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Abstract Mechanical properties are investigated for a class of microstructured materials with promising
applications. Specifically, we consider a composite material with orthogonal, mutually interconnected fibers
building a pantographic substructure. In order to predict the behavior of such a system in three-dimensional
continuum, a reduced-order model is introduced by means of a bi-dimensional elastic surface accurately
describing large deformations. The properties of this reduced-order model are characterized by an elastic
energy density that involves second space derivatives of the displacement for capturing the resistance of
twisted and bent fibers in plane as well as out of plane. For determining the coefficients in the elastic energy
of the reduced-order model, we utilize a numerical inverse analysis and make use of ad hoc computational
experiments performed by a direct numerical simulation on the microscale with detailed modeling of the
pantographic substructure. This reduced-order model represents a homogenized material on macro-scale with
its substructure on microscale. The homogenized model is capable of describing materials response at a
significantly less computational cost than the direct numerical simulations.

Keywords Material identification · Elastic surface theory · Nonlinear elasticity · Buckling

1 Introduction

In this work, we determine coefficients in a homogenized material with a pantographic substructure. This
homogenized material is commonly called ametamaterial, as it exhibits an ‘exotic’ behavior due to its peculiar
microstructure: in-plane bending of its constituting fibers gives rise at macroscopic scale to so-called second
gradient effects which are not typical of materials customarily used in engineering practice [14,22,30,52,55].
Such amicrostructure consists, in the reference configuration, of a double array of orthogonal beams (also called
fibers) which are interconnected by cylinders, also called pivots, at their intersection points [26–28] (see Figs. 1,
2). The latter structural elements resemble a rotational/torsional elastic stiffness that restricts the relative rotation
of fibers. This particular microstructure results in a compliant material, which can undergo large deformations
in elastic regime exhibiting a characteristic stiffening behavior. In order to describe the mechanical behavior of
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Fig. 1 Top view of the pantographic structure

such a system, many reduced-order models have been proposed in the recent literature for inextensible fibers
[20,23,25,46,61], systems with relative displacements in their microstructure [44,72,77], for nonorthogonal
fibers and/or curved fibers prior the deformation [40,69,76,78], employing discrete [18,74,75], semi-discrete
[10,24,48], or continuummodels [5,15,42,65,70,71,73]. All continuum models share the same mathematical
feature: the homogenized deformation energy depends not only on the first gradient but also on the second
gradient of the displacement [62,63] in order to account for in-plane bending of fibers [4,13,59]. So far,
the experimental and numerical evidences gathered in the literature concern to a greater extent specimens
deforming in plane. The particular substructure of such a metamaterial is very similar to that of the woven
structures, textile materials, and lattice truss materials; therefore, the models describing them are very similar
(see, e.g., [11,19,33,37,64]). Besides, the homogenization techniques used formicropolar and textile materials
can be usefully adopted for the considered structure (see for some hints [17,21,31,32,34,35,43,66,68]).

The present work considers the homogenized model as proposed in [42], where the composite material is a
plate modeled by 2D continuum embedded in 3D space. This so-called reduced-order model characterizes the
deformation accurately by using parameters in the homogenized material model. In order to determine these
parameters, we perform an inverse analysis by exploiting a set of numerical experiments obtained by a direct
numerical simulation using the Cauchy continuumwith a detailedmodel of the pantographic substructure since
in the smallest length scale the Cauchy continuum is accurate [53]. For the inverse analysis, we employ the
nonlinear regressionmethodminimizing the error knownas the least squaresmethod.Additionally,wemakeuse
of different numerical experiments in order to examine and validate the numerical values of parameters obtained
by the inverse analysis. We emphasize that, in particular, we have been able to numerically reproduce the onset
of buckling modes by using the direct numerical simulation as well as reduced-order model representing the
homogenized material—these buckling modes are experimentally observed in [12].

Since the reducedmodel, consideredherein, is characterizedby seconddisplacement gradients in the energy,
the process of identification is performed carefully by taking into account the mathematical consistency; for
some useful hints about such issues, we refer to [3,6–8,36,50,56,58,65]).

