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Abstract Damage detection in uniform structures has been studied in numerous previous researches. However,
damage detection in non-uniform structures is less studied. In this paper, a damage detection algorithm for
identifying rectangular notch parameters in a stepped waveguide using Lambwaves is presented. The proposed
algorithm is based on mode conversion and scattering phenomena because of interaction of Lamb wave modes
with defects. The analysis is divided into two steps: notch localization and notch geometry detection. The
main advantage of this method is its ability to detect all of the notch parameters in a waveguide with arbitrary
number of step discontinuities. The method is applied to a numerical example and the results show that it can
successfully identify the notch location, depth, and width in a multi-step plate.

Keywords Damage identification · Lamb waves · Non-uniform waveguide · Scattering coefficient · Mode
conversion

1 Introduction

Structural health monitoring (SHM) using Lamb waves has received significant attention because of their
numerous advantages. One of their advantages is that they can be easily generated into a structure using small
pieces of piezoelectric ceramics. Furthermore, Lamb waves are advantageous for global inspection. Someone
can inspect the health of a large area of a structure using a limited number of sensors and actuators without
moving them along the structure. Therefore, an in situ inspection would be possible [1,2]. The purpose of
SHM projects is not only detection of large defects and structural failures, but also identification of damages
in their early stage of growth before they could reach a dangerous level for the structure [3,4].

A. Ghadami (B) · M. Behzad
Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
E-mail: a_ghadami@alum.sharif.edu

M. Behzad
E-mail: m_behzad@sharif.edu

H. R. Mirdamadi
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
E-mail: hrmirdamadi@cc.iut.ac.ir

Present Address
A. Ghadami
Department of Mechanical Engineering, University of Michigan, Ann Arbor, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-018-1355-0&domain=pdf


1010 A. Ghadami et al.

Employing Lamb waves for SHM in simple geometry structures is feasible. Beams and plates with a
constant thickness are examples of such structures. In most of the previous damage detection studies, damage
detection problem is considered in simple uniform waveguides [5–10].

Although there are also studies on damage detection in non-uniform waveguides [11–13], no algorithm
has been presented for detection of all damage parameters (location and geometry) in such structures. As most
of the structures in real applications are non-uniform, it is necessary to develop methods capable of detecting
damages in more complex waveguides.

In this article, we propose a method for identifying notch parameters as damage in a stepped plate with an
arbitrary number of symmetrical thickness variations using Lamb wave propagation. The proposed algorithm
is an extension of damage detection algorithm presented by the authors for damage detection in uniform
plates [14]. In the authors’ previous paper [14], a damage detection approach based on scattering coefficients in
simple uniformwaveguideswas presented. In non-uniformwaveguides, however, damage identification ismore
challenging. First, Lamb waves interact with discontinuities in the waveguide. This interaction causes several
reflections and transmissions in the waveguide. Moreover, mode conversion occurs as a result of interaction of
Lamb waves with discontinuities and defects in the waveguide [15]. This is the main challenge in developing a
method for health monitoring of such structures since the interpretation of signals received by the sensors is not
feasible, especially when there exist several damages and discontinuities in thewaveguide. Therefore, choosing
proper sensor location and damage detection scheme is necessary to reduce this complexity. Another challenge
is to relate sensor measurements to damage parameters considering the effect of discontinuities and damages
on the incident wave. In non-uniform waveguides with thickness variation, one may not identify damage
intensity simply comparing the wave amplitudes at different locations. Hence, the advantage of employing the
scattering coefficients for damage detection is more significant. Furthermore, the effect of thickness variations
on the wave speed must be considered for both damage localization and quantification.

To address the challenges, a damage detection method based on Lamb wave mode power and scattering
coefficients is developed. In this method, a Lamb wave mode is generated into the structure and the power loss
due to damage is computed from the measurements collected by sensors, considering the effect of damage,
mode conversions, discontinuities and wave attenuation on the power of Lamb wave. The proposed algorithm
predicts location and dimensions of the existing notch (damage) in the structure.

To relate the computed power loss of Lamb waves to damage parameters, we use the method and results
presented by Kim and Roh [16,17]. They have introduced scattering coefficients for a rectangular notch, which
identifies reflection and transmission coefficients of Lamb waves in interaction with notch considering mode
conversion phenomenon.More details about damage detectionmethod and scattering coefficients are discussed
in the following sections.

Figure 1 shows the schematic of the problem considered in this study. The proposed method allows a
user to identify not only the notch location, but also its geometry (depth and width) as shown in Fig. 1. The
fundamentals of this approach can be developed for health monitoring of other types of non-uniform structures
and also other types of damages.

