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Abstract The exact solutions of the linear Pochhammer–Chree equation for propagating harmonic waves in
a cylindrical rod are analyzed. Spectral analysis of the matrix dispersion equation for longitudinal axially
symmetric modes is performed. Analytical expressions for displacement fields are obtained. Variation of
wave polarization on the free surface due to variation of Poisson’s ratio and circular frequency is analyzed. It is
observed that at the phase speed coincidingwith the bulk shear speed (c2) all the components of the displacement
field vanish, meaning that no longitudinal axisymmetric Pochhammer–Chree wave can propagate at c2 phase
speed.
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1 Introduction

The equation for propagating harmonic waves in a cylindrical rod, now known as the Pochhammer–Chree
equation, was for the first time derived in [1–3]. However, the corresponding solutions binding the phase or
group speed with frequency remained unexplored until the middle of the last century, when the first branches
of the dispersion curves were obtained numerically in [4–22]. In [4–20] longitudinal axially symmetric modes
were explored, and in [21,22] flexural and torsional modes were also considered. According to [16] the axially
symmetric longitudinal modes are denoted by L(0,m), where m is the mode number.

In [4–6] by asymptotic methods were obtained analytical formulas for both short-wave (c1,lim) and long-
wave (c2,lim) limits for the phase speed for the lowest (fundamental) branch of the longitudinal axially sym-
metric modes. Following [6] (see also [15]), the short-wave limit speed (c1,lim) at ω → ∞

c1,lim = cR (1.1)

coincides with Rayleigh wave speed (cR), while the long-wave limit speed c2,lim yields [15]

c2,lim =
√

E

ρ
, (1.2)
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where E is Young’s modulus and ρ is the material density. In [6,15] the long-wave limit c2,lim was named as
the “rod” wave speed.

One of the interesting peculiarities of propagating L(0,m),m > 1, modes at γ → 0, where γ is the wave
number (γ = 2π/λ, where λ is the wavelength), corresponds to the zero slope of the dimensionless frequency
Ω [15]:

lim
γ→0

∂Ω

∂γ
= 0. (1.3)

In (1.3) Ω = ωR/c2; ω is a circular frequency, R is a radius of the rod; and c2 is a speed of the bulk shear
wave. Actually, condition (1.3) means the presence of the horizontal asymptote in the dispersion relation ω(c)
at the phase speed c → ∞ for higher longitudinal axially symmetric modes. Resemblance of the dispersion
curves of Pochhammer–Chree waves with Lamb and Love ones is remarked in [23,24].

Extensions of the Pochhammer–Chree waves to helical waves (longitudinal axially symmetric modes)
that relate to non-integer coefficients at the angle coordinate in the corresponding potentials were analyzed
in [25–27]. The analysis of rotational waves in cylinders of finite length was performed in [28].

2 Displacement representation

Equation of motion for an isotropic medium in the absence of body forces can be represented in a form

c21∇divu − c22rot rotu = ∂2t tu, (2.1)

where u is the displacement field, c1, c2 are speeds of bulk longitudinal and shear waves, respectively, and

c1 =
√

λ + 2μ

ρ
, c2 =

√
μ

ρ
. (2.2)

In (2.2) λ,μ are Lame’s constants and ρ is a material density.
The Helmholtz representation for the displacement field u yields

u = ∇Φ + rot�, (2.3)

where Φ and � are scalar and vector potentials, respectively. Substituting (2.3) into equation of motion (2.1)
yields

c21
Φ = Φ̈, c22
� = �̈. (2.4)

For a harmonic wave propagating along axis z, potentials (2.4) can be represented in a form

Φ = Φ0(x′)eiγ (z−ct), � = �0(x′)eiγ (z−ct), (2.5)

where, as before, γ is the wave number related to the phase speed c and circular frequency ω by equation

γ = ω

c
. (2.6)

In (2.5) x′ is the (vector) coordinate in the cross section of a rod (x′ = x − (n · x)n); n is the wave vector; and
z = n · x (z is the coordinate along central axis of the rod).

