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Abstract The aimof the present study is to assess the suitability of the extended finite elementmethod (XFEM)
combined with the cohesive zone model (CZM) and also the incremental method together with the maximum
tangential stress (MTS) criterion in predicting the fracture load and crack trajectory of key-hole notched brittle
components subjected to mixed mode I/II loading with negative mode I contributions. For this purpose, a
total number of 63 fracture test results, reported recently in the literature on the key-hole notched Brazilian
disk (Key-BD) specimens made of the general-purpose polystyrene (GPPS) under mixed mode I/II loading
with negative mode I contributions, are first collected. Then, the experimentally obtained fracture loads of the
tested GPPS specimens are theoretically predicted by means of XFEM combined with CZM. Additionally,
the crack trajectory in the tested Key-BD specimens is predicted by using both XFEM combined with CZM
and the incremental method combined with MTS criterion. Finally, it is shown that both the fracture load and
the crack trajectory could successfully be predicted by means of the two proposed methods for different notch
geometries.

Keywords Brittle fracture · Cohesive zone model (CZM) · Extended finite element method (XFEM) ·
Key-hole notch · Negative mode I

List of symbols

ASED Averaged strain energy density
ASED-EFC Averaged strain energy density based on the equivalent factor concept
bi Gradient vector of the shape function associated with node i
CTSN Compact-tension-shear-notched
CZM Cohesive zone model
D Fourth-order elastic moduli tensor
E Young’s modulus
ES The element size applied to the notch border
f ( ) Softening function
Gf Specific fracture energy
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FIA Fracture initiation angle
FVSD Flattened V-notched semi-disk
GPPS General-purpose polystyrene
H( ) Heaviside function
Key-MS Key-hole notch mean stress
Key-MTS Key-hole notch maximum tangential stress
KI Mode I stress intensity factor
KII Mode II stress intensity factor
KIc Plane strain fracture toughness
Key-BD Key-hole notched Brazilian disk
LEFM Linear elastic fracture mechanics
LCC Load-carrying capacity
lch Characteristic length
L1 Total slit length in the Key-BD specimen
L2 Diameter of the Key-BD specimen
MS Mean stress
MTS Maximum tangential stress
n Unitary vector normal to the maximum principal stress
NFM Notch fracture mechanics
Ni ( ) Shape function associated with node i
PS Point stress
RNL Relative notch length
SED Strain energy density
SIF Stress intensity factor
t Traction vector
T Cohesive traction
u() Displacements field
ui Nodal displacements of node i
VSC V-notched stepped cottage
w Crack opening vector
w̃ Equivalent crack opening
XFEM Extended finite element method
β Loading angle in the Key-BD specimen
βII Loading angle corresponding to pure mode II loading
δ Virtual crack opening displacement
ν Poisson’s ratio
ρ Notch tip radius
σu Ultimate tensile strength
σϑϑ Tangential stress
ϑ0,Exp. Fracture initiation angle obtained from the experiment
ϑ0,Key−MTS Fracture initiation angle obtained from the key-hole notch maximum tangential stress crite-

rion
ϑ0,XFEM Fracture initiation angle obtained from the extended finite element method

1 Introduction

Engineering components or machine elements which are made of brittle or quasi-brittle materials like ceramics
or brittle polymers are susceptible to sudden fracture without any precaution. Hence, prevention of brittle
fracture would be of more importance than that of ductile rupture, which normally occurs in a stable manner.
As could widely be seen in engineering components, different shapes of notches, such as U, V and O shapes,
are normally utilized in the components for various design purposes, like transferring the loads and connecting
two or more components together. Beside their wide applications and usefulness, as a disadvantage notches are
sources of stress concentration at their neighborhood. The concentrated stress field may cause cracking at the
notch border, and if the material is brittle or quasi-brittle, the rate of crack growth will increase dramatically
such that it cannot be captured with naked eye. Therefore, due to its great importance, brittle fracture in notched
members is still an active research topic.
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Fig. 1 Hole-drilling method for removing cracks emanating from a U-notch border

Unlike the original notch shapes (e.g., U, V or O shapes), some notch features are not present in the initial
design of components, but they are resulted from applying a repairingmethod, such as the hole-drillingmethod,
that removes a damage or crack emanating from the points of high stress concentration during the service life.
For instance, if a small crack initiates from the tip of a U-notch, a usual repairing method is to remove the
crack by drilling a hole which has a radius equal to the crack length. After the repairing process, a new notch,
called the key-hole notch takes, shape (see Fig. 1). In fact, the hole-drilling method removes the crack and
hence reduces significantly the stress concentration around the cracked notch border.