The plan of the work is as follows. In Sect. 2, we present the continuum models employed for the iden-
tification. Specifically, the homogenized reduced-order model is thoroughly described in Sect. 2.1, while the
Cauchy micro-model is presented in Sect. 2.2. In Sect. 3, we present the inverse analysis for determining
the coefficients in the homogenized model. In particular, we describe the setup of the numerical experiments
involved in the inverse analysis. In this section, furthermore, the definitions of the defined least squares objec-
tive functions are given. In Sect. 4, we show that the parameters obtained by the previous identification allow us
to match closely the results of the two models also for further numerical tests. Finally, we present a sensitivity
study in Appendix A, which consists in evaluating the change in the results of the macro-model by varying
the constitutive stiffnesses in a neighborhood of the identified stiffness set.

2 Pantographic structure and modeling

We introduce a general approach for constructing a reduced-order model and determination of parameters. In
order to present this approach concretely, we specify a particular case of a metamaterial with pantographic
substructure as shown in Fig. 2. The shape of the specimen and the coefficients generating the substructure are
compiled in Table 1. Particularly, they are: (1) the dimensions of the fiber cross sections, i.e., bb and hb; the
diameter and the height of the pivots, i.e., dp and h p, respectively; the overall sizes of the sample, i.e., L and l;
the angle between fibers prior to deformation, i.e., ϑ∗; and the pitch between the fibers belonging to the same
array, i.e., p. For example in [79], the same pantographic substructure is built out of polyamide and physically
tested. The approximate properties of this material are presented in Table 2.
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Fig. 2 Geometric features of the specimen

Table 1 Fibers and pivot dimensions in mm (millimeter), angle in rad (radian)

bb hb dp h p L l ϑ∗ p

1.60 1.00 0.9 1.00 210 70 π/2 4.85

In what follows, we provide a concise description of the two models adopted for the inverse analysis: the
homogenized model presented in [42] provides a macro-description of the considered structure at a lower com-
putational cost; therefore, we refer to it as macro-model, and the Cauchy continuum model, which accurately
describes the deformation by modeling the substructure in full detail at a very high numerical cost [39]; we
refer to it as micro-model (or reference model).

2.1 2D continuum model

Regarding the geometric dimensions of the specimen, we consider it as a plate. In order to describe the
deformation of a pantographic plate, several studies in the literature use a two-dimensional model [9,26,29,
59,60]. Most of these studies can be subsumed under the assumption of in-plane deformation. In this paper, we
carry out an identification of the constitutive parameters for a recently proposed second gradient, orthotropic 2D
reduced model, allowing to analyze problems that involve large deformations and out-of-plane displacements.

Let us consider a rectangular 2D continuum embedded in the 3D Eulerian space and equipped with a
continuous planar fibers’ square grid formed by the intersection of two orthogonal families of beams. In
other words, the discrete microstructure of beams (fibers) described in [42] is homogeneously distributed
in the considered region of the space. A rectangular domain is the reference configuration R ⊂ R2 of the
pantographic plate. A global Cartesian coordinate system is introduced, being the orthonormal basis the triple
(D1, D2, D3 = D1 × D2), with D1 and D2 parallel to the two fiber families. At each point of this region,
two rigid planes moving in the space are considered. They are, respectively, orthogonal to one of the fibers
intersecting in that point and stand for the fibers’ cross section. In the reference configuration, a point X ∈ R
can be represented by means of the coordinates (X1, X2), while the orientation of the corresponding attached
rigid planes is given by means of the vectors:

• αE which is the unit vector orthogonal to the cross section, with α = 1, 2 indexing the two families of
fibers (α stands for the family of fibers parallel to Dα);

• N =1 E ×2 E;
• αM = N ×α E.