2 Lamb waves

Lamb wave particle displacement in structures is superposition of guided longitudinal and transverse shear
waves. They can propagate in symmetric, antisymmetric or a combination of symmetric and antisymmetric

Fig. 1 Schematic of considered damage detection problem and rectangular notch geometry in a waveguide
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Fig. 2 a Phase velocity and b group velocity dispersion curve of aluminum plate with Young’s modulus E = 71GPa, density
ρ = 2.7 g cm−3, Poisson’s ratio υ = 0.33

modes.To study theLambwavemodes, theRayleigh–Lambequation is used [18].Various numerical techniques
are introduced to obtain dispersion curves of differentwaveguides [1,19]. In this paper, an aluminumwaveguide
is considered. The phase velocity dispersion curve of an aluminum plate is shown in Fig. 2a. According to
this figure, several modes can propagate in the waveguide at high frequencies. Moreover, complicated mode
conversion occurs between these modes due to interaction with defects and discontinuities (Sect. 3). The
multiple-mode characteristic of Lamb waves results in complex signal and makes the signal interpretation
complicated for damage detection purposes [20,21]. To overcome this challenge, a lot of researchers use
lower frequency excitations for damage identification (e.g., [6–8,21–24]). At low frequency excitations, only
the fundamental modes (S0 and A0) can propagate in the waveguide. Although the fundamental modes are
long wave modes and may have not enough sensitivity to small defects, signal interpretation would be easier
when only fundamental modes exist in the waveguide. The symmetric S0 mode is faster and has much lower
attenuation than the antisymmetric A0 mode. A0 mode is considered more sensitive to damage; however, there
are cases when the S0 mode has advantages over the A0 mode in detecting the damage [25–27]. In this paper,
we select the central frequency below the cutoff frequency of the A1 mode so that only the fundamental modes
are propagated in the structure.

In the practical excitation of Lamb waves into the structure, a group of frequencies exist in the generated
wave. In this case, one should consider the group velocity of Lamb waves. The group velocity is the velocity
that is used for damage localization purposes, and its dispersion curve for an aluminum plate is shown in
Fig. 2b.

According to Fig. 2 and in a steppedwaveguide, the velocity is different at each section of thewaveguide due
to the thickness variations. This change in propagation velocity is important in damage localization procedure.
Furthermore, the thickness variation is considered in computing the wave power, which is the basis of the
proposed damage detection algorithm.

3 Interaction of Lamb waves with defects and discontinuities

In order to study the damage detection problem in non-uniform structures, one should consider the interaction
of generated wave with defects and discontinuities in the waveguide. Interaction of ultrasonic-guided waves
with defects and discontinuities has been vastly studied by researchers (Cho [15], Puthillath et al [28], Alleyne
and Cawley [29,30], Lowe et al. [31], Gunavan and Hirose [32], Kim and Roh [16,17], to name a few), and
more important theory and concepts can be found in the books by Achenbach [18], Auld [33] and Graff [34].
The results of these studies provide valuable information which can be used for developing damage detection
algorithms.

Wave scattering and mode conversion are two main consequences of the wave interaction with defects
and discontinuities. In the following subsections, we describe the concepts of mode conversion and scattering
coefficients which form the basis of our damage detection algorithm.
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Fig. 3 Scattering of Lamb wave modes by interaction with a crack

3.1 Mode conversion and scattering coefficients

Mode conversion phenomenon of Lamb waves is defined as energy transformation from one Lamb wave mode
to another [2]. In the study of mode conversion in a waveguide, two issues are important to be considered:
the geometry of waveguide and the existing damages in the structures. Both of these factors can cause mode
conversion in the structure. If the waveguide geometry is symmetric, the mode conversion is only possible
in the same mode group and it could not occur between symmetric and antisymmetric Lamb wave modes.
However, if the waveguide is asymmetric, the mode conversion would also occur between mode families.

On the other hand, defects in a waveguide could cause mode conversions [35]. The defects in structures
occur without any control and they usually make the geometry of the waveguide asymmetric. A good example
is a transverse crack in a structure. The presence of cracks and notches causes mode conversion in the structure
both in the mode families and between them. According to the above explanations, it can be inferred that
if in a symmetric waveguide, the mode conversion between symmetric and antisymmetric modes occurs, a
defect should be present in the structure. This point can be used in damage detection for simple structures,
like uniform beams and plates. For example, the mode conversion phenomenon is shown in Fig. 3, which is
due to the presence of a crack in the waveguide. In this figure, the incident wave is S0 and it is assumed that
the excitation frequency is selected such that only the fundamental modes (S0 and A0) can be propagated in
the waveguide. Although the incident wave is S0, the reflected and transmitted waves contain both S0 and A0
modes. According to the principle of conservation of energy, the sum of reflected and transmitted wave powers
is equal to the power of incident wave.

It is worthmentioning that it is assumed themode conversion takes place only between fundamental modes,
although according to theworks presented byAchenbach et al [36–38], appearing of non-monochromaticwaves
is also possible.

Consider a multi-step plate as shown in Fig. 1. As the geometry of the structure is symmetric, no mode
conversion occurs because of interaction of Lamb modes with discontinuities. Therefore, if we generate S0 or
A0 mode into the structure at low frequencies and mode conversion is observed from the signals collected by
sensors, we can expect a defect in the structure. This fact is used as the basis of our proposed damage detection
approach in this paper.

