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Abstract A dynamic modelling approach for a multi-beam structure connected with nonlinear joints is pre-
sented and subsequently used to obtain its reduced-order analytical model. Firstly, by applying the matching
and boundary conditions, the natural frequencies and global mode shapes of the system are derived. According
to the nonlinear transmitted torque formulations of the joints, the joints nonlinearities are introduced into the
system by using the equilibrium conditions between the beams and the joints. Then, the globalmode shapes and
their orthogonality relations are used to obtain an explicit set of reduced-order nonlinear ordinary differential
equations(ODEs) of motion for the flexible structure with nonlinear joints. A flexible structure composed of
4 beams and nonlinear joints is given as an example to illustrate the application of the modelling approach
proposed. And a comparison between the natural frequencies obtained by the proposed approach and those
from the finite element method is given to verify the validity of the derived model. Through the nonlinear
ODEs obtained by the Galerkin truncation of the original dynamic model, a study on the variation in dynamic
responses of the system with different numbers of modes is performed. The results are used to determine
the number of modes taken in nonlinear vibration analysis for certain range of the vibration amplitude of the
external excitation. The dynamic responses of the system with various joint parameters are worked out, which
show that the transmission characteristics of the joints can strongly affect the dynamic behavior of the whole
structure.

Keywords Multi-beam structure · Nonlinear joints · Dynamic modelling · Reduced-order model · Nonlinear
dynamic behavior

1 Introduction

A specific structure composed of multiple flexible beams and flexible joints is widely used in the fields of
aerospace and civil engineering, such as the solar array and large truss structure. Due to the strong nonlinearities
of the joints, complexmicromechanical phenomena under the effect of applied loadingsmay be produced. This
makes the dynamic behavior of the whole structure become more complicated. Therefore, an understanding
of the dynamic characteristics of such systems is essential for their design and control of vibration.

A first step toward investigating the dynamic behavior of these structural systems must be intended to
understand how to describe the relationship between load and deformation in a dynamic model of the joint.
Based on the Hertz contact theory [1–6], the joint can be described as a spring damping system in terms of the
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contact force and deformation. According to the relative velocity of the contact, the geometry of the contact
surface and the properties of the material and the contact duration, many scholars have proposed a variety of
contact force models which have been used to investigate the dynamic behavior of contact and collision in a
mechanical systemwith joint clearance. On the other hand, an alternative approach for establishing a theoretical
model of the joint is to extract themodel parameters fromexperimental data using joint identification techniques
[7–12]. Crawley [8,9] developed a force-state mapping technique to measure the parameters of the joint, where
the force transmitted by the joint is represented as the function of the full mechanical state of the joint.

For these structures with numerous joints, there have been some research on the overall dynamics of the
structure considering the effects of the joints characteristics [13–21]. Bowden [19] formulated the equations
of motion for the three-joint beam model and investigated the effect of three cubic nonlinear stiffness and
linear damping of the joint on the global dynamics of the jointed structures in Ref [14], which shows the
interesting relationship between linear properties of the system, such as resonant-free frequencies and joint
participation, and nonlinear system properties, such as the shape of the backbone curves. The dynamic behavior
of multi-degree-of-freedom flexible jointed structures is then analyzed in Sarkar [18] using a Fourier–Galerkin
algorithm. Further studies on the dynamic formulation of jointed space structures have been presented in
Tomihiko [17] and Zhang et al [21]. For the practical engineering problems, the dynamic analysis of the
structure is usually carried out by the finite element model of the spacecraft structure. Wei and Zheng [20]
investigated the nonlinear vibration of satellites with joint nonlinearities by using an improved frequency
domain method, which is applicable to large-scale and complicated finite element models.