For the sake of clarity, the case Dα = αE corresponds to fibers of ‘Euler–Bernoulli-type,’ where the cross
sections remain orthogonal to the fibers’ lines. Referring to Fig. 3, we assume that in the reference configuration
(a) 1E and 1M coincide with D1 and D2, respectively, (b) 2E and 2M coincide with −D2 and D1, respectively,
(c)N =D3. Besides, we assume that αM andN are directed along the principal axes of the beam cross sections.
A deformed configuration is characterized by a placement
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Table 2 Polyamide PA 2200

Mechanical property Value

Mass density (�) 0.93 g cm−3

Young’s modulus (E) 1600 Nmm−2

Poisson’s ratio (ν) 0.3

Fig. 3 Microstructure in the bi-dimensional model, where the network of the fibers is highlighted in the reference and in the
current configuration

χ : R → S

X �→ x = χ(X), (1)

where S ⊂ R3 is the representation of the current surface, and two orthogonal tensor fields

1R : (D1,D2,D3) �→ (1a1,1 a2,1 a3) (2)
2R : (D1,D2,D3) �→ (2a1,2 a2,2 a3) (3)

where (1a1,1 a2,1 a3) and (2a1,2 a2,2 a3) give the orientation of the microstructure in the deformed configu-
ration as an effect of the rotations 1R and 2R. Finally, we define the displacement field as

u(X) = x − X = u1(X)D1 + u2(X)D2 + u3(X)D3. (4)

We denote the vectors tangent to the deformed coordinate lines by

α t = ∂χ

∂Xα

α = 1, 2 , (5)

as well as their corresponding normalized tangent vectors,

αe =
α t

‖α t‖ , (6)
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whereas they are straight in the reference configuration. Moreover, we denote the unit normal to the deformed
surface by

n =
1e ×2 e

‖1e ×2 e‖ (7)

and

αm = n × αe (8)

We enforce the following constrains at each point X ∈ R:

C1: 1a1 =1 e and 2a1 =2 e
C2: 1a3 =2 a3 = n
C3: 1a2 =1 m and 2a2 =2 m

As a consequence of these constraints, the rotations 1R and 2R, and therefore the orientation of the two rigid
planes representing the local microstructure, are completely determined by the current shape of the corre-
sponding coordinate lines passing through the point X . As a result, the beams are assumed to be without shear
deformation (C1). Therefore, the two rotations 1R and 2R can be related to the gradient of the displacement.
However, a priori the two bases of the cylindrical pivots can rotate independently. Hence, in the kinematic
description we need two distinct rotations 1R and 2R. We further assume a remarkable constraint on 1R and
2R (C2). Indeed, for each point X ∈ R, we have, in the current configuration, that the normal vectors to the
concurring fibers do coincide. Moreover, having two different rotations 1R and 2R allows to take into account
torsion of cylindrical pivots, i.e., macroscopic shear deformations as well as torsion of fibers embedded in the
considered elastic surface.

Using the notation above, it becomes possible to define the local deformationmeasures for the 2Dcontinuum
as

αε = ‖α t‖ − 1, 1e · 2e = sin(γ ) (9)

αε being the local elongation and γ the shear angle, and1

αW = αR� ∂αR
∂Xα

=α κ1D2 ∧ D3 +α κ2D3 ∧ D1 +α κ3D1 ∧ D2 (no sum over α) (10)

where αW is the second-order curvature tensor, which is a skew tensor, and ακ1, ακ2 and ακ3 are the components
of the corresponding axial vector.

The strain measures, expressed in terms of the displacement components, turn out to be

1κ1 = n · g1 − sin(γ ) n · c1
‖1e ×2 e‖ , 1κ2 = n · c1, 1κ3 = −1m · c1 (11)

2κ1 = n · g2 − sin(γ ) n · c2
‖1e ×2 e‖ , 2κ2 = n · c2, 2κ3 = −2m · c2 (12)

where the variables c1, c2, g1, g2 are defined as follows:

c1 = (∇∇χ)D1 ⊗ D1

‖∇χ D1‖ c2 = (∇∇χ)D2 ⊗ D2

‖∇χ D2‖
g1 = (∇∇χ)D2 ⊗ D1

‖∇χ D2‖ g2 = (∇∇χ)D1 ⊗ D2

‖∇χ D1‖ .

In view of the assumed constraints, we note that ακ1, ακ2 and ακ3 are the geodesic torsion, the normal curvature
and the geodesic curvature multiplied by ‖α t‖, respectively.