Due to the importance of preventing notch failure in brittle structural components, it is essential to develop
appropriate fracture models for designing the notched brittle components subjected to different loading con-
ditions. Up to now, several brittle fracture models have been suggested and utilized in the literature to predict
the failure behavior of different notched components under various loading conditions. Some of them like the
generalized J-integral [1–4] and the strain energy density (SED) [5–8] are energy-based criteria, and some
others are stress-based criteria such as the point stress (PS) and the mean stress (MS) criteria [9–12]. The cohe-
sive zone model (CZM) is, however, another well-known fracture model in the context of the notch fracture
mechanics (NFM) [13–16].

In the 1960s, the cohesive zone model (CZM) was first proposed by Dugdale and Barenblatt [17,18]. In
the 1970s, Hillerborg et al. [19] extended CZM to explain the fracture trajectory in notched components in
which no initial macroscopic crack existed at the notch border. Their research work was the starting point for
applying CZM to notched problems. The CZM is closely associated with the extended finite element method
(XFEM). In fact, XFEM is a numerical method that exists inside the common finite element (FE) codes,
and it is usually linked to CZM for failure prediction. In recent years, XFEM has been widely utilized as
an efficient numerical method for failure analysis of the cracked components, especially for predicting the
fracture trajectory in cracked and notched members. Over the past decade, some new extensions of XFEM
have been proposed in the literature [20–29]. For instance,Wells and Sluys [20] had investigated the fracture of
concrete materials under mixed mode loading by combining XFEM with CZM and compared the predictions
of the fracture trajectory with the experimental results. Moes and Belyschco [21] utilized XFEM for the
crack growth problems in which a cohesive law is considered on the crack faces. Mariani and Perego [22]
proposed a numerical methodology to simulate the crack propagation in quasi-brittle materials. Meschke and
Dumstor [23] proposed a variational format of XFEM for prediction of cohesive cracks propagation in brittle
and quasi-brittle components. An extended finite element method with analytical solution for cohesive crack
modeling has been presented by Cox [24]. Giner et al. [25] had introduced an implementation of XFEM for
fracture problems by using the ABAQUS finite element software. Ingraffea and co-researchers [26–28] had
investigated the fracture trajectory for blunt V-notches in different types of gear teeth subjected to static and
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fatigue loading conditions. Moreover, Seidenfuss et al. [29] had studied some failure models for predicting the
fracture trajectory in ductile components.

Some valuable researches have been published byRabczuk and co-researchers inwhich the failure behavior
of some complex cracked structures has been analyzed and predicted by some new computational methods
with various mesh algorithms [30–40]. Some efficient FEM-based computational methods have been proposed
in [30–32] for fracture prediction of brittle, quasi-brittle and ductile materials subjected to the basis of edge
rotations. Also, a crack propagation algorithm based on the screened Poisson equations and local re-meshing
techniques has been proposed for analyzing the damage behavior in some cracked components under various
loading conditions [33]. Additionally, some efficient approaches based on the mesh-free and extended mesh-
free methods have been proposed for modeling discrete cracks in several 2D and 3D problems subjected to
static and dynamic loadings [34–38].

Beside the research works mentioned above, which have been performed on the specimens weakened by
notches of original shapes, some investigations have also been performed dealing with brittle fracture in key-
hole notched components bymeans of the NFM failure criteria [41–49]. Kullmer and Richard [50] investigated
brittle fracture in key-hole notches by using the compact-tension-shear-notched (CTSN) specimens made of
PMMA under mixed mode I/II loading. To predict the experimentally obtained fracture loads, they employed a
stress-based fracture model [50]. Moreover, brittle fracture in key-hole notched rectangular specimens made of
isostatic graphite has been studied in a valuable research by Lazzarin et al. [43]. They have tested the notched
specimens under mode I and mixed mode I/II loading conditions and successfully predicted the experimental
results by means of the SED criterion [43]. More recently, a few papers have been published by Torabi and
co-researchers regarding brittle fracture of key-hole notched specimens under mode I [44,45], mode II [46],
and mixed mode I/II [42,48,49] loading conditions.