3.2 Scattering coefficients

The reflected and transmitted coefficients of Lamb waves can be defined as the ratio of scattered amplitudes
of reflected and transmitted modes to the amplitude of incident mode. If the power of Lamb modes be used
instead of their amplitude, the scattering coefficients would be independent of the measurement direction of
mode amplitudes. Therefore, more general coefficients could be obtained. Several studies have been done on
computing the scattering coefficients [16,17,30–32].

In this paper, the method presented by Kim and Roh [17] is used to compute the scattering coefficients.
The reflected/ transmitted coefficients are defined as the square root of the ratio of reflected/ transmitted
mode power to the incident mode power. Using the method presented in [17], the scattering coefficients of
Lamb waves, caused by a rectangular notch, are computed (see Appendix for more details). Note that since in
the proposed damage detection method only the transmission coefficients are needed, we do not discuss the
reflection coefficients in the following sections to avoid complexity.

For example, the scattering coefficient diagrams obtained for a 5mm aluminum plate are shown in Fig. 4
for the excitation frequency of 100kHz. The notch depth is considered from 0 to 50% of the plate thickness,
percentage of d/H , and the notch width (g) is considered to be 0–10mm. As long as in this paper we use
transmission coefficients, only the scattering diagrams for the transmission coefficients are presented here. The
diagrams are computed for both A0 and S0 incident modes. In the scattering coefficients, the first character,
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Fig. 4 Scattering coefficient diagrams for an 5mm aluminum plate at 100kHz excitation frequency, a TSS, b TSA, c TAS, d
TAA

i.e., T, shows the transmission coefficient. The second character represents the incident mode to the notch. “S”
represents S0 and “A” represents A0 mode. Finally, the third character represents the scattered mode under
consideration. For example, TSA means the transmission coefficient of A0 mode when the incident mode to
the notch is S0. These scattering diagrams form the basis for notch geometry identification algorithm and will
be used in the related section.

Note that the scattering coefficients depend on the thickness of the structure. As it will be discussed
in proposed damage detection method, it is necessary to compute these scattering diagrams for all of the
thicknesses we have in our multi-step structure. However, since the general shape of the diagrams are the same
and are slightly different for the thicknesses which are used in the numerical examples, the scattering diagrams
for the other thicknesses are not shown here.

4 Damage detection approach

In this section, we propose a general damage detection approach for a plate with arbitrary number of step
discontinuities. There are two main challenges in developing this SHM algorithm for this problem where the
previous common methods cannot be employed. These challenges are as follows:

– Since there are several discontinuities in the waveguide, the wave modes will be reflected at the discontinu-
ities and the sensors receive a lot of wave packets because of these successive reflections and transmissions.
This makes the signal interpretation difficult.

– The algorithm should be able to predict not only the location of the notch, but also its intensity, i.e., its
depth and width (Fig. 1).

To overcome these challenges, we propose a method which is based on mode conversion and Lamb waves
power. First, we need to choose an appropriate sensor placement to solve the main difficulties which are related
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to signal interpretation. There are two common methods for damage detection: pulse-echo and pitch-catch [2].
The pulse-echo method cannot be used in this case since the effect of damage cannot be separated from the
reflections. Moreover, the power of reflected wave from damage is much less than that of transmitted wave
and makes the signal interpretation difficult, specially for small defects.

In this study, the pitch-catch sensor placement is employed. Two sensors are placed on the structure at the
beginning and the end of the inspection area as shown in Fig. 1. The first sensor is used only to measure the
power of generated incident Lamb wave mode (as the reference value) at the beginning of the inspection zone,
and the second sensor measures the power of transmitted wave going away from the inspection area. Optimal
selection of sensor location plays an important role in feasibility of signal interpretation and damage detection
procedure. For example, one should minimize the effect of multiple reflections from the plate boundaries
on the measurements. Furthermore, analyzing the regions where non-propagating and trapped modes exist is
also of great importance in sensor placement. When a Lamb wave is scattered by a discontinuity/defect, both
propagating and non-propagatingmodes are generated into the structure. The number of generated propagating
modes is finite and depends on the value of wave frequency relative to the cutoff frequency (Fig. 2) [39].
However, the number of generated non-propagating modes is infinite [39]. In this study, the sensor locations
are selected 200mm away from the edges and discontinuities where the effect of non-propagatingmodes on the
measurements can be neglected. The optimal sensor locations can be identified more accurately using dynamic
Saint Venant’s principle (DSVP) [40,41], which determines the distance beyond which edge effects could be
ignored [42]. Numerous theoretical and experimental studies have been devoted to examination of dynamic
Saint Venant’s principle, and have confirmed application of such phenomenon in various engineering situations
including elastic wave propagation in structures (see [43] for a review). For instance, He et al. [42] studied
the end effect in cylindrical waveguides using dynamic Saint-Venant’s principle where the end effects zone is
approximated 2.2 times of thewaveguide radius.Diligent et al. [44]measured the excitation of evanescentwaves
generated at a free end of a plate upon reflection of the first symmetrical mode, and concluded that evanescent
modes can be neglected beyond distance of five times the plate’s width. This approach is advantageous in
identification of optimal sensor locations for structural health monitoring purposes considering the effect of
edges and discontinuities in structures.