In the case of modelling of complex flexible multi-body structures, the structural complexity and full
coupling result in a model with a great many DOFs and strong nonlinearity, which also bring a challenge for
the design of control laws. In order to derive a low-dimensional model for the flexible structure, an effective
technique for converting the continuous system into an equivalent discrete system is to use the mode functions
[22]. Compared to FEM, the method of using the mode functions to discrete continuous system can greatly
reduce the DOFs of the system, which is very suitable for the controller design. However, the accuracy of
the dynamic model is highly dependent on how truthful the adopted mode functions can represent the real
deformations of the system. For the multi-beam structure connected with flexible joints, due to the interactions
of the beams and flexible joints, it is difficult to select the appropriate mode functions to discretize the system
when using the assumed mode method. Recently, Wei et al [23] proposed an analytical method to obtain
the global mode shapes, which are used to truncate the PDEs of the system to the ODE with a few DOFs.
Through the simulation examples for the manipulator system, it shows that the model derived by this method
has a relatively high accuracy in comparison with those using the assumed mode method. Therefore, for the
multi-beam structure, it is very suitable to use the global modes to obtain the dynamic model of the system,
because the global modes obtained by this method are accurate and can represent the real deformations of the
system.

For the multi-body structure of spacecraft in orbit, the damping and nonlinearity in the joints are much
higher than those produced by other factors such as structural material and geometric large deformations,
which makes that the joints become the dominant sources of damping and nonlinearities of the whole structure
[24]. Meanwhile, the damping and nonlinearity in the joints are not continuously distributed throughout the
whole structure but occur at discrete locations. This brings difficulties to the establishment of the accurate
model of the system. In this paper, according to the nonlinear transmitted torque formulations of the joints,
the joints nonlinearities are introduced into the system by using the equilibrium conditions between the beams
and the joints. Thus, an explicit set of reduced-order nonlinear ODEs are obtained for the multi-beam structure
considering the joints nonlinearities by using the global modes discretization technique. Furthermore, the
reduced-order nonlinear ODEs are put into a form which is convenient for an analytical investigation to predict
nonlinear phenomena exhibited by this structure.

In this article, the natural frequencies and the corresponding global mode shapes of the whole system are
obtained by the method proposed in Refs [23,25–27]. Through the nonlinear transmitted torque formulations
of the joints, the joint nonlinearities are introduced into the system by using the equilibrium conditions between
the beams and the joints. In this way, the global mode shapes and their orthogonality relations are used to
obtain an explicit set of reduced-order nonlinear ODEs of motion for the structure with nonlinear joints. Then,
an application example of such structure is presented to illustrate the use of the presented approach. Based on
the application example, a comparison of the natural frequencies is given to verify the validity of the derived
model. Through the dynamic equations presented in the example, the dynamic responses of the system with
different numbers of modes are studied, and the dynamic responses of the systemwith various joint parameters
are performed to investigate the effect of the nonlinear joints.



Dynamics of a multi-beam structure connected with nonlinear... 1061

2 Dynamic modelling for a flexible structure with nonlinear joints

2.1 Governing equations of motion

Consider the planar motion of a flexible structure that consists of a number of beams and torsional joints, as
shown in Fig. 1. The beams are connected by the torsional joints. The length, mass per unit length, elastic
modulus and area moment of inertia of the i th beam bi are denoted by 2li , ρi , Ei and Ii , respectively. θi is
used to describe the torsional deformation of the i th joint Si . Let (xi , yi ) be the local coordinates of the beam
bi in the vertical plane, with the origin located in the middle of the beam bi .

The Euler–Bernoulli beam theory is used to derive the equation [28] of motion for the i th beam

ρi ẅi + ξi ẇi + Ei Iiw
′′′ ′
i + ηi Ii ẇ

′′′ ′
i = 0, i = 1, 2, . . . , N , (1)

where an overdot denotes partial differentiation with respect to time t , a prime denotes partial differentiation
with respect to xi , wi is the vertical displacement of the i th beam, ξi and ηi are the external and internal
damping coefficient of the i th beam, respectively.