Although among the loadingmodes, puremode I andmixedmode I/II loadings have attracted great interests
because of their widespread practical applications, in recent years some researchers have studied the failure
behavior of notched components under compression loading (the compression loading is now well known in
the literature as the negativemode I loading). Berto et al. [51] had assessed brittle fracture ofV-notcheswith end
holes (VO-notches) under negative mode I loading conditions. They have reported the test results on fracture
load of the double VO-notched rectangular specimens made of graphite under pure compression loading, and
the experimental results have been evaluated by means of the SED criterion [51]. In a separate research, Torabi
and Ayatollahi [52] haD re-predicted the experimental results reported in [51] by means of the point stress (PS)
and mean stress (MS) brittle fracture criteria. Recently, two research studies have been conducted on brittle
failure of blunt V-notches under pure compression. To investigate brittle fracture in V-notched components
under pure compressive loading, two new test specimens, namely the flattened V-notched semi-disk (FVSD)
and the V-notched stepped cottage (VSC) specimens, have been suggested and utilized in [53,54]. The fracture
loads of the specimens reported in [53,54] have also been predicted successfully by means of the PS and MS
criteria. Moreover, in a review paper, Ayatollahi et al. [55] had recently reviewed a large number of researches
in which brittle fracture has been studied for engineering components containing some types of notches under
different loading conditions.

A research has been more recently performed by Torabi et al. [42] on brittle fracture of key-hole notched
Brazilian disk (Key-BD) specimens under mixedmode I/II loading with negative mode I contributions. In [42],
the experimentally obtained fracture loads of the tested Key-BD specimens have been well predicted by using
the two stress-based criteria, namely the key-hole notch maximum tangential stress (Key-MTS) and key-hole
notch mean stress (Key-MS) criteria. At the best of the author’s knowledge, the latest work on this subject has
been published in [41]. In [42], the present authors have re-predicted the experimental results reported in [42]
by means of the two energy-based criteria, namely the averaged strain energy density (ASED) and averaged
strain energy density based on the equivalent factor concept (ASED-EFC) criteria [41].

In the present research, the extended finite element method (XFEM) is utilized in conjunction with the
cohesive zone model (CZM) in order to predict the fracture loads of the tested Key-BD GPPS specimens
reported recently in [42]. Additionally, the crack trajectory of the tested specimens is predicted by means of
twomethods, namelyXFEMbased on the linear CZMand the incrementalmethod on the basis of themaximum
tangential stress (MTS) criterion. It is revealed that the XFEM-CZM approach could provide generally good
predictions to the experimental results, including the fracture load, the fracture initiation angle (FIA) and
the crack trajectory of the tested GPPS specimens. Revealed in this study is also that the incremental method
supported byMTS criterion could predict the crack trajectorieswell, although it needsmore time for predictions
compared with the XFEM-CZM approach.
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Table 1 Mechanical properties of the tested GPPS at room temperature [42]

Material property Value

Elastic modulus, E (MPa) 3100
Poisson’s ratio, υ 0.34
Ultimate tensile strength, σU (MPa) 30
Plane strain fracture toughness, KIc (MPam0.5) 1.4

2 Experimental results

Torabi et al. [42] had published a research paper in which extensive fracture test results have been reported
for the key-hole notched Brazilian disk (Key-BD) specimens under mixed mode I/II loading with negative
mode I contributions. The material and the test specimen utilized in [42] are elaborated in the forthcoming
subsections.

2.1 Material

The material studied by Torabi et al. [42] is a type of glassy polymer, namely the general-purpose polystyrene
(GPPS), with the properties summarized in Table 1. It has been reported in [42] that GPPS exhibits well the
brittle fracture behavior.