In order to detect the notch geometry in the structure, we use the idea introduced in our previous study [15]
and extend that for the multi-step plate. The idea is based on mode conversion phenomenon, scattering coef-
ficients and power loss in Lamb wave modes.

The damage detection approach is divided into two parts: damage localization and damage geometry
identification. The proposed approaches for each of these problems are introduced in the following sections.

4.1 Notch localization procedure

Detection of damage location is the first step in a damage detection plan. As it will be discussed later, damage
location also affects the accuracy of the notch geometry detection. Therefore, it is important to localize
the damage with high accuracy. In this article, a damage localization algorithm based on mode conversion
phenomenon is proposed.

Consider a plate with n − 1 symmetric discontinuity as shown in Fig. 1. Also suppose that there is a
notch at the i th part of this plate. When an incident mode (A0/S0) is excited into the plate, the interaction of
incident mode with the notch causes mode conversion. Therefore, both A0 and S0 modes will be observed by
the sensors. Since the geometry of the considered structure is symmetric, mode conversion can be considered
as a sign of existence of damage in the structure. Using the difference between time arrivals of S0 and A0
modes, someone can compute the anticipated time difference of collected S0 and A0 modes from the sensor
as follows:

�t = tA − tS = di

(
1

VA(i)
− 1

VS(i)

)
+ Li+1

(
1

VA(i+1)
− 1

VS(i+1)

)
+ · · · + Ln

(
1

VA(n)

− 1

VS(n)

)
(1)

where di is the distance of notch to the i th discontinuity, Li is the length of i th step, and Vm(i) represents
the group velocity of mode m in the i th step and can be obtained from Fig. 2b for each thickness. Using this
equation, one can compute the notch localization diagram theoretically. This diagram shows the distance of
notch (damage) from the sensor based on time difference of arrived S0 and A0 modes to the sensor.

For example, consider the plate shown in Fig. 5. This aluminum plate has three steps with the thicknesses
of 6, 5 and 4mm. Using Eq. (1), the damage localization diagram for this plate is computed as shown in Fig. 6.
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Fig. 5 Schematic of considered example for damage localization diagram

Fig. 6 Damage localization diagram for the plate shown in Fig. 7

Note that this plot consists of three lines (one for each step) and the slopes of these lines are different from
each other. Using this plot, one can detect the distance of existing damage from sensor and detect the location
of damage in the waveguide. The detail of this procedure is discussed in the numerical examples.

It is worth mentioning that in practice, the signals can be gathered using piezoelectric patches or a laser
vibrometer. There are several techniques to separate A0 and S0 modes in a signal [35,45–47]. Moreover, note
that the sensor may receive A0 and S0 modes several times because of reflections happening in the waveguide;
however, in the presented approach, we need to use the first arrived A0 and S0 modes to the sensor for the
damage detection purpose. This is because only the first arrived modes are related to the mode conversion
phenomenon and the modes that will arrive later are results of multiple reflections in the waveguide and cannot
be interpreted easily.

4.2 Detection of notch geometry

In SHM plans, it is important to identify the severity of damages in order to determine the remaining life of
the structure. In this section, an algorithm is presented to extract the notch dimensions in a multi-step plate.
The method is based on mode conversion phenomenon and scattering coefficients. This method is developed
in a way that only two sensors are needed for damage detection of whole structure having arbitrary number of
discontinuities.

The basic idea of this method is damage detection based on power of Lamb wave modes and scattering
coefficients. As it was described before, interaction of Lambwavemodes with damage causesmode conversion
phenomenon. The power of each of the reflected and transmittedmodes from the defect is related to its geometry
(Fig. 4). Therefore, the basic idea is to use two sensors before and after the damage and determine the power of
incident, reflected and transmitted modes and scattering coefficients. Hence, these coefficients can be related to
the notch geometry. Now consider the damage detection problem as shown in Fig. 1. Two sensors are used at the
beginning and the end of inspection zone. The power of Lamb wave modes can be computed from the signals
collected by the sensors. However, these powers cannot be used directly for computing scattering coefficients
since there are other issues which cause power loss in the structure. These issues are wave attenuation in the
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Fig. 7 Transmission coefficient from step discontinuity for d1 = 6mm and a S0 mode and b A0 mode

waveguide and power loss due to discontinuities in the structure. If someone neglects these effects, the power
reduction in Lamb modes would be considered only as the effect of damage. This assumption would cause
erratic results in the computation of scattering coefficients, as well as in the geometry identification of the
notch. Hence, someone should omit the effect of wave attenuation and discontinuities from the measurements.
In the following sections, we first discuss the power loss due to discontinuities and wave attenuation. Next, we
introduce the formulation and approach of notch geometry identification based on scattering coefficients.