Substituting representations (2.5) into Eq. (2.4) yields the Helmholtz equations for the potentials


Φ0 +
(
c2

c21
− 1

)
γ 2Φ0 = 0, 
�0 +

(
c2

c22
− 1

)
γ 2�0 = 0. (2.7)

Now, taking into account (2.3)–(2.7), the desired vector field corresponding to the propagating longitudinal
axially symmetric harmonic wave becomes [19]

ur = − [
q1C1 J1(q1r) + iγC2 J1(q2r)

]
eiγ (z−ct)

uθ = 0

uz = [
iγC1 J0(q1r) + q2C2 J0(q2r)

]
eiγ (z−ct), (2.8)
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where

q2
1

=
(
c2

c21
− 1

)
γ 2, q2

2
=

(
c2

c22
− 1

)
γ 2. (2.9)

3 Dispersion equation

Traction-free boundary conditions on a lateral cylindrical surface at r = R have the form

tν ≡ (λ(trε)ν + 2με · ν)|r=R = 0, (3.1)

where ν is the (outward) surface normal.
Substituting the displacement representation (2.8) into boundary conditions (3.1) yields the following

equations written up to exponential multiplier eiγ (z−ct))

trr ≡ λIε + 2μεrr = −
⎡
⎣λ

(
q21 + γ 2

)
J0(q1r)C1

+ 2μ
r

[
q1C1 (q1r J0(q1r) − J1(q1r))
+ iγC2 (q2r J0(q2r) − J1(q2r))

]⎤
⎦
r=R

= 0

tr z ≡ 2μεr z = −μ

[
iγ

[
q1C1 J1(q1r) + iγC2 J1(q2r)

]
+ [

iγ q1C1 J1(q1r) + q22C2 J1(q2r)
] ]

r=R
= 0. (3.2)

Equation (3.2) result in the desired dispersion equation

det A = 0, (3.3)

where A is a square and generally non-symmetric 2 × 2 matrix with complex coefficients:

A11 = −
((

q21 + γ 2) c21
c22

− 2γ 2

)
J0(q1R) + 2q1

R
J1(q1R)

A12 = −2iγ

R
(q2RJ0(q2R) − J1(q2R))

A21 = −2iγ q1 J1(q1R)

A22 = − (
q22 − γ 2) J1(q2R). (3.4)

Two-dimensional (right) eigenvectors related to vanishing eigenvalues (kernel eigenvectors) of matrix A
define polarization of the corresponding Pochhammer–Chree waves.

4 Spectral analysis of matrix A

Spectral analysis of matrix A splits into two cases.

4.1 Matrix A is (semi) simple

That is the case when matrix A contains no Jordan blocks and hence has two distinct eigenvectors. Spectral
decomposition of A yields

�α1 ↔ λ1, �α2 ↔ λ2, (4.1)

where λ1, λ2 are right eigenvalues ofmatrixA, and �α1, �α2 are two-dimensional eigenvectors. The characteristic
equation for matrix A written in the form

det (A − λI) = 0, (4.2)
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where I is the unit diagonal matrix, yields the following representations for eigenvalues

λ1,2 = s ± d, (4.3)

where

s = A11 + A22

2
, d =

√
f 2 + A12A21, f = A11 − A22

2
, (4.4)

Note that coefficients Ai j in (4.4) are defined by (3.4).
The corresponding (normed) eigenvectors have the form

�α1,2 =
⎛
⎝ f ±d√

|A21|2+| f ±d|2
A21√

|A21|2+| f ±d|2

⎞
⎠ . (4.5)

Analyses of expressions (4.3) and (4.5) allow formulating

Proposition 4.1 (a) The necessary and sufficient condition for simplicity of matrix A is

d 
= 0, (4.6)

where discriminant d is defined by (4.4).
(b) Condition for degeneracy of matrix A takes the form

A11A22 = A12A21. (4.7)

Proof (a) Expression (4.3) reveals that condition (4.6) gives a necessary and sufficient condition for simplicity
of the considered matrix.

(b) Due to (4.3), condition of degeneracy takes the form

s2 = d2. (4.8)

Equation (4.8) with account of (4.4) yields the desired Eq. (4.7). ��
Remark 4.1 The straightforward analysis reveals that condition (4.7) is equivalent to the dispersion equation
(3.3).

4.2 Matrix A is non-semisimple (contains Jordan block)

Condition for non-simplicity of matrix A following from expression (4.3) yields

d = 0. (4.9)

At (4.9) the spectral decomposition of matrix A results in⎛
⎝ f√

|A21|2+| f |2
A21√

|A21|2+| f |2

⎞
⎠ ↔ λ1,2 = s. (4.10)

Thus, at (4.9) matrix A becomes not only non-simple matrix, but non-semisimple as well, since it has only
one (right) eigenvector (4.10).