2.2 Specimen

The specimen utilized by Torabi et al. [42] for fracture tests has been the Brazilian disk specimen weakened by
key-hole notches (Key-BD specimen) and subjected to mixed I/II loading with negative mode I contributions.
Figure 2 schematically represents the Key-BD specimen in which the parameters ρ, β, L1, L2, t and P
are the notch tip radius, the loading angle (i.e., the angle between the applied load direction and the notch
bisector line), the slit length, the disk diameter, the disk thickness and the remotely applied load, respectively.
Moreover, the distance between the two flanks of the key-hole notch has been considered to be equal to ρ.
The slit length L1 has been considered to be equal to 24 and 40mm, resulting in two different values of
the relative notch length (RNL) L1/L2 equal to 0.3 and 0.5, respectively. For the specimens with L1/L2 =
0.3, three notch radii of 1, 2 and 4mm have been considered, whereas four radii of 1, 2, 4 and 6mm have
been considered for those with L1/L2 = 0.5. The disk thickness and diameter are equal to 7.8 and 80mm,
respectively.

When the loading angle (β) is zero, the key-hole notch experiences only pure tensilemode I loading (i.e., the
opening mode) because the tangential stress values on the notch bisector line are positive. By changing β from
zero to larger values, the loading type changes from pure tensile mode I toward pure mode II. The loading angle
corresponding to pure mode II loading is called βII. If β increases gradually from βII, the loading conditions
vary from pure mode II toward mixed mode I/II loading with negative mode I contributions. Therefore, for
0◦ < β < βII, the notch is subjected to mixed mode I/II loading conditions with positive mode I contributions,
while for βII < β < 90◦ with negative ones. Previously, the present authors have reported in [42] that four
various loading conditions could exist in the Key-BD specimen as follows: (i) when the loading angle (β) is
zero, the specimen experiences only pure positive mode I loading; (ii) when the angle β gradually increases
from zero to βII, the loading conditions change to mixed mode I/II loading with positive mode I contributions;
(iii) if the loading angle reaches the specified value βII, the specimen experiences only pure mode II loading,
and finally; (iv) when the loading angle gradually increases from βII to 90◦, the loading conditions change
from pure mode II toward mixed mode I/II loading with negative mode I contributions. All of the loading
conditions are schematically shown in Fig. 2.

Torabi et al. [42] had found that the values of βII are equal to 29.5
◦
and 24.5

◦
for RNL = 0.3 and

RNL = 0.5, respectively. In order to explain how to obtain the βII values for the Key-BD specimens, some
numerical finite element (FE) stress analyses are performed in this study for the notch tip radii equal to 2mm.
The variations of the tangential stress at the notch tip versus the loading angle β for the specimen of ρ = 2mm
with RNL = 0.3 and 0.5 are plotted in Fig. 3. An arbitrary constant load of 1000 N is applied to the entire FE



592 H. R. Majidi et al.

P

P

L2

ρ

t

L1

β

2

1 3

4

Mixed mode I/II loading with 
positive mode I contributions

2

Pure tensile mode І
loading (β = 00)

1

Pure mode ІІ loading 
(β = βΙΙ)

3

Mixed mode I/II loading with 
negative mode I contributions

4

Fig. 2 The Key-BD specimen

models. Figure 3 shows that the Key-BD specimen with RNL = 0.3 begins experiencing the negative mode
I loading when the loading angle reaches βII = 29.5◦, whereas for the Key-BD specimen with RNL = 0.5,
the βII value is equal to 24.5

◦
. In fact, βII is a particular angle at which the key-hole notch experiences zero

tangential stress at its tip.
By using the FE stress analyses, Torabi et al. [42] had shown that although brittle failure in the Key-BD

specimens under mixed mode I/II loading with negative mode I contributions occurs from the applied load side
of the notch border by local tensile stresses, the notch bisector line and the other side of the notch border sustain
compressive stresses. In fact, this phenomenon explains the concept of the compressive shear loading in the
Key-BD specimen. To providemixedmode I/II loadingwith negativemode I contributions in theKey-BD tests,
Torabi et al. [42] had examined four various loading angles β equal to 0, 30, 50 and 70. In the experiments, the
test speed has been equal to 1mm/min, providing quasi-static loading conditions. To check the repeatability of
the experimental results, they have conducted three tests for each specimen. All in all, 84 fracture tests under
displacement control conditions have been performed and reported in [42].