The following strain energy density is assumed

W = 1

2

[
Ke

(1
ε2 +2 ε2

) + Ksγ
2 + Kt

(1
κ2
1 +2 κ2

1

) + Kn
(1

κ2
2 +2 κ2

2

) + Kg
(1

κ2
3 +2 κ2

3

)]
(13)

1 We use the wedge product, ∧, defined as, (u ∧ v)i j = uiv j − vi u j . Therefore, we have Di ∧ D j = Di ⊗ D j − D j ⊗ Di ,
where ⊗ is the usual tensor (dyadic) product.
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where Ke,Kt,Kn and Kg are positive constitutive parameters representing the stiffnesses related to the elon-
gation, twist, normal and geodesic bending, respectively. Finally, Ks is the shear stiffness between beams
belonging to the two different families. We note that in the above choice of the energy the same constitutive
parameters have been selected for both two families of beams. We remark that the numerical study of higher
gradient continuum models requires some nontrivial improvements in the standard methods. We emphasize
the additional effort for a computational study as conducted for example in [45,51,54,57]. Because of the
nature of Eq. (13), which involves the second gradient of the independent displacement field u, the considered
second-grade elastic surface is also able to sustain double forces and corner forces. Moving forward, for the
sake of simplicity, we impose only geometric boundary conditions.

2.2 Cauchy continuum model

We want to determine the numerical values of Ke, Ks , Kn , Kg and Kt in Eq. (13) by using a set of numer-
ical experiments. In the following, we ‘construct’ computational experiments by using a direct numerical
simulation. In other words, we utilize Cauchy continuum on the microscale and perform a simulation with
the detailed substructure. St.Venant–Kirchhoff material model is employed in order to accurately capture the
large deformation. The energy is quadratic in the Green–Lagrange strain tensor. We emphasize that geometric
nonlinearities are of importance to capture accurately such that the choice of St.Venant–Kirchhoff material
model is justified. Moreover, it is very convenient to use it when compared with the corresponding model in
2D as given in Eq. (13); both are equally nonlinear in deformation fields. Depending on the chosen material,
on top of the geometric nonlinearities, it might be even necessary to consider the material nonlinearities as
well; for an experimental study of such effects, we refer to [79]. We restrict our study to the geometrically
nonlinear case.

Let us consider a body which occupies a region B ⊂ R3 of the three-dimensional Euclidean space. This
region is referred to as reference configuration, and the location of each material point P of the body is denoted
by its material coordinates X . The current position of P is described by a suitably regular map χ : R3 −→ R3,
and it is denoted by x = χ(X). By using the conventional continuum mechanical notation, we introduce the
deformation gradient tensor F = ∇χ and the Green–Lagrange strain tensor:

E = 1

2
(F�F − I). (14)

By introducing the displacement

u(X) = χ(X) − X, (15)

we recast (14) as

E(X) = 1

2
(∇u + ∇u� + ∇u�∇u). (16)

Assuming the constitutive relation for isotropic and homogeneousmaterials, the strain energy density is defined
as

WV(E) = λ

2
[tr(E)]2 + μ tr(E2). (17)

where λ and μ are the Lamé parameters. We remark that the material constituting the structure at micro-level,
polyamide, is assumed to be isotropic, while the orthogonal arrangement of fibers implies at macro-level an
orthotropic material symmetry group. The governing equations are stated by means of a variational principle
as follows

δ

∫

B
WV(E)dV = 0, ∀ δu

with δu being kinematically admissible variations in the displacement field [1,2]. As concern the boundary
conditions, in what follows, we assign displacements on a proper subset of the surface accordingly with the
considered case.
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Fig. 4 Angles θ and φ in one location