As shown in Fig. 2, the torsional joint is described as a single-degree-of-freedom massless system with
a nonlinear spring and a linear damper. Based on the parameter identification method, the torque transmitted
by the joint can be represented as the function of the instantaneous state of the joint. Then, the nonlinear
transmitted torque formulation [9] of the i th joint can be expressed as

MT
i = ci θ̇i + kLi θi + kNi θ3i + μi sign(θ̇i ), (2)

where the first three terms of Eq. (2) represent a linear damping, a linear spring and a third-order nonlinear
spring, respectively, and the last term represents Coulomb friction. ci , kLi , kNi and μi are linear damping
coefficient, linear spring stiffness coefficient, third-order spring stiffness coefficient and Coulomb friction
torque of the i th joint Si , respectively.

To complete the formulation for the boundary value problem of the system, one must specify the matching
conditions at the joints S1, S2, . . . , SN−1 and the boundary conditions at the free ends A and B. As shown in
Fig. 3a, the geometric matching conditions at the joint S j ( j = 1, 2, . . . , N − 1) can be written as

w j (l j , t) = w j+1(−l j+1, t), (3)

w′
j (l j , t) + θ j = w′

j+1(−l j+1, t). (4)

As shown in Fig. 3b, the torsional joint S j is subjected to the shear forces and bending moments of the beams
b j and b j+1, respectively. The force and moment matching conditions at the joint S j are

E j I jw
′′′
j (l j , t) = E j+1 I j+1w

′′′
j+1(−l j+1, t), (5)

E j I jw
′′
j (l j , t) = MT

j = E j+1 I j+1w
′′
j+1(−l j+1, t). (6)

Fig. 1 Schematic of the flexible structure connected with nonlinear joints

Fig. 2 Schematic of the joint model
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Fig. 3 Schematic of the a geometric and b force matching conditions at the torsional joint; w̃ j = w j (l j , t), w̃ j+1 =
w j+1(−l j+1, t), w̃′

j = w′
j (l j , t), w̃

′
j+1 = w′

j+1(−l j+1, t), θ j describes the torsional deformation of the j-th torsional joint,
Q j and Q j+1 are the shear forces acting on the left and right sides of the j-th torsional joint, Q j = E j I jw′′′

j (l j , t), Q j+1 =
E j+1 I j+1w

′′′
j+1(−l j+1, t), Mj and Mj+1 are the bending moments acting on the left and right sides of the j-th torsional joint,

MT
j =Mj = E j I jw′′

j (l j , t), M
T
j = Mj+1 = E j+1 I j+1w

′′
j+1(−l j+1, t)

The boundary conditions at A and B are

A : E1 I1w
′′′
1 (−l1, t) = 0, E1 I1w

′′
1(−l1, t) = 0, (7)

B : EN INw′′′
N (lN , t) = 0, EN INw′′

N (lN , t) = 0. (8)

2.2 Determination of natural frequencies and global mode shapes

In order to obtain a low-dimensional dynamic model, it is necessary to study the eigenvalue problem of the
system to obtain the globalmode shapes. Therefore, it is assumed that the displacements of the flexible structure
are separable in space and time to solve the eigenvalue problem of the system. Let

wi (xi , t) = ϕi (xi )e
jωt , θi = �i e

jωt , (9)

whereω is an unknownconstant corresponding to the natural frequency of the system. Substituting the separable
solutions given in Eq. (9) into Eq. (1) without damping yields

Ei Iiϕ
′′′ ′

i (xi ) − ω2ρiϕi (xi ) = 0, i = 1, 2, . . . , N . (10)

The solutions of Eq. (10) can be written as

ϕi (xi ) = Ai cos(βi xi ) + Bi sin(βi xi ) + Ci cosh(βi xi ) + Di sinh(βi xi ), xi ∈ [−li , li ], (11)

where βi =
(

ρiω
2

Ei Ii

)1/4
. Let

� i = [
Ai Bi Ci Di �i

]
, � = [

�1 �2 · · · �N
]T

. (12)

Substituting Eq. (11) into the linearized matching conditions (3)–(6) and boundary conditions in (7) and (8)
yields