The experimentally obtained fracture loads of the tested Key-BD GPPS specimens reported in [42] are
presented in Table 2 for various geometries of the specimen. As seen in Table 2, each specimen is denoted by
a specific index as, RNL−ρ −β. Also, Pi (i = 1, 2, 3) and Pav. denote the fracture loads of the three repeated
tests and the average value of the three experimentally obtained fracture loads, respectively. Additionally, the
experimentally obtained fracture initiation angles for the tested Key-BD specimens are summarized in Table 3
(ϑ0i values). It has been reported in [42] that the load–displacement curves recorded from the fracture tests are
linear up to final breakage and the fracture takes place suddenly with no effective plastic deformations around
the notch border (see Fig. 4). Therefore, we are allowed to utilize any brittle fracture models in the context of
the linear elastic notch fracture mechanics (LENFM) for fracture load prediction of the tested Key-BD GPPS
specimens.
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Fig. 3 Variations of the tangential stress at the notch tip versus the loading angle β in the Key-BD specimen of ρ = 2mm and
RNL = 0.3 and 0.5

Table 2 Summary of the test results on the fracture load of the Key-BD GPPS specimens [42]

RNL−ρ−β P1 (N) P2 (N) P3 (N) Pav (N)

0.3–1–30 4049 3900 3888 3946
0.3–1–50 3014 3279 3330 3208
0.3–1–70 4429 4180 3950 4186
0.3–2–30 4188 4359 4080 4209
0.3–2–50 3790 4200 3612 3867
0.3–2–70 4842 4200 4367 4470
0.3–4–30 4560 4698 4521 4593
0.3–4–50 4220 4744 4129 4364
0.3–4–70 4842 4274 4256 4457
0.5–1–30 1767 2077 1908 1917
0.5–1–50 2228 2655 2493 2459
0.5–1–70 3715 3808 4102 3875
0.5–2–30 2289 2332 2277 2299
0.5–2–50 2537 2688 2686 2637
0.5–2–70 3606 3333 3183 3374
0.5–4–30 2768 2557 2828 2718
0.5–4–50 2491 2590 2807 2629
0.5–4–70 3005 2925 3010 2980
0.5–6–30 2817 2845 2879 2847
0.5–6–50 2464 2514 2703 2560
0.5–6–70 2720 3108 2975 2934
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Table 3 Experimentally obtained fracture initiation angles for the Key-BD GPPS specimens [42]

RNL−ρ−β ϑ01 (◦) ϑ02 (◦) ϑ03 (◦) ϑ0av (◦)

0.3–1–30 45 50 58 51
0.3–1–50 53 80 82 72
0.3–1–70 96 102 92 97
0.3–2–30 45 36 37 39
0.3–2–50 65 76 70 70
0.3–2–70 98 110 100 103
0.3–4–30 35 38 35 36
0.3–4–50 65 68 67 67
0.3–4–70 95 93 92 93
0.5–1–30 60 61 62 61
0.5–1–50 92 90 91 91
0.5–1–70 102 110 104 105
0.5–2–30 63 62 60 62
0.5–2–50 80 74 75 76
0.5–2–70 115 112 100 109
0.5–4–30 54 56 52 54
0.5–4–50 80 83 87 83
0.5–4–70 110 95 100 102
0.5–6–30 45 43 44 44
0.5–6–50 73 75 70 72
0.5–6–70 80 81 74 78
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Fig. 4 Some load–displacement curves regarding the Key-BD GPPS specimens

3 Fracture prediction models

In this section, two theoretical fracture prediction models, namely the extended finite element method (XFEM)
based on the linear cohesive zone model (CZM) and the incremental method based on the maximum tangential
stress (MTS) criterion, are elaborated for predicting the experimental results presented in Sect. 2.