3 Inverse analysis

In this section, we aim at determining the numerical values of coefficients arising in the homogenized model
on the macro-scale effected by the substructure on the microscale. The approach is based on the idea explained
in [26]. Simply stated, we use numerical experiments on microscale and obtain the parameters, Ke, Ks , Kn ,
Kg and Kt in Eq. (13), in order to characterize the homogenized model. The proposed approach to determine
the aforementioned parameters of the pantographic plate is based on direct numerical simulations of two
experiments. The key idea, here, consists in designing these two numerical experiments in order to control,
which deformation measure is being ‘activated,’ see [41,47,49,58]. As the first numerical experiment, we
consider a bias extension test, which is characterized by an in-plane deformation. This test activates only
fibers’ extension, in-plane bending and shear; thus, the corresponding stiffnesses, Ke, Kg and Ks , become
relevant. By using the results of the numerical experiments, these parameters are determined by an inverse
analysis. The remaining parameters, Kn and Kt , are simply not involved in this test; hence, we just estimate
their values as in [42,72] and obtain their values by using the second numerical experiment. As the second
numerical experiment, we design an out-of-plane bias shear test in order to make the remaining parameters,
Kn and Kt , relevant. In this deformation mode associated with fibers’ extension, in-plane bending and shear
are negligible and out-of-plane bending and twist become dominant.

Specifically, the first experiment is the in-plane bias extension test designed to determine Ke, Kg and
Ks . Such a test is usually employed to characterize the in-plane behavior of a woven fabric—the structure
of a woven fabric with threads at right angles is equivalent to the pantographic structure studied herein. The
numerical experiment is conducted on the specimen as shown in Fig. 2 by clamping the left side and stretching
the right side under a prescribed elongation up to 6 cm in several loading steps, to attain a large strain regime. In
each loading step, the total energy, E m , and two different angles, θm and φm , as shown in Fig. 4 are computed
by using the micro-model with the parameters from Table 2. In particular, θm is evaluated at the center of the
sample. We remark that this angle is a global quantifier because it is constant in all the central zone (apart
from border effects), as it is well known in the case of woven fabric (see A zone in Fig. 7 in [48]). The angle
φm is evaluated at the vertex of the almost rigid triangle near the short edge (see C zone in Fig. 7 in [48]).
Similarly, it characterizes the boundary layer which surrounds the above-mentioned triangle due to the in-plane
bending of the fibers. In each loading step, their values are recorded and denoted by E m

i , θmi , φm
i . We generate

in such a way the experimental data by using the direct numerical simulations. In the case of the homogenized
model, by using some parameters for Ke, Kg and Ks , we compute the total energy and angles, this time for
the macro-model, E M

i , θM
i , φM

i . For the best values of Ke, Kg , Ks , the differences between the corresponding
values would be minimal. Hence, we aim at finding the parameters, minimizing the following object function:

f =
n∑

i

(
E M
i − E m

i

E m
i

)2

+
n∑

i

(
ϑM
i − ϑm

i

ϑm
i

)2

+
n∑

i

(
ϕM
i − ϕm

i

ϕm
i

)2

(18)

where

• i is the index of the i-th step loading;
• quantities denoted by M are obtained from the macroscopic model;
• quantities with m are computed by the microscopic model.
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We remark that the objective function has been normalized to equallyweigh up each of the error contribution
from different physical variables. This optimization problem is a nonlinear regression such that the initial guess
of parameters becomes essential. We start off with an initial guess for the parameters as compiled in Table 3
by using the ideas from [16,42,59,67,72]. With these initial values, we determine the three stiffnesses, Ke, Kg
and Ks , successfully as shown in Fig. 5 the energy density distribution as colors and the deformation without
scaling for micro-model (top) and macro-model (below). As a first trial, we have chosen all values listed in
Table 3. There, E and G are the Young and the shear modulus, respectively, A is the area of the fibers’ cross
sections, and Iz , Iy and Jt are the flexural, in plane and out of plane, as well as the torsional second moment
of area of the beams’ cross sections, respectively. As in [26], we correlate the angle θ (see Fig. 4a ) to Ks and
the angle φ (see Fig. 4b ) to Kb and use, as a further quantifier, the total amount of strain energy, E , in the
deformation process to determine Ke.

