
modulus
(MPa)

Validity
of the test

A1 2245.67 1.39 78.52 0.02438 3220.67 Valid
A2 1991.41 1.22 69.63 0.02105 3307.83 Valid
A3 1815.52 1.08 63.48 0.01894 3351.63 Valid
A4 1626.48 0.99 56.87 0.01749 3251.57 Invalid
A5 2241.38 1.32 78.37 0.02315 3384.15 Valid
Average 2073.50 1.25 72.50 0.02188 3316.07

Table 1 demonstrates the extracted results of material properties at room temperature. The results are averaged,
but the A4 coupon does not take into account because of its breakage at the unsuitable place.

4.1 Central U-notch specimens under mixed mode loading

To study brittle fracture of the U-notch specimens under mixed mode loading, the test coupons were fabricated
by 2D laser cutting machine from the chosen material, as revealed in Fig. 5. Four various loading angles of β
(the angle between horizontal axis of the specimen and slit bisector line) equal 0, 30, 45, and 60 were opted to
make different in-plane modes of loading around the U-notch ends. Zero angle represents the pure mode I of
loading, while nonzero values indicate the mixed mode I/II and pure mode II loading. As the angle β grows
from zero (horizontal notch), in-plane shear deformation slowly appears around the notch and it simultaneously
endures both of the tension and shear deformations which exactly implies the mixed mode I/II loading.

As Fig. 6 illustrates, samples were tested until fracture at the velocity of 0.5mm/min by the tensile test
machine and load–displacement curves were attained for the instances. Each experiment was repeated three
times for the reliability of the experimental setups, and the results were averaged. Figure 7 shows the U-
notch specimens after the rupture. To specify the crack initiation angle, images of the cracked surfaces were
accurately processed by digitizer software in accordance with Fig. 8. The values of crack initiation angle and

Fig. 5 Geometry of central U-notch specimens under mixed mode loading (all dimensions are in mm)
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Fig. 6 A U-notch sample, fixed in the tensile test machine

Fig. 7 Different U-notch specimens after the rupture

load carrying capacity are shown in Table 2. The mean values are considered to be compared with numerical
simulation results.

5 Numerical simulations and validation

The central U-notch samples are numerically simulated and compared with both theoretical formulas and
practical tests. Due to the symmetry, only one half of the geometry was modeled for the case of pure mode
I loading (β = 0), the symmetry conditions were applied to the model, while, for nonzero magnitudes of
angle (β �= 0), the whole model was constructed. The Young’s modulus and Poisson’s ratio extracted from the
experimental tests as E = 3316.07MPa, ν = 0.38 were assigned to the model. In-plane and static loading
conditions were utilized, and geometry was discretized by continuous three-dimensional 8-node linear brick
elements with reduced integration points and hourglass control. Due to the stress concentration, fine elements
were applied around the notch and coarse elements were engaged for the rest of areas. Mesh convergence tests
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Fig. 8 Specification of crack initiation angle by the digitizer software for a β = 0, b β = 30, c β = 45, and d β = 60

were performed for the number of mesh sizes to validate the mesh density. After converging of the results,
the final optimum selected mesh was achieved as exhibited in Fig. 9. The FE models were solved by a finite
element code for all of the cases. Figure 10 depicts normalized tangential stress results for the nodes located
along the bisector line of the notch vs. normalized distance from the notch tip. Because of using normalized
stresses and also normalized distances for different magnitudes of β, the results are nearly identical.

To validate the FE model and numerical results, first, magnitudes of normalized tangential stress vs. the
normalized distance are compared with the corresponding values calculated from the theoretical equations,
proposed by Zappalorto and Lazzarin [27]. The next equation is used to theoretically evaluate the computed
normalized tangential stress:

Table 2 Rupture load and crack initiation angle for different U-notch specimens

Specimen
number

Notch
direction
(◦)

Rupture load
(N)

Mean rupture
load (N)

Crack
initiation
angle (◦)

Mean crack
initiation angle
(◦)

D1 0 530.15 561.29 0 0
D2 0 583.08 0
D3 0 570.63 0
D4 30 525.33 528.47 31.20 31.43
D5 30 515.61 32.38
D6 30 544.46 30.71
D7 45 467.40 520.41 38.21 42.84
D8 45 510.76 35.64
D9 45 583.08 54.68
D10 60 501.20 544.30 68.86 63.03
D11 60 554.26 51.63
D12 60 577.44 68.60
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Fig. 9 FE models: a mode I loading and b mixed mode loading

Fig. 10 Numerical prediction of normalized tangential stress vs. normalized distance from the notch tip for different magnitudes
of β

σθθ (r, θ) = KV,ρ
I√

2πr1−λ1

[
m(I)

θθ +
(
r

r0

)μ1−λ1

n(I)
θθ

]
+ KV,ρ

II√
2πr1−λ2

[
m(II)