3.1 Extended finite element method in combination with CZM

One of thewell-established numerical methods to predict the crack trajectory and load-carrying capacity (LCC)
of engineering components is the extended finite element method (XFEM). For the first time, Belytschko and
Black [56] proposed this numerical method, and after that, it has been frequently utilized in many fracture-
related researches. The basis of XFEM is that it allows the elements to create discontinuities inside them by
enriching the degrees of freedom of the elements. The XFEM has several advantages in comparison with the
common numerical methods. For instance, this method does not need to apply a very small mesh size at the
neighborhood of the discontinuities and also this method has the ability to predict the crack trajectory of the
tested notched specimens.
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To apply XFEM to a theoretical brittle fracture prediction, a failure criterion in the context of LEFM should
be linked to it. Hence, the failure model utilized in this research is considered to be the linear elastic cohesive
zone model (CZM). Barenblatt [18] was the first one who proposed CZM for brittle fracture prediction. The
CZM is based on the assumption that a fracture process zone extends before the formation of a physical crack
in the defective material. In the fracture process zone, the material experiences a progressive degradation that
starts from the pre-existing crack or notch tip, where the stresses are maximum, and ends at a finite distance
ahead of the crack or notch tip after which the material is unscathed.

The CZM model utilized in this research has been previously proposed in [25–28], and it is presented
here for predicting the fracture results of the Key-BD GPPS specimens under mixed mode I/II loading with
negative mode I contributions. The CZM can be considered in a linear elastic fracture model in which the first
crack initiates when the maximum principal stress attains the ultimate tensile strength of material. Also, the
orientation of the initiated crack is perpendicular to the direction of the maximum principal stress. Below, the
basic information of CZM is briefly described.

In the first steps of loading process, the material behaves as a linear elastic material while the maximum
principal stress has not reached the ultimate tensile strength. Hence, the stress components are obtained by the
following expression:

σ = Dε (1)

in which D, σ and ε are the fourth order of the elastic modulus tensor, the Cauchy’s stress tensor and the
strain tensor, respectively. When the principal stress in an element attains the ultimate tensile strength (as a
critical stress of the tested material), an initial crack forms in the element perpendicular to the direction of the
maximum principal stress (n). Also, the crack opening component is characterized by the vector w, which is
assumed to be a constant value along the crack trajectory. This concept is illustrated in Fig. 5.

As shown in Fig. 5, when the crack forms in the element, it changes into two subdomains in which the
lower and upper domains of the discontinuous element are called A− and A+, respectively. The nodes related
to the domain A+ are referred to as solitary nodes. Therefore, the jump in displacement field within the element
created by the crack can be written as follows:

u (x) =
∑

α∈A−∪A+
Nα (x) uα +

⎡

⎣H (x) −
∑

α∈A+
Nα (x)

⎤

⎦w (2)

where α is the index of element node, uα is the corresponding nodal displacement, and Nα (x) is the traditional
shape function associated with the node α. Also, H (x) is the Heaviside jump function whose values for regions
A− and A+ are assumed to be equal to zero and one, respectively.
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Figure 6 illustrates the concept of the enriched nodes inXFEM-CZMapproach.According to the continuum
mechanics, the strain field is evaluated by considering the symmetric part of the gradient to the displacement
field proposed in Eq. (2). Hence, Eq. (3) is obtained here for strain field as follows:

εc (x) =
∑

α∈A−∪A+
[bα (x) ⊗ uα]

S +
⎡

⎣
∑

α∈A+
bα (x) ⊗ w

⎤

⎦
S

(3)

where bα (X) expresses the gradient of the shape function related to node α. Also, the symbol “⊗” denotes
the tensor product. Paying attention to the finite element method (FEM), it can be concluded that the first part
of Eq. (3) represents the strain field the element would have if no crack exists in it. Therefore, the first term of
Eq. (3) is known as apparent strain,

εa (x) =
∑

α∈A−∪A+
[bα (x) ⊗ uα]

S (4)

Hence, Eq. (4) can be simply changed into Eq. (5) as follows:

εc (x) = εa (x) −
⎡

⎣
∑

α∈A+
bα (x) ⊗ w

⎤

⎦
S

(5)