After having determined the first three stiffnesses, we proceeded by conducting the second numerical
experiment for determining Kn and Kt . The so-called out-of-plane bias shear test prescribes an imposed
uniform displacement to the short right side up to 7 cm along the out-of-plane direction, which preserves its
length, while the left short side was fixed. Furthermore, in order to prevent the occurrence of (undesirable, as
they activate energy terms which have been considered in the in-plane bias extension test and would, therefore,
shade the other energy terms related to the stiffnesses which we want to fit in the out-of-plane bias shear test)

Table 3 Initial guess for the nonlinear regression problem

Ke Kg Kn Kt Ks

E A
p

E Iz
p

E Iy
p

G Jt
p

G π d4p
32 h p p2

Fig. 5 In-plane bias extension test scheme, the colors indicate strain energy density, and the deformation is presented without
scaling. Top: results obtained from the numerical experiment. Below: results delivered by the reduced-order model

Fig. 6 Deformed shapes (micro-model and macro-model) for out-of-plane bias shear test. The legend refers to the out-of-plane
displacement, u3
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Fig. 7 Probe points (left) and probe lines (right) for evaluating the deformed shape and the out-of-plane displacement wi j
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extensional deformations, all the rotations of the right short side are prevented (in the micro-model this means
that the handle in correspondence of the short side cannot rotate, in the macro-model 1R = 2R = I at the same
edge), while the displacement along the longitudinal direction is free, being imposed to zero the component
of the displacement parallel to the same side. Figure 6 shows a deformed shape produced by the shear test.

In order to verify that the two experiments effectively decouple the stiffnesses, we performed sensitivity
analyses and successfully checked that the objective functions are weakly dependent on the parameters related
to deformationswhich are not to be activated. The absence of the rotations of the short displaced side guarantees
this condition, as will be shown below.

Analogous to the previous case, quantities are chosen to carry out the identification. In detail, we take
into consideration the total strain energy, E , and the out-of-plane displacement, w, (since extension, i.e.,
axial displacement, is avoided effected by the imposed boundary conditions) of the longitudinal axis of the
specimen.With regard to this last quantity, the micro–macro-comparison is achieved by calculating the vertical
displacement of the 3D point array number 2 indicated in Fig. 7a, wm

i j , and the corresponding points of the

curve number 2 in Fig. 7b, wM
i j . Also in this case, a nondimensional least squares objective function has been

built and it has the following expression:

f =
n∑

i

(
E M
i − E m

i

E m
i

)2

+ 1

Np

n∑

i

Np∑

j

(
wM
i j − wm

i j

wm
i j

)2

(19)

Table 4 Stiffnesses identified with in-plane bias extension test identification

Ke Kg Kn Kt Ks

1.5 E A
p 2.1 E Iz

p
E Iy
p

G Jt
p 1.5

G π d4p
32 h p p2

Table 5 Best stiffness set

Ke Kg Kn Kt Ks

1.5 E A
p 2.1 E Iz

p 0.5 E Iy
p 1G Jt

p 1.5
G π d4p
32 h p p2
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Fig. 9 Out-of-plane bias shear test, verification of independence from plane bias test
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where

• M and m are the apexes which indicate that the considered quantity is related to the macroscopic and
microscopic model, respectively;

• i is the index of the i-th step loading;
• j is the index of the j-th evaluation point;
• Np number of the evaluating points.
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Fig. 11 Shear test. The legend refers to the out-of-plane displacement, u3
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This function is used, as in the previous case, to evaluate which set of stiffnesses is the best. We remark that
the contribution produced by the deformed shape is averaged over the pivots’ centers taken into consideration.

The results presented herein are the product of two iterative procedures aimed at the minimization of the
objective functions defined in Eqs. (18) and (19). The Levenberg–Marquardt algorithm is employed to achieve
this task.

In Fig. 8, the quantities used for the identification in the in-plane bias extension test are plotted for the
3D model and the 2D one (first trial, best fit). In each of the three plots in Fig. 8, it can be observed that the
identification produced a good approximation of the objective curves concerning the micro-model.