H(ω)� = 0, (13)

where the matrix H(ω) ∈ R(5N−1)×(5N−1).
The positive roots of the frequency equation det(H(ω)) = 0, denoted in ascending order by ω 1, ω 2, · · · ,

are the natural frequencies of the linearized dynamic model of the structure. The eigenvector �(s), where
s = 1, 2, . . ., corresponding to the natural frequency ωs can be obtained by Eq. (13). Once the natural
frequency ωs and the corresponding vector �(s) are obtained, the sth mode shapes for the flexible structure
can be determined by Eq. (11).
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2.3 Orthogonality of the global mode shapes

The global mode shapes associated with the two distinct eigenvalues ωr and ωs are denoted by φr (x) and
φs(x), respectively, where

φr (x) = [
ϕr
1 ϕr

2 · · · ϕr
N

]T
, r = 1, 2, . . . . (14)

By Eq. (10), one has

Ei Iiϕ
r ′′′ ′
i (xi ) = ω2

r ρiϕ
r
i (xi ). (15)

Then, multiply Eq. (15) by ϕs
i and integrate the resulting equations over the domain −li ≤ xi ≤ li for the i th

beam, and add the resulting equations to get

N∑
i=1

∫ li

−li
Ei Iiϕ

r ′′′ ′
i (xi )ϕ

s
i (xi )dxi = ω2

r

N∑
i=1

∫ li

−li
ρiϕ

r
i (xi )ϕ

s
i (xi )dxi . (16)

Integrating Eq. (16) by parts, using the matching and boundary conditions in Eqs. (3)∼(8), yields

N∑
i=1

∫ li

−li
Ei Iiϕ

r ′′′ ′
i (xi )ϕ

s
i (xi )dxi =

N∑
i=1

∫ li

−li
Ei Iiϕ

r ′′
i (xi )ϕ

s′′
i (xi )dxi +

N−1∑
i=1

kLi �r
i �

s
i . (17)

Substituting Eq. (17) into the left-hand side of Eq. (16) yields

ω2
r

N∑
i=1

∫ li

−li
ρiϕ

r
i (xi )ϕ

s
i (xi )dxi =

N∑
i=1

∫ li

−li
Ei Iiϕ

r ′′
i (xi )ϕ

s′′
i (xi )dxi +

N−1∑
i=1

kLi �r
i �

s
i . (18)

Exchanging the superscripts s and r in Eq. (18) yields

ω2
s

N∑
i=1

∫ li

−li
ρiϕ

r
i (xi )ϕ

s
i (xi )dxi =

N∑
i=1

∫ li

−li
Ei Iiϕ

r ′′
i (xi )ϕ

s′′
i (xi )dxi +

N−1∑
i=1

kLi �r
i �

s
i . (19)

Subtracting Eq. (19) from Eq. (18) yields

(ω2
r − ω2

s )

N∑
i=1

∫ li

−li
ρiϕ

r
i (xi )ϕ

s
i (xi )dxi = 0. (20)

From Eq. (20), the first orthogonality relation can be obtained

N∑
i=1

∫ li

−li
ρiϕ

r
i (xi )ϕ

s
i (xi )dxi = Msδrs, (21)

whereMs is a positive constant and δrs is theKronecker delta.UsingEqs. (18) and (21), the secondorthogonality
relation can be obtained

N∑
i=1

∫ li

−li
Ei Iiϕ

r ′′
i (xi )ϕ

s′′
i (xi )dxi +

N−1∑
i=1

kLi �r
i �

s
i = Ksδrs, (22)

where Ks is a positive constant.
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2.4 Dynamic model with multi-DOF

Applying the Galerkin procedure to Eqs. (1) and (2), the reduced-order nonlinear ODEs are obtained for the
system. By using the first n global mode shapes, the displacements of the system can be written as

wi (xi , t) =
n∑
j=1

ϕ
j
i (xi )q j (t), θi =

n∑
j=1

�
j
i q j (t), (23)

where q j (t) is a modal coordinate.
Substituting Eq. (23) into Eqs. (1) and (2) yields

n∑
j=1

ρiϕ
j
i (xi )q̈ j +

n∑
j=1

ξiϕ
j
i (xi )q̇ j+

n∑
j=1

Ei Iiϕ
j ′′′ ′
i (xi )q j+

n∑
j=1

ηi Iiϕ
j ′′′ ′
i (xi )q̇ j = 0, (24)