θθ +
(
r

r0

)μ2−λ2

n(II)
θθ

]
(23)

where KV,ρ
I and KV,ρ

II in sequence are the mode I andmode II NSIF. According to Fig. 11, the parameters ρ, r0
are the notch radius and distance of the notch tip from origin of the polar coordinates system, respectively.
The functions mθθ , nθθ and the eigenvalues μi and λi which depend upon the notch angle are reported in
Appendix 1, in terms of notch opening angle (2α). It should be emphasized that Eq. (23) is a general equation
for computing the tangential stress around theV-shaped notches. Thus, the notch opening angle is assumed to be
zero for the U-notched specimens [28]. Employing the above theoretical procedure, the normalized tangential
stresses are theoretically attained and compared with the numerical results of Fig. 10. The comparison shows
good conformity, and hence the versatility of the FE model is validated.

5.1 Numerical and experimental results

After validation of the FE model, results of the CFEM and XFEM in predicting the mixed mode load carrying
capacity and the fracture initiation angle of U-notch coupons are extracted and compared with the empirical
data. To compute the load carrying capacity and crack initiation angle via the MTS criterion, first, tangential
and shear stresses are determined for a test load of 1000N through FE model. Then, the NSIF KI and KII for
the test load are estimated, utilizing the revealed stresses and following relations [29]:
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Fig. 11 V-notch polar coordinate system with the origin [27]

KI =
√

πρ

2 σθθ

(
ρ
2 , 0

)

KII = limr→ ρ
2

√
2πr (σrθ )θ=0

(1− ρ
2r )

(24)

In the above equations, σθθ is the tangential stress at the U-notch tip and σrθ is the in-plane shear stress along
the notch bisector line, specified for the test load by the FE model.

Using values of KI , KII, employing the NSIF fracture curves and fracture initiation angle curves presented
by Torabi [29], the material toughness and initiation angle are achieved. To evaluate the values of fracture
initiation angle from fracture initiation angle curves, a useful parameter called the mode mixity (MU

e ) is
defined:

MU
e = 2

π
tan−1

(
KI

KII

)
(25)

In order to obtain load carrying capacity undermixedmode loading conditions, a parameter, named the effective
NSIF, is expressed as:

Keff =
√
K 2
I + K 2

II (26)

Finally, substituting the values in the next equation, the load carrying capacity is stated by:

Keff

Keff,c
=

(
Fappl
Fcr

)
(27)

In which, Keff , Keff,c, Fappl, and Fcr, respectively, are effective NSIF in mixed mode condition for the test load,
effective toughness in mixed mode loading attained from fracture curves [29], the test load and load carrying
capacity.

To estimate the load carrying capacity and crack initiation angle by MSED criterion, first, radius of control
volume is calculated. Then, amount of strain energy density is determined in specific volume for the test load
of 1000N in the FE model. Finally, critical failure load for different mixed modes is given by:

W

Wcr
=

(
Fappl
Fcr

)2

(28)

where W and Wcr in sequence are strain energy density for the test load and critical strain energy density,
dependent on material properties and computed by Eq. (11). Besides, in this criterion, crack initiation angle is
orthogonal to the direction of maximum principal stress.
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Table 3 Material properties required for the XFEM criteria

Material property

Maximum principal stress, σ 0
max (MPa) 72.50

Maximum principal strain, ε0max 0.02186
Maximum nominal normal stress, t0n (MPa) 70.96
Maximum nominal normal strain, ε0n 0.02210
Maximum nominal shear stress, t0s (MPa) 63.58
Maximum nominal shear strain, ε0s 0.05373
Mode I fracture energy, GI (MPam) 1.1104
Mode II fracture energy, GII (MPam) 3.2439

Table 4 Comparison of the experimental and predicted rupture load by different criteria for various notch directions

β (◦) 0 30 45 60 APE (%)

Load (N) Error (%) Load (N) Error (%) Load (N) Error (%) Load (N) Error (%)

Exp. (N) 561.29 528.47 520.41 544.30
MTS (N) 526.32 6.23 486.34 7.97 496.23 4.65 508.12 6.65 6.38
MSED (N) 540.32 3.74 509.19 3.65 510.06 1.99 523.20 3.88 3.32
MPS (N) 573.44 2.16 555.74 5.16 559.40 7.49 620.20 13.94 7.19
MPE (N) 609.34 8.56 590.34 11.71 594.88 14.31 648.62 19.17 13.44
MNS (N) 546.66 2.61 528.58 0.021 532.12 2.25 582.30 6.98 2.97
MNE (N) 609.36 8.56 590.34 11.71 594.86 14.31 650.30 19.47 13.51
QNS (N) 546.66 2.61 528.58 0.021 532.12 2.25 582.30 6.98 2.97
QNE (N) 609.36 8.56 590.34 11.71 594.84 14.30 650.30 19.47 13.51