At (4.9) and in view of (4.3) the double degeneracy of A is equivalent to

s = 0. (4.11)

Now, taking into account (4.4), the following proposition flows out

Proposition 4.2 (a) The necessary and sufficient condition for non-semisimplicity of matrix A is

f 2 = −A12A21. (4.12)
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(b) At condition (4.12) the double degeneracy of matrix A takes the form

A11 = −A22. (4.13)

Proof (a) Proposition 4.1a ensures that at (4.9) matrixA becomes non-simple. But, at (4.9) both eigenvectors
coincide due to (4.5), so actually A becomes non-semisimple. Then, substituting expressions (4.4) into
(4.9) yields condition (4.12).

(b) Due to (4.3), the degeneracy of matrix A at (4.9) is equivalent to

s = 0. (4.14)

But, (4.14) is equivalent to (4.13). ��
Remark 4.2 For the considered case of degeneracy of the non-semisimplematrix, the corresponding dispersion
equation takes the form

(
q22 − γ 2)2 (J1(q2R))2 − γ 2q1q2 J0(q2R)J1(q1R) + γ 2q1

R
J1(q2R)J1(q1R) = 0. (4.15)

5 Displacement fields

Components of the kernel eigenvectors (4.5), (4.10), that correspond to vanishing eigenvalues, are coefficients
C1,C2 in expressions (2.8). Depending on the spectral properties of matrix A, two cases are considered.

5.1 Matrix A is (semi) simple

Substituting components of the kernel eigenvector (4.5) that corresponds to vanishing eigenvalue (4.3) into
(2.8) at condition (4.7) yields

ur = − [q1( f ±d)J1(q1r)+iγ A21 J1(q2r)]√
|A21|2+| f ±d|2 eiγ (z−ct)

uz = [iγ ( f ±d)J0(q1r)+q2A21 J0(q2r)]√
|A21|2+| f ±d|2 eiγ (z−ct),

(5.1)

where f, d are defined by (4.4) and coefficients Ai j of matrix A are defined by (3.4). In (5.1) and further
vanishing component uθ is not present.

Proposition 5.1 For (semi−) simple matrixA the displacement component uz vanishes at r = 0 and at c = c2
regardless of frequency.

Proof For the considered case condition (4.7) takes the form

iγ ( f ± d) = −q2A21. (5.2)

Equation (5.2) with account of (4.4) can be transformed to the equivalent equation:

iγ q2 (A11 − A22) + q22 A21 + γ 2A12 = 0. (5.3)

Substituting expressions (3.4) into (5.3) at c = c2 ensures vanishing uz at r = 0. ��
Corollary For the considered simple matrix A, expressions (5.1) are applicable for any axially symmetric
mode L(0,m), m > 0.
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5.2 Matrix A is non-semisimple (contains Jordan block)

Substituting components of the kernel eigenvector (4.10) into (2.8) with account of conditions of degeneracy
(4.12) and (4.13) yields

ur = − [
q1 f J1(q1r) + iγ A21 J1(q2r)

]
√

|A21|2 + | f |2
eiγ (z−ct)

uz =
[
iγ f J0(q1r) + q2A21 J0(q2r)

]
√

|A21|2 + | f |2
eiγ (z−ct). (5.4)

Proposition 5.2 For non-semisimple matrix A the displacement component uz does not vanish at r = 0 and
at c = c2 regardless of frequency.

Proof For the considered case condition (4.13) takes the form

iγ f = −q2A21. (5.5)

Equation (5.5) with account of (4.4) can be transformed to the equivalent equation

iγ (A11 − A22) + 2q2A21 = 0. (5.6)

Substituting (3.4) into (5.6) at c = c2 reveals that condition (5.5) does not hold. ��
Corollary For the considered non-semisimple matrix A, expressions (5.1) are applicable for any axially
symmetric mode L(0,m), m > 0.

5.3 Displacement amplitudes on a lateral surface

Normalized amplitudesUr ,Uz of the displacement fields on a cylinder lateral surface at r = R can be defined
by the following formulas

Ur ≡ |ur |
|ur | + |uz | + 1

∣∣∣∣
r=R

Uz ≡ |uz |
|ur | + |uz | + 1

∣∣∣∣
r=R

. (5.7)

Remark 5.3 Generally, amplitude values of the components |ur | and |uz | can simultaneously vanish at some
value of the radius, and particularly, they can vanish at r = R. For this reason unity is added to the denominators
in (5.7).