MT
i =

n∑
j=1

ci�
j
i q̇ j +

n∑
j=1

kLi �
j
i q j +

n∑
j=1

n∑
k=1

n∑
r=1

kNi �
j
i �

k
i �

r
i q jqkqr +

n∑
j=1

μi sign(�
j
i q̇ j ). (25)

Multiplying Eq. (24) by ϕs
i , integrating the resulting equations over the domain−li ≤ xi ≤ li for the i th beam,

adding all of the resulting equations and using the matching and boundary conditions in Eqs. (3)∼(8) and the
orthogonality relations in Eqs. (21) and (22), we have

Msq̈s +
⎡
⎣

N∑
i=1

n∑
j=1

∫ li

−li
ξiϕ

j
i (xi )ϕ

s
i (xi )dxi +

N∑
i=1

n∑
j=1

∫ li

−li
ηi Iiϕ

j ′′′ ′
i (xi )ϕ

s
i (xi )dxi +

N−1∑
i=1

n∑
j=1

ci�
j
i �

s
i

⎤
⎦ q̇ j

+Ksqs +
N−1∑
i=1

n∑
j=1

μi�
s
i sign(�

j
i q̇ j ) +

N−1∑
i=1

n∑
j=1

n∑
k=1

n∑
r=1

kNi �
j
i �

k
i �

r
i �

s
i q jqkqr = 0, s = 1, 2, . . . , n.

(26)

3 Example of application

Now, let us consider the solar array as an example of the multi-beam structure connected with nonlinear
joints, as shown in Fig. 4. The solar array is composed of four solar panels connected by the torsional joints.
Furthermore, the solar array is subjected to the external excitation due to the moving support. For a long solar
array, it is appropriate to model the solar array as an assembly of the beams connected by the torsional joints

Fig. 4 Schematic of the solar array
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Table 1 Values of the parameters of the solar array

Parameter Value

Solar panel mass density ρ (kg/m) 1.64
Solar panel flexural rigidity E I (Nm2) 1493
Solar panel length 2l(m) 1.5
Solar panel external damping ξ(N s/m) 0.03
Solar panel internal damping η(N s/m2) 1.9 × 105

Joint linear stiffness kL (Nm/rad) 2000
Joint third-order stiffness kN (Nm/rad3) 1 × 107

Joint linear damping c(Nms/rad) 30
Joint Coulomb friction μ(Nm) 0.2

[29]. In this example, the system is subjected to an excitation due to the moving support, as shown in Fig. 4b.
Assume that the solar panels have the same dimensions of the cross section and material property. Similarly,
the joints have the same geometric parameter and material property. For the sake of convenience, the subscripts
of the corresponding symbols are removed, for example, ρi = ρ, kLi = kL . The physical parameters of the
array are listed in Table 1.

As shown in Fig. 4, the governing equation of motion for the i th beams is

ρẅi + ξẇi + E Iw′′′ ′
i + ηI ˙w′′′ ′

i = ρẅs(t), i = 1, 2, 3, 4, (27)

where ws(t) is the displacement of the support.
Based on the dynamic modelling approach developed here, the nonlinear ODEs of motion for the system

are obtained as follows:

q̈s + ω2
s qs + 2αsωs q̇s + γs q̇ j + b j

s sign(�
j
i q̇ j ) + d jkr

s q jqkqr = fs(t), s = 1, 2, . . . , n, (28)

where αs is the modal damping ratio of the solar panels, γs is the damping of the joints, and b j
s is the Coulomb

friction torque of the joints. The relevant terms in Eq. (28) are given in “Appendix A”.