Table 5 Comparison of the experimental and predicted crack initiation angle by different criteria for various notch directions

β (◦) 0 30 45 60 APE (%)

Angle (◦) Error (%) Angle (◦) Error (%) Angle (◦) Error (%) Angle (◦) Error (%)

Exp. (◦) 0 31.43 42.84 63.03
MTS (◦) 0 0 36.87 17.31 49.23 14.92 68.38 8.49 10.18
MSED (◦) 0 0 30.56 2.77 46.12 7.66 61.23 2.86 3.32
MPS (◦) 0 0 30.56 2.77 46.12 7.66 61.23 2.86 3.32
MPE (◦) 0 0 32.23 2.55 47.81 11.60 67.14 6.52 5.17

To obtain the crack initiation angle and load carrying capacity by the XFEM criteria, experimental test
conditions are applied to the validated FE model. Also, material properties required for the XFEM criteria are
extracted from the empirical tests and assigned in accordance with Table 3.Moreover, elements are enriched by
appropriate degrees of freedom in the whole model. After the simulations, the numerical results are achieved
and compared with the practical tests.

Tables 4 and 5, respectively, display the practical and predicted results of the load carrying capacity and
crack initiation angle for notch directions of 0, 30, 45, and 60. As Table 4 denotes, comparing the numerical
and empirical magnitudes of the load carrying capacity shows that between the CFEM criteria (MTS, MSED),
averaged percentage of errors (APE) forMSED is less than forMTS; therefore,MSED ismore exact thanMTS.
Furthermore, among the XFEM criteria (MPS, MPE, MNS, MNE, QNS, and QNE), the stress-based criteria
(MPS, MNS, QNS) are evidently more precise than the strain-based (MPE, MNE, MQE) ones. Meanwhile,
the results demonstrate that the MNS and QNS criteria have the highest accuracy, while the MNE and QNE
criteria have the least precision in prediction of the load carrying capacity among all criteria of CFEM and
XFEM.

To evaluate the accuracy of different criteria in crack initiation prediction, as mentioned before, among
the six XFEM-based criteria, only MPS and MPE can predict the crack initiation angle. According to Table 5,
the APE for MSED and MPS is less than for MTS and MPE and the results approve that the best predictions
belong to MPS and MSED, while the worst is related to MTS.
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6 Conclusions

In this paper, the main contribution and objective was to numerically predict the load carrying capacity and
crack initiation angle in components weakened by a U-notch under mixed mode tensile loading, employing
CFEM and XFEM. The numerical results were compared with the experimental results of PMMA U-notched
specimens and acceptable correlation was found between them for various loading angles. Besides, the novelty
was to evaluate and reveal the precision of the mentioned criteria in predicting the load carrying capacity and
crack initiation angle of U-notch samples subjected to the mixed mode loading. The results indicated that
the XFEM criteria were more accurate than the CFEM ones, in addition to decrease the mesh sensitivity and
computational costs. Moreover, it was concluded that among all criteria of CFEM and XFEM, the MNS and
QNS criteria have the best accuracy in predicting the load carrying capacity, while the MPS and MSED are
the most suitable criteria for estimating the crack initiation angle among those criteria which are able to do it.

Appendix 1

Functions used in the tangential stress formula [Eq. (23)] for rounded-tip V-shaped notches (mode I + II) [28]:

m(I)
θθ = 1

(1 + λ1 + χb1(1 − λ1))
[(1 + λ1) cos((1 − λ1)θ) + χb1(1 − λ1) cos((1 + λ1)θ)]

n(I)
θθ = q

4(q − 1)(1 + λ1 + χb1(1 − λ1))
[χd1(1 + μ1) cos((1 − μ1)θ) + χc1 cos((1 + μ1)θ)]

m(II)
θθ = 1

(1 + λ2 + χb2(1 + λ2))
[(1 + λ2) sin((1 − λ2)θ) + χb1(1 + λ2) sin((1 + λ2)θ)]

n(II)
θθ = q

4(μ2 − 1)(1 + λ2 + χb2(1 + λ1))
[χd2(1 + μ2) sin((1 − μ1)θ) − χc2 sin((1 + μ2)θ)]

Eigenvalues applied in the tangential stress formula [Eq. (23)] for rounded-tip V-shaped notches (mode I + II)
[28]:

2α (◦) λ1 λ2 μ1 μ2

0 0.5 0.5 −0.5 −0.5
30 0.5014 0.5982 −0.4561 −0.4118
60 0.5122 0.7309 −0.4057 −0.3731
90 0.5448 0.9085 −0.3449 −0.2882
120 0.6157 1.1489 −0.2678 −0.1980
135 0.6736 1.3021 −0.2198 −0.1514

Values of the parameters q , χb1, χb2, χc1, χc2, χd1, and χd2 have been reported in [28] for various notch
angles.
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