6 Displacements for the fundamental mode

Displacement components are defined by expressions (5.1) for a simple matrix. (It can be shown that for the
fundamental mode the non-semisimplicity cannot arise.) Amplitudes Ur ,Uz on a free surface of the cylinder
are defined by Eq. (5.7). The amplitudes Ur ,Uz will be analyzed at different values of Poisson’s ratio from
the interval lν ∈ (0, 0.4].

6.1 Dispersion curves

For these values of Poisson’s ratio dispersion equation (3.3) allowed to obtain dispersion curves related to the
fundamental axially symmetric mode L(0, 1). The corresponding curves are presented in Fig. 1 in terms of
the dimensionless (1) phase speed c/c2,lim, where c2,lim is defined by (1.2), and (2) dimensionless frequency
ωR/c2, where c2 is the bulk shear wave speed defined by (2.2).

The corresponding values of Poisson’s ratio are given in the legend. The dispersion curves in Fig. 1 clearly
indicate the presence of two asymptotic phase velocities: c1,lim at ω → ∞ and c2,lim at ω → 0.
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Fig. 1 Dispersion curves at different Poisson’s ratios
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Fig. 2 Variation of amplitude Ur vs relative phase speed

6.2 Amplitudes Ur

Variation of the displacement amplitude Ur related to the fundamental mode with respect to variation of the
phase speed is plotted in Fig. 2. The presented plots correspond to different values of Poisson’s ratio indicated
in the legend.

The most interesting in Fig. 2 is vanishing of the amplitude Ur at the phase speed c → c2 ± 0 and at
c → c2,lim − 0.

6.3 Amplitude Uz

Variation of the displacement amplitude Uz related to the fundamental mode with respect to variation of the
phase speed is plotted in Fig. 3. The presented plots correspond to different values of Poisson’s ratio indicated
in the legend.
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Fig. 3 Variation of amplitude Uz vs relative phase speed

Fig. 4 Variation of phase speed ck vs Poisson’s ratio

Herein, the displacement amplitudeUz vanishes at two values of the phase speed related to c2 and another
speed ck . The latter speed depends upon Poisson’s ratio and can be approximated by the following fraction-
rational expression

ck ≈ c2,lim
a + bν

, a = 1.0126, b = 0.8889. (6.1)

At higher speeds than ck the component Uz gradually rises to about 0.5 almost independently of Poisson’s
ratio. Parameters a, b in (6.1) are found by the regression analysis. The obtained values for a, b in (6.1) ensure
relative error not exceeding 0.1% for the considered Poisson’s ratio values ν ∈ (0, 0.4].

Variation of the phase speed ck with respect to Poisson’s ratio is marked by dots in Fig. 4, where the dashed
line corresponds to computations by approximate formula (6.1).

Remark 6.1(A) Substituting phase speed c = c2 into (3.4) reveals that at c2 matrix A is simple with the
following kernel (right) eigenvector (

0
1

)
↔ λ = 0. (6.2)



Polarization of the axially symmetric modes 1393

The kernel eigenvector (6.2) corresponds to the following coefficients in representation (2.8):

C1 = 0, C2 = 1. (6.3)

Analyzing expressions (5.1), (5.7) for the considered matrix A ensures that Ur = Uz = 0 at c → c2 ± 0.
(B) Analogously, substituting coefficients (6.3) into expression (5.1) for the displacement components ensures

that ur = uz = 0 at c → c2 ± 0 independent of circular frequency. This means that no longitudinal
axisymmetric harmonic Pochhammer–Chree waves can propagate at c2 phase speed.

7 Conclusions

The exact solutions of the linear Pochhammer–Chree equation for propagating harmonic axisymmetric longi-
tudinal waves L(0,m) in a cylindrical rod were analyzed.

Spectral analysis of thematrix dispersion equation for longitudinal axially symmetricmodes (L(0,m),m >
0) of Pochhammer–Chreewaveswas performed, revealing that no longitudinalmodes can propagate at c2 phase
speed.

Variation of wave polarization on the free surface due to variation of Poisson’s ratio and circular frequency
was analyzed. It was found that there was phase speed ck (value of this speed depends upon Poisson’s ratio)
at which longitudinal component Uz of the fundamental longitudinal mode vanishes.
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