4 Results and discussion

In this section, a comparison of the natural frequencies of the application example, which are obtained from the
presented approach and the commercial software ANSYS, is performed. Then, the dynamic responses of the
system with different numbers of modes are discussed, and the dynamic responses of the system with various
joint parameters are given to investigate the effect of the nonlinear joints.

4.1 Model validation

In order to verify the validity of the model as shown in Fig. 4, the first eight natural frequencies of the solar
array with different joint linear stiffness are calculated by the proposed approach and compared with those
obtained from the ANSYS, as shown in Table 2. Denote the dimensionless stiffness parameter of the joint by
KL , which defines the ratio between the linear torsional stiffness and the flexural rigidity of the solar panel, as

KL = kLl

E I
. (29)

The first eight natural frequencies obtained from the proposed approach and ANSYS for different KL are listed
in Table 2. It can be seen from Table 2 that the results from the proposed approach are in good agreement
with those from the ANSYS. The maximum relative error between the natural frequencies from the current
and finite element methods, defined by

(∥∥ωs − ωANSYS
s

∥∥)
/ωANSYS

s , is 3.85%. This shows the correctness of
the model obtained by this paper. Furthermore, Table 2 reveals that by increasing KL , the natural frequencies
increase, as expected.
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Table 2 First eight natural frequencies of the solar array ω (Hz)

Mode KL = 0.2 KL = 1 KL = 5 KL = ∝
ANSYS Eq. (13) ANSYS Eq. (13) ANSYS Eq. (13) ANSYS Eq. (13)

1 0.265 0.273 0.386 0.398 0.438 0.452 0.474 0.470
2 1.653 1.710 2.375 2.473 2.727 2.823 2.970 2.940
3 4.609 4.773 6.631 6.869 7.593 7.877 8.338 8.231
4 8.571 8.901 12.66 13.09 14.74 15.28 16.41 16.13
5 23.45 23.10 24.78 24.71 25.90 26.03 27.27 26.67
6 31.68 31.32 34.91 35.33 37.51 38.43 40.96 39.83
7 42.79 42.43 47.92 48.69 51.92 53.44 57.52 55.63
8 53.39 53.23 61.58 63.15 68.05 70.50 76.98 74.67

Fig. 5 Frequency-response curves of the solar array tip with different numbers of modes, w0 = 0.004m

4.2 Dynamic responses

To determine the number of modes taken for nonlinear vibration analysis, the forced harmonic responses of
the system with different numbers of modes are worked out numerically, as shown in Figs. 5, 6, 7 and 8. The
vertical displacement of the support is assumed as ws(t) = w0 cost . The first four natural frequencies of the
system are ω1 = 0.398 Hz, ω2 = 2.475 Hz, ω3 = 6.873 Hz and ω4 = 13.10 Hz. The results are obtained
from the cases with increasing  and w0. In these figures, the initial conditions for the first point are assumed
to be zero, and some steady-state response data at the current  and w0 are used as the initial conditions for
the next  and w0, respectively.

When the external excitation frequency  varies from 0.3 to 0.55 Hz, the frequency response curves of the
solar array tip with different numbers ofmodes forw0 = 0.004, 0.01 and 0.012m are shown in Figs. 5, 6 and 7,
respectively. From these figures, it can be seen clearly that as w0 is increased, the jump phenomenon is more
obvious. Although the external excitation frequency is much smaller than the higher-order natural frequency
of the system, the higher-order modes are needed to ensure the accuracy of the response of the system in the
case of large vibration amplitude. This can be observed from the Figs. 6 and 7. For instance, the first two and
three modes should be taken in dynamic models for w0 = 0.01 and 0.012m, respectively, so that the accuracy
of nonlinear vibration analysis can be satisfied. It can be concluded that with the increase in the amplitude of
the excitation, due to the effects of the joints nonlinearities, the contribution of the higher-order modes in the
response of the system is increased. However, in the case of small vibration amplitude, the contribution of the
higher-order modes in the response of the system can be ignored when the external excitation frequency is
near the first linear natural frequency of the system. This can be observed from Fig. 5. At this time, the first
mode is enough for the dynamic model, which makes that the dynamic equation presented in this paper is more
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Fig. 6 Frequency-response curves of the solar array tip with different numbers of modes, w0 = 0.01m