4.2.1 Transmission coefficients at discontinuities

When an incident wave interacts with the step discontinuity, part of the wave reflects to the first step and part
of that transmits to the next step of the structure. In this case, it is necessary to compute power loss of the wave
because of this change of thickness. We can apply the same procedure described in Sect. 3.1 (Ref. [17]) to
obtain transmission coefficients. For example, these coefficients are computed for a step-down discontinuity
with the thicknesses of 6 and 5mm as shown in Fig. 7. In this case, no mode conversion occurs since the
geometry of the structure is symmetric. Therefore, the reflected and transmitted modes are the same as the
incident mode. Similar graphs can be computed for all of the step discontinuities which exist in the waveguide.

In the damage detection procedure, the transmission coefficient of step discontinuity is shown by Dm
s where

m can be either A0 or S0 mode.

4.2.2 Lamb wave attenuation

The wave attenuation phenomena would decrease the amplitude and power of the wave in a waveguide. Wave
attenuation is the result of the distance a wave would propagate. It is necessary to consider the attenuation
effect in the formulations in order to increase the prediction accuracy. The attenuation of Lambwave amplitude
can be estimated, as follows [48];

A2 = A1e
(−ki�x) (2)

where A1 and A2 are the wave amplitudes at the locations x1 and x2, respectively. �x is the propagation
distance from point x1 to x2. In Eq. (2), ki represents the attenuation coefficient and can be computed using
the following [48];

ki = ωζ

cg
, (3)
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where ω is the excitation frequency, ξ is the damping of the structure and cg is the group velocity of the
wave. As the group velocity of Lamb wave modes are usually different for a single excitation frequency,
their attenuation coefficients would be different, according to Eq. (3). Moreover, for a stepped plate the group
velocity is different in each section of the plate and one should consider this difference in the formulations.

A power decay coefficient is defined for attenuation. According to Eq. (2), we define the power attenuation
coefficient, Dζ , as;

D2
ζ = P2

P1
=

(
A2

A1

)2

= e(−2ki�x), (4)

where Pi is the power of wave at the location xi . This coefficient will be used later to eliminate the effect of
attenuation from the scattering coefficients.

4.2.3 Computation of scattering coefficients using sensors

In order to extract the notch geometry, it is necessary to determine the transmission coefficients of the wave
from the notch. In this section, a formulation is introduced in order to compute the transmission coefficients of
Lambwavemodes and eliminate the effect of step discontinuities and wave attenuation from these coefficients.

Consider a multi-step plate having a notch at i th step as shown in Fig. 1. Furthermore, consider that the
mode α, which can be either S0 or A0, is excited as incident wave. The power of incident mode computed
from sensor1 is shown as Pα

incident. The scattered transmitted modes are collected by sensor2. The power of

received mode β by sensor2 is introduced as Pβ

transmitted . According to the type of scattering coefficient, which
is computed, the received mode β can be either S0 or A0.

According to Sect. 3.1, the scattering coefficients are defined as the square root of the ratio of
reflected/transmitted mode power to that of incident mode. If Dm

sj is the transmission coefficient of mode
m from the j th discontinuity and Dξ is the power attenuation coefficient of mode m at i th step of the plate,
the power of scattered modes arrived at the sensor2 are computed as follows:

√
Pβ
received = Dα

ξ1D
α
s1D

α
ξ2D

α
s2 · · · Ds(i−1)D

α
ξ i(bc).Tαβ.Dβ

ξ i(ac)D
β
si . . . .D

β

s(n−1)D
β
ξn

√
Pα
incident (5)

In this equation, Tαβ is the transmission coefficient of mode β from the notch when the incident mode is α.
Moreover, Dm

ξ i(bc) and Dm
ξ i(ac) are the power attenuation coefficients of mode m at i th step because of traveled

distance before and after the notch, respectively.
One can reformulate Eq. (5) in order to compute the scattering coefficients, as follows;

Tαβ =
√
Pβ
received

Dα
ξ1D

α
s1D

α
ξ2D

α
s2 · · · Ds(i−1)Dα

ξ i(bc).D
β

ξ i(ac)D
β
si . . . .D

β

s(n−1)D
β
ξn

√
Pα
incident

(6)

Therefore, using the known coefficients of D and the wave powers computed from sensors 1 and 2, the
transmission coefficients can be computed. These coefficients are used in the geometry identification as is
described in the next section.

As it can be seen from Eq. (6), for computing the coefficients precisely, it is necessary to know the location
of notch as precise as possible. This indicates the importance of the notch localization step, as is presented in
Sect. 4.1.