Let us now consider the second experiment (out-of-plane bias shear test), where the set of constitutive
parameters in Table 4 is used as first trial. Similarly to the previous case, we perform several simulations
varying the corrective coefficients of Kt and Kn looking for the minimum value of Eq. (19), which is obtained
using the final set of stiffnesses reported in Table 5. Before carrying out the iterations to achieve the results
in Table 5, we verified that the second type of test was not influenced by the first three identified stiffnesses.
This is clear looking at the plot in Fig. 9a, where it can be observed that the most relevant energy contributions
are related to the last two material parameters to be identified. Further evidence of this fact is provided by the
plot in Fig. 9b, which shows the axial placement of the line 2 indicated in Fig. 7 during the out-of-plane shear
test (3D and 2D first trial) by using for the 2D model the first three identified stiffnesses. Clearly, this axial
placement is independent of Kn and Kt .

Fig. 12 Compression test. The legend refers to the out-of-plane displacement, u3

Fig. 13 In-plane shear test and compression test, evaluation points
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In Fig. 10, the results of the fitting process for the out-of-plane bias shear test are shown. The plots report
the comparison of the deformation energy and of the deformed shape between the macro-model and the
micro-model.

4 Results of the identification process

In order to test the actual forecasting capability of the identified macro-model toward the 3D Cauchy model,
we compare both in two other tests different from the ones used for the fitting. The view of 3D deformed
shapes for both tests (see Figs. 11, 12) suggests referring to them as in-plane (even if buckling is observed,
see [12,38,40]) shear test and in-plane (even if, also in this case, buckling is observed) compression test,
respectively. The in-plane shear test prescribes the following boundary conditions: the short left side of the
specimen is clamped, while the right short side is clamped and displaced rigidly upward (see Fig. 11a). The
in-plane compression test prescribes the short left side to be fixed and a slider to be applied to the right one,
with an inward uniform imposed displacement (see Fig. 12a).
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Fig. 16 In-plane shear test, comparisons between micro- and macro-reaction forces
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Firstly, let us consider the in-plane shear test. As experimentally observed in [12], this type of test produces
instability phenomena, which cause out-of-plane displacements of some regions of the specimen (see Fig. 11
where a numerical simulation is exhibiting this instability). The emergence of instability phenomena is both
experimentally and numerically linked to the presence of defects. Experimentally, these defects can be geo-
metrical (as in the numerics) or due to other factors (badly grasped specimen, asymmetry in the transmission
of the load, internal imperfections of the specimen, etc.). Specifically, in the 3D model a small rotation has
been assigned to the displaced side. Similarly, an imperfection has been assigned to the long sides of the
homogenized model by applying a small force on the long sides, in correspondence of the points where the
out-of-plane motion was expected.

By including such imperfections, it has been possible to obtain results allowing to perform the validation.
For the validation, we compare some physical quantities: the total strain energy, the deformed shape (of the
material lines in Fig. 7a, b), the reactions at the fixed edge and the out-of-plane displacement of one point P ,
which is at the vertex of the buckled region (see Fig. 13c, d). In Fig. 14a, the strain energy versus imposed
displacement is plotted. The two curves are almost coincident, which means that the constitutive parameters
introduced in the macro-model globally produce the same energy content, even in situations different from
those used for their identification. Furthermore, the comparison between the deformed shapes in Fig. 14b
displays small differences of few millimeters between the plotted curves for the probe points and lines labeled
1 and 2 in Fig. 7a, b.

Even more significant is the micro–macro-correspondence in Fig. 15, where the displacement of point P
along the z axis is plotted. In Fig. 15, it is shown that the twomodels, in the in-plane shear test, are characterized
by the same critical value of the displacement (after which buckling occurs). A further confirmation is provided
by the plots of reaction forces in Fig. 16. We can observe that along the tangential and in-plane normal
directions the agreement is very good between the curves, while along the out-of-plane direction there are
some nonnegligible differences, despite having a similar trend. Such discrepancies might be a consequence of
hypotheses lying at the basis of the reduced macro-model. Indeed, in the reduced description at macro-level,
pivots’ ‘shearing’ and ‘bending’ contributions —which are very likely to be relevant— have not been taken
into account.