Fig. 7 Frequency-response curves of the solar array tip with different numbers of modes, w0 = 0.012m

convenient for solving the system with the analytic method, such as perturbation techniques. From Figs. 5, 6
and 7, it is concluded that how many modes should be taken for nonlinear vibration analysis depends on the
amplitude of the excitation.

When the amplitude of the excitation w0 is varied from 0.001 to 0.02m, the force-response curves of the
solar array tip with different numbers of modes for  = 0.42Hz are shown in Fig. 8. From Fig. 8, a similar
jump phenomenon can be observed. With the increase in the amplitude of the excitation, the difference of the
response curves with different numbers of modes becomes larger. All these clearly show that the contribution
of the higher-order modes in the response of the system is closely related to the vibration amplitude of the
system. This can also be observed from Figs. 5, 6 and 7.

From Figs. 5, 6, 7 and 8, it is found that when the vibration amplitude of the system is relatively large,
more modes need to be taken to meet the requirements of accuracy. Therefore, in the next study on the effect
of the joints nonlinearities on the system, the first three modes are selected to calculate the dynamic responses
of the system. The forced harmonic responses of the system with various joint parameters are worked out
numerically, as shown in Figs. 9, 10, 11, 12, 13 and 14. In these figures, the initial conditions for the first point
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Fig. 8 Force-response curves of the solar array tip with different numbers of modes,  = 0.42Hz

Fig. 9 Frequency-response curves of the solar array tip for various values of kN , w0 = 0.01m

are assumed to be zero, and some steady-state response data at the current  and w0 are used as the initial
conditions for the next  and w0, respectively.

When  varies from 0.3 to 0.55Hz, the response curves of the solar array tip for various values of kN are
shown in Fig. 9. From Fig. 9, it can be observed that with the increase in the nonlinear stiffness of the joints,
the jump occurs at a higher frequency. In addition, the jump phenomenon is more apparent for a larger kN .

The response curves for various values of kN are presented with the frequency of the excitation held fixed
 = 0.42Hz when the amplitude of the excitation w0 is varied from 0.001 to 0.02m as shown in Fig. 10. It
is found that with the increase in the nonlinear stiffness of the joints, the jump occurs at a lower w0, and the
vibration amplitude of the system decreases.

The frequency-response and force-response curves of the solar array tip for various values of c are shown in
Figs. 11 and 12, respectively. From Figs. 11 and 12, it can be observed that in the case of small damping of the
joints, obvious jump phenomenon takes place. With the increase in the damping of the joints, this phenomenon
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Fig. 10 Force-response curves of the solar array tip for various values of kN ,  = 0.42Hz

Fig. 11 Frequency-response curves of the solar array tip for various values of c, w0 = 0.01m

gradually diminished until disappeared. Meanwhile, it is clear that the damping of the joints can reduce the
vibration amplitude of the system.

The frequency-response and force-response curves of the solar array tip for various values of μ are shown
in Figs. 13 and 14, respectively. From Figs. 13 and 14, it is also found that the friction of the joints can reduce
the vibration amplitude of the system. With the increase in the friction of the joints, the jump phenomenon
becomes less obvious, and the hysteresis loop becomes smaller as the frequency is increased and decreased.
From Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14, it is concluded that the transmission characteristics of the joints
have a great influence on the dynamic behavior of the whole structure.