4.2.4 Notch geometry identification algorithm

When we generate S0 mode into the structure, both S0 and A0 mode are received by sensor 2 because of mode
conversion phenomenon. The same phenomenon will happen in the case of generating A0 into the structure as
incident wave. Therefore, one can obtain four transmission coefficients, i.e., TSS, TSA, TAS, TAA. However,
according to the reciprocating theorem, the coefficients TSA and TAS are the same. Therefore, only three of
these four coefficients are distinct. In this algorithm, we need all of these three coefficients to complete the
identification procedure for notch geometry. The reason is that using two coefficients could lead to non-unique
solutions as it will be shown in the examples.



1018 A. Ghadami et al.

Fig. 8 Schematic of the presented example

Table 1 Transmission coefficients from step discontinuities in Fig. 10

DS0
S1 DA0

S1 DS0
S2 DA0

S2

0.996 0.998 0.994 0.995

Table 2 Attenuation coefficients for the example shown in Fig. 10

kS01 kS02 kS03 kA01 kA02 kA03

0.117 0.117 0.116 0.207 0.213 0.221

The algorithm can be classified into these four steps:

1. Generating S0 mode into the plate and extracting the TSS and TSA coefficients.
2. Generating A0 mode into the plate and extracting the TAA coefficient.
3. Comparing the computed scattering coefficients with their corresponding diagrams as shown in Fig. 4.

Therefore, a set of solution would be obtained for the coefficients as “solution curves”. Three solution
curves could be obtained, containing the solution for the problem, i.e., the notch depth ratio, % d/H, and
width, g, for the corresponding coefficient.

4. Plotting the obtained three solution curves in a single diagram. As long as the solution for the problem
could satisfy each curve, the intersection of these curves would be the unique solution for the problem.
Our experience with this algorithm shows the possibility of intersection in more than one point for every
two curves. That is why three coefficients are used in our method.

5 Example

A notched aluminum plate with two symmetric thickness variations is considered as shown in Fig. 8. This
plate has three steps and the notch is considered to be in the second step of the plate. The thickness of each
part of the plate is considered to be 6, 5 and 4mm for the first, second and third step of the plate, respectively.

For this example, the discontinuity transmission coefficients (Dsi ) and the attenuation coefficients (k) are
computed using the discussed methods and are presented in Tables 1 and 2, respectively. In Table 1, Ds1 means
the transmission coefficient for the first discontinuity (6–5mm) and Ds2 is the transmission coefficient of the
second discontinuity (5–4mm). In Table 2, kmi means the attenuation coefficient of mode m in the i th step of
the plate.

In order to investigate the effect of wave attenuation, a damping of 0.001 is assumed for this plate. The
inspection length of the plate is set to be 600mm and the parameters of existing notch are presented in Table 3.

To generate desired wave mode into the structure, a 5-cycle Hanning-windowed sinusoidal tone burst
with a central frequency 100kHz is used. The problem is simulated in ABAQUS� [49] software. It should
be mentioned that at the sensor locations, the axial displacements of a point at the top surface of the plate
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Table 3 Notch parameters of presented example

Notch depth ratio (% d/H) Notch width (g) Distance from sensor2 (D) Location of the notch

30% 2mm 300mm 2nd step of the plate

Fig. 9 a Signals received by sensor 2 in S0 mode excitation case, b energy spectrum of the signal

are considered as the output signals. In practice, these signals can be gathered using piezoelectric patches.
Moreover, using a laser vibrometer, these signals can be easily obtained and the Lamb wave modes can be
differentiated.

As the first step of damage detection, the location of the notch is determined. For this purpose, S0 mode is
generated into the structure as described above. The resulting signals from sensor2 are shown in Fig. 9. The
signals are normalized using the maximum amplitude of incident wave. In this signal, the occurrence of mode
conversion phenomenon is obvious and S0 and A0 modes can be observed and differentiated from each other.
The time difference between these two modes should be computed to identify the distance between the notch
and sensor 2 using Fig. 9. To compute the time difference, the scale-average wavelet power (SAP) is defined
and used [1], as follows;

SAP2(n) = 1

M

M∑
i=1

|CWT(ai , n)|2. (7)

In Eq. (7), CWT is the continuous wavelet transform of the signal, a is the scale, M is the largest scale during
CWT, and n represents the number of sampling point. This energy spectrum for Fig. 9a is shown in Fig. 9b.
The 9th complex Gaussian function is used as the mother wavelet function in Eq. (7). Using this spectrum, the
time difference is obtained as �t = 4.96e − 5. Using this �t in the diagram of Fig. 6, the notch location is
predicted in the second step of the plate and 305.3mm far from sensor2. This result is shown in Fig. 10 and
the notch location is predicted successfully.