The second validation experiment gave similar results for all the quantities analyzed and discussed above.
Indeed, the plots in Fig. 17a, b (strain energy and deformed shape of probe middle line) for the two models
are almost overlapping. The out-of-plane displacement of a point Q (which reference position is shown in
Fig. 13a, b, being at the vertex of the buckled shape in the current configuration) is reported in Fig. 18, while
for reactions see Fig. 19. Considerations similar to those made for reactions shown in Fig. 16 can be made for
Fig. 19.
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Fig. 19 Compression test, comparisons between micro- and macro-reaction forces

5 Conclusions

The development of innovative new materials with specifically built microstructure requires predictive and
efficient numerical models for properly simulating their mechanical behavior. While a 3D model is quite
respectful of the first requirement, it is not likewise from the efficiency point of view. Until automatic calculus
will not have a better capability of solving in a reasonable time the computationally complex equation systems
required for the simulation of 3D models, reduced-order models will be necessary. In this paper, we dealt with
an identification process of constitutive mechanical parameters of a homogenized 2D model with those of a
3D Cauchy pantographic structure. Differently from other cases, we considered also out-of-plane motions and
strains. The work was divided in two steps with the aim of considering separately the energetic terms related
to plane strains and out-of-plane ones. Firstly, we performed a plane bias extension test and we identified Ke,
Kg and Ks . Then, by means of an out-of-plane bias shear test, we found Kn and Kt . Validation experiments
have confirmed the goodness of the performed identification. It is remarkable that the results obtained for the
in-plane shear test accurately reproduce the buckling response.

In appendix, a sensitivity study of the identified stiffnesses demonstrates that the identification carried out
is consistent and, as far as possible, unambiguous. Furthermore, we note that the stiffness Ks related to the
shear strain is the mechanical parameter characterizing prominently the response under uniaxial extension. As
a matter of fact, a change in Ks implies the greatest differences on the objective function in Eq. (18).
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A Appendix: Sensitivity of identified parameters

The identification process made possible to find a set of stiffnesses characterizing the mechanical behavior of
the pantographic structure. The subsequent step of our investigation consists in estimating the sensitivity of
the objective function upon changes in the constitutive parameters.

To this aim, further simulations were carried out using the macroscopic model. The values of identified
stiffnesseswere changed individually, and the results were comparedwith those obtained using such unchanged
stiffnesses.

The in-plane bias extension test and the three stiffnesses Ke, Kg and Ks that characterize its mechanical
behavior were initially considered. As mentioned before, in each simulation mechanical parameters were
increased or decreased individually by ± 10% and ± 20%. The outcome of such analysis is that there is one
mechanical parameter which characterizes most the response under extension, that is, the stiffness Ks related
to the shear strain. Indeed, it is possible to notice that a change in Ks produces the greatest differences on
every contribution to the objective function in Eq. (18) (see Figs. 20b, 22b, 24b). In Figs. 21b, 23b and 25b,
the relative differences of contributions to the objective function with respect to the unchanged identified
stiffnesses are plotted.

In Fig. 22a–c, the angle θ is plotted varying the parameters Ke, Ks and Kg , respectively, in a neighborhood
of the identified stiffnesses. In Fig. 23a–c, the relative difference for the angle θ is plotted varying, respectively,
Ke, Ks and Kg . From this last figure, it can be observed that the relative difference of θ is comparable for
similar relative changes in the stiffnesses Ke and Ks , while relative differences aremuch less when Kg changes.
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It is remarkable that the angle φ seems to depend on all the three stiffnesses in a similar way, as they
produce comparable effects in each parametric study (see Figs. 24, 25).

Sensitivity analysis varying the constitutive stiffnesses has been carried out for the out-of-plane bias shear
test too. As for the previous case, we want to evaluate the changes in the quantities involved in the objective
function when Kn and Kt are varied of a certain amount. Also in this case, we consider relative changes of
stiffnesses of ± 10% and ± 20%. In Fig. 26, we observe that the magnitude of strain energy depends similarly
both on Kn and on Kt . Furthermore, the sensitivity of the model is relevant for these two stiffnesses as shown
by plots in Fig. 27. Indeed, relative changes of the stiffnesses, say of X%, produce relative differences in the
related quantities appearing in the objective function of about X/2%.
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