It is well known that the spacecraft with the solar array is usually extremely flexible and has low-frequency
fundamental vibration modes. These modes might be excited in a variety of tasks such as slewing and pointing
maneuvers. Thus, damping and friction are simple but effective ways to suppress the induced vibrations.
However, in the space environment, solar panels do not provide enough damping to quickly suppress the
vibration caused by the maneuvers. Therefore, the overall damping and friction contribution from the joints
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Fig. 12 Force-response curves of the solar array tip for various values of c,  = 0.42Hz

Fig. 13 Frequency-response curves of the solar array tip for various values of μ, w0 = 0.01m

are very important for suppressing the vibration of the system. In order to investigate the role of the joints in
suppressing vibration of the system, the vibration responses of the solar array are carried out. Assume that the
external excitation acceleration is

ẅs(t) =
{
a, 0 ≤ t ≤ T,
0, t > T .

(30)

The time history of the external excitation acceleration with T = 200 s, a = 0.2m/s2 is considered as
shown in Fig. 15. When the external and internal damping of the solar panel are selected as ξ = 0.03N s/m
and η = 1.9 × 105N s/m2 as shown in Table 1, the first four modal damping ratios of the solar panel are
α1 = 0.005, α2 = 0.0059, α3 = 0.0146 and α4 = 0.0279, respectively. The vibration responses of the solar
array tip with different numbers of modes are shown in Fig. 16. From Fig. 16, it can be seen that the model
for the first one mode has been unable to calculate the system response accurately, and at least the first two
modes should be taken to ensure the accuracy of the system response.
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Fig. 14 Force-response curves of the solar array tip for various values of μ,  = 0.42Hz

Fig. 15 Time history of external excitation acceleration

Fig. 16 Responses of the solar array tip with different numbers of modes
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Fig. 17 Responses of the solar array tip for various values of c

Fig. 18 Responses of the solar array tip for various values of μ

The vibration responses of the solar array tip with the first three modes for various values of c and μ
are shown in Figs. 17 and 18, respectively. In Fig. 17, the Coulomb friction torque of the joint is selected as
μ = 0Nm. In Fig. 18, the damping of the joint is selected as c = 0Nm s/rad. From Figs. 17 and 18, it is clear
that with the increase in the damping and friction of the joint, the time of vibration suppression is reduced. In
Fig. 17, even if the damping of the joint is selected as c = 100Nm s/rad, it also requires 100s to suppress the
vibration of the system without the friction of the joint. However, it only needs 14s to suppress the vibration
of the system when the friction of the joint is selected as μ = 0.3Nm as shown in Fig. 18. This shows that
the friction of the joint is very effective to suppress the vibration of the system.

5 Conclusions

A dynamic modelling approach has been proposed to obtain a reduced-order analytical model for a multi-beam
structure considering the nonlinearities in the joints by using the global modes discretization technique. The
model formulation presented in this paper is a general one, which can be exploited to obtain an explicit set of
nonlinear ODEs for such structures with any number of beams and nonlinear joints. Moreover, the nonlinear
dynamic model derived here is not only convenient for solving the system with the analytic method, such as
perturbation techniques, but also is preferred to be used for real-time control because fewer DOFs mean less
computation time.

Based on the dynamic modelling approach, the flexible structure with 4 beams and nonlinear joints has
been presented as an example. Then, a comparison of the natural frequencies has been given to verify the
validity of the derived model. Through the nonlinear ODEs of the model, the dynamic responses of the system
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with different numbers of modes have been obtained, and the dynamic responses of the system with various
joint parameters have been discussed. Two main conclusions are summarized as follows:

(1) With the increase in the amplitude of the external excitation, due to the effects of the joints nonlinearities,
the contribution of the higher-order modes in the response of the system is increased. In the case of
large vibration amplitude, the higher-order modes are needed to ensure the accuracy of the response
of the system although the external excitation frequency is much smaller than the higher-order natural
frequency of the system. In the case of small vibration amplitude, the dynamic equation for the first mode
is enough for nonlinear vibration analysis of the system when the external excitation frequency is near
the first natural frequency of the system.

(2) The damping and friction of the joints can increase the stability of the space structure and restrain the
vibration of the structure, which are very helpful for the design of vibration sensitive structure.
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and 11732005.

Appendix A

The relevant terms in Eq. (28)
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