Now, using the predicted location of the notch we can predict the notch dimensions. As it was described in
the notch geometry identification algorithm, we need to generate both S0 and A0 into the structure separately.
The S0 mode was used for damage localization and we only need to excite A0 mode in the plate. The measured
signal by sensor 2 is shown in Fig. 11. Using the received signals from the sensor2 in both S0 and A0 mode
excitations, the wave mode powers are computed. The procedure of computation of Lamb mode power from
sensors can be found in Ref. [50] in more details. The calculated mode powers are as;

PS0
incident = 1, PS0

received = 0.743, PA0
received = 0.036 (S0 excitation)

PA0
incident = 1, PA0

received = 0.684 (A0 excitation)

(8)

where Pβ
α means the power of received α mode when the incident mode is β. Note that these powers are

normalized with respect to the power of incident mode obtained from sensor 1.
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Fig. 10 Notch localization using time difference between S0 and A0 modes

Fig. 11 Signals received by sensor 2 in A0 mode excitation case

Using these powers and the formulation presented at Sect. 4.2.3, the transmission coefficients TSS, TSA
and TAA can be computed. Knowing the received mode powers, the attenuation coefficients, step discontinuity
transmission coefficients, as well as notch location, we can obtain the scattering coefficients using the following
equations:

TSS =
√
PS0
received

DS0
S1D

S0
S2D

S0
ζ1D

S0
ζ2D

S0
ζ3

√
PS0
incident

= 0.928 (9)

TSA =
√
PA0
received

DA0
S1 D

A0
S2 D

S0
ζ1(bc)D

A0
ζ1(ac)D

A0
ζ2 D

A0
ζ3

√
PS0
incident

= 0.210 (10)

TAA =
√
PA0
received

DA0
s1 DA0

s2 DA0
ζ1 D

A0
ζ2 D

A0
ζ3

√
PA0
incident

= 0.936 (11)

In order to clarify the extraction of above coefficients, the schematic of extraction of TSA coefficient is shown
in Fig. 12. This figure indicates the locations/regions that the coefficients affect the power of Lamb wave. The
accuracy of proposed method depends on the accuracy of calculate Lamb wave mode powers. Hence, it is
important to use accurate measurement techniques and noise filtering processes to accurately predict damage
parameters in experimental studies.
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Fig. 12 Schematic of extraction of TSA coefficient

Fig. 13 Intersection of result curves to predict the notch geometry

Table 4 Final results of damage detection in presented example

Parameter Simulated Predicted

Notch location 2nd step of the plate 2nd step of the plate
Notch distance from sensor2 (D) 300mm 305.3mm
Notch depth ratio (% d/H) 30% 30.6%
Notch width (g) 2mm 2.06mm

Intersecting the plane of coefficients TSS, TSAandTAAby the diagrams shown in Fig. 4a, b, d, respectively,
we obtain the solution curves, as shown in Fig. 13. Note that since the notch was predicted in the part of the
plate which has 5mm thickness, we can use the diagrams shown in Fig. 4. If the notch is detected to be in
other thicknesses of the plate, one should compute and use the corresponding diagrams for that as described
in Sect. 3.1.

Using Fig. 13, the notch geometry can be identified. It is noticed that these three curves may not intersect
precisely at a single point, because of computational, simulation, or experimental errors. Therefore, we take
the centroid of the triangle formed by the intersection of the three curves, as the intersection point. As it can
be seen, the notch depth ratio and its width are identified as 30.6% and 2.06mm, respectively. Therefore, all
of the notch parameters are identified with acceptable accuracy using the present algorithm. The results are
tabulated in Table 4. Note that according to Fig. 13, if we use only two of the scattering coefficients for notch
geometry detection, the result may not be unique since the TSS and TSA coefficients intersect at two different
points.

As it is observed in this example, all of the damage parameters are predicted successfully. One of the
challenges that the proposed algorithm might have in practice is its ability to detect small size damages.
Looking at the scattering diagrams (Fig. 4), one can observe that for small size damages (< 10%), the change
in scattering coefficients is small. Therefore, one needs high accuracy in identifying the wave powers received
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by sensors, and also accurate consideration for the power loss in the waveguide. Small error in identification
of scattering coefficients may cause considerable error in damage detection results.

6 Conclusions

In this paper, a novel method for identification of notch parameters in multi-step plates was proposed. This
algorithm could successfully detect the notch location, width and depth in a plate having arbitrary number
of symmetric step discontinuities. The method was based on mode conversion phenomenon of Lamb waves
and the scattering coefficients. Damage detection was done using only two sensors in the structure in a pitch-
catch configuration. The results show that the method can predict all of the notch parameters with acceptable
accuracy.

Since the geometry of most of the structures in the industry is not uniform and is more complex than the
usual previous studied cases, it is important to develop new techniques formore real applications. The proposed
algorithm introduced several techniques which can be extended for damage detection in more complex cases.
Using an effective sensor placement, scattering coefficients and mode conversion phenomenon for damage
detection are the most important introduced techniques which can be extended for other structural health
monitoring problems such as other types of structures and damages. As an important example, future studies are
needed to develop similar damage detection approaches for waveguides with asymmetric step discontinuities,
where more complicated mode conversion and scattering occur.

Appendix

In this section, the concepts and mathematical formulation of computing scattering coefficients are briefly
discussed. The formulations and procedure are introduced by Kim and Roh [17], and more details of the
formulations and procedure can be found in Refs. [16,17].

The displacement and stress components of nth mode Lamb wave wn can be written as

wn = Wn (kn, y) e
i(knx−ωt), (A.1)

where wn = [un, vn, σn, τn]T and Wn = [Un (kn, y) , Vn (kn, y) , Sn (kn, y) , Tn (kn, y)]T. Here, un and vn

denote longitudinal and transverse displacements, respectively, while σ n and τ n denote normal and shear
stresses, respectively.Un , Vn , Sn , and Tn are modal functions for each corresponding component. The equation
form of each modal function is different for the symmetric and antisymmetric modes.

Considering the power of nth mode Lamb wave, C2
n , Lamb wave modal functions are normalized by Cn

for direct comparison of reflection and transmission coefficients, and the normalized wave form is expressed
as follows

wn = Wn (kn, y) e
i(knx−ωt), (A.2)

where Wn = Wn/Cn . The nth mode Lamb wave after reflection or transmission can be expressed with the
normalized modal functions as [16]

wn = DnWn (kn, y) e
i(knx−ωt), (A.3)

where Dn is the reflection/transmission coefficient of nthmodeLambwave after interactionwith a discontinuity
provided that the incident wave has a unit power.

When an incident wave interacts with notch, the scattering mechanism can be divided into three main
processes. The incident wave strikes the B1 boundary and some portion of its energy is reflected in Region 1
and the remaining portion is transmitted to Region 2. The transmitted wave strikes the boundary B2 and wave
is reflected and transmitted to regions 2 and 3, respectively. The reflected wave strikes the boundary B1, and
some portion is transmitted to Region 1 while the other portion is reflected to Region 2. This procedure is
repeated again and again until final reflected and transmitted waves are generated (Fig. 14) [17].
To solve for the scattering coefficients at each process, the displacement and stress components induced by
the scattered propagating and non-propagating modes must be the same as those of the incident wave at the
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Fig. 14 Scattering of Lamb wave by a rectangular notch

points on the boundaries. To find reflected and transmitted waves at each process, one can apply the boundary
conditions and continuity conditions for displacements and stresses at the boundaries. For instance, in process
1 one may write (Fig. 14):

{
(σ )Wi1

+ (σ )Wr1
= 0

(τ )Wi1
+ (τ )Wr1

= 0 , (x, y) ∈ γ1

⎧⎪⎨
⎪⎩

(u)Wi1
+ (u)Wr1

= (u)Wt1
(v)Wi1

+ (v)Wr1
= (v)Wt1

(σ )Wi1
+ (σ )Wr1

= (σ )Wt1
(τ )Wi1

+ (τ )Wr1
= (τ )Wt1

, (x, y) ∈ γ2 (A.4)

where wi1, wr1 and wt1 represent incident, reflected and transmitted Lamb wave at the left notch boundary.
Normalizing Eq. (A.4) using the power, one may solve for the reflected and transmitted coefficients of each
mode, i.e., Dn .

Note that each of the wave components σ, τ, u and v consist of several propagating and non-propagating
modes. For example, u = ∑∞

i=0 uS,i + ∑∞
i=0 uA,i , where i is the number of considered propagating and

non-propagating modes, and A and S represent symmetric and antisymmetric modes, respectively. when the
product of frequency and plate thickness is low, one should only consider fundamental modes (A0 and S0)
since higher order modes do not propagate in this range. However, sufficient number of non-propagatingmodes
needs to be considered for acceptable accuracy. It is shown in Ref. [17] that for notch depths up to 85% of the
plate thickness, considering 300 non-propagating modes, results in acceptable results.

For each scattering process, the scattering graphs are constructed inRef. [17], and transmission and reflection
coefficients of propagating modes are pre-calculated at various types of notch boundaries. All field information
for non-propagating modes is included in the scattering graphs. For a Lamb wave of the same kind and a notch
of the same depth, the transmission and reflection coefficients in the graphs can be referred to whenever the
scattering process occurs.

The described three scattering processes occur again and again until no energy is left in Region 2. Therefore,
so many iterations are needed to calculate the final transmission and reflection coefficients. To compute the
final reflection and transmission coefficients, a straightforward matrix transformation method is presented by
Kim and Roh [17] considering infinite repetitions of the scattering processes. This method can be used to
compute the final scattering coefficients for various notch intensities (see [17] for more details). The computed
scattering coefficients required for this study are shown in Fig. 4.

To verify the extracted scattering coefficients, results are compared with those obtained from finite element
simulation. The results are demonstrated in Fig. 15 for selected cases which show the computed scattering
coefficients from theory and simulation are in match.
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Fig. 15 Comparison of transmission coefficients computed from theoretical formulations (◦) and FEM simulation (�) for an
5mm aluminum plate at 100kHz excitation frequency. a TSA, b TSS, c TAS, and d TAA
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