By substituting b+ (x) = ∑
α∈A+ bα (x) in Eq. (5), it can be rewritten as

εc (x) = εa (x) − [
b+ (x) ⊗ w

]S
(6)

Equation (6) presents the strain field of an element containing a crack. Thus, the stress tensor can be defined
by the following expression:

σ (x) = D
[
εa (x) − [

b+ (x) ⊗ w
]S]

(7)

According to CZM, the stresses are governed by the softening curve and due to the fact that crack may initiate
and grow in different in-plane modes, a central force model is utilized as

t = f (w̃)
w

w̃
(8)

The function f (w̃) is the softening curve, and t is the traction vector transferred along the crack. The variable
w denotes the equivalent crack opening. According to Eq. (8), the relationship between the traction vector and
the crack opening vector is proportional, and its modulus is obtained by the softening curve. These concepts
are depicted in Fig. 7.

Note that by comparing Eqs. (7) and (8), it can be found that the traction vector in the crack is a constant
value, while the stress components in the continuum are a tensorial field. Therefore, by determining the rela-
tionship between the projection in the n direction of the stress tensor and the traction vector, Eq. (9) is obtained
as follows: (

D
[
εa (x) − [

b+ (x) ⊗ w
]S])

n = f (|w|) w

|w| (9)

As is evident in Eq. 9, the only unknown parameter isw vector, which can be determined by numerical methods.

3.2 Incremental method based on Key-MTS criterion

One of the well-known classical approaches for crack trajectory prediction in engineering components is the
incremental method. According to this method, the location of the first crack emanating from the key-hole
notch border is first obtained by means of the Key-MTS criterion. Then, a short crack is created at the obtained
location and a new FE analysis is performed for the cracked key-hole notch in order to determine the growth
direction of the first crack. The next step is to create the second short crack at the determined direction and
predict its growth direction. These iterative numerical calculations should be continued until the specimen
is separated into two parts (i.e., breaks). Note that the shorter embedded cracks result in more resolution of
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Fig. 8 Incremental crack growth process

the incremental method. The incremental method of crack growth is depicted in Fig. 8. Similar to XFEM,
the incremental method should also be coupled with a suitable brittle fracture criterion. Therefore, the MTS
criterion is utilized herein as a well-known brittle fracture criterion for predicting the crack trajectory.
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Fig. 9 A key-hole notch with its brittle failure definitions related to the Key-MTS criterion

In recent years, Torabi and co-researchers [42,47,49] had extended the classic MTS criterion to key-hole
notched domains and proposed the Key-MTS criterion. They have successfully verified the validity of the
Key-MTS criterion by means of extensive experimental results obtained from testing the Key-BD specimens.
According to this criterion, brittle fracture occurs when the tangential stress σθθ at a specified critical distance
rc ahead of the notch border reaches the critical stress called σc. In several references [9–11], it has been demon-
strated that the critical stress could be assumed to be equal to the ultimate tensile strength of material (σu).
Additionally, the Key-MTS criterion expresses that the brittle fracture initiates from a location on the notch
border at which the value of the tangential stress is maximum and propagates radially along the direction per-
pendicular to the notch border. The failure concept of theKey-MTS criterion is schematically depicted in Fig. 9.

4 Numerical analysis

The numerical analyses of the two theoretical fracture prediction models proposed in Sect. 3 are elaborated in
this section.

4.1 Numerical analysis of extended finite element method based on CZM approach

It is very important to note that the progressive degradation occurs when the strain in the material increases
by decreasing the material strength. According to CZM, failure initiates when the cohesive traction in the
material reaches the critical tensile stress which is normally considered equal to the ultimate tensile strength
of material. Figure 10 schematically illustrates the basic concept of CZM. In CZM, the relationship between
the cohesive traction and the crack opening displacement is as follows (see Fig. 10c):

T = f (δ) (10)

In Eq. (10), T, δ and f (δ) are the cohesive traction, the crack opening displacement and the softening function,
respectively. In fact, the softening function determines how the cohesive traction decreases as the crack opening
displacement increases. Some types of softening functions utilized for XFEM based on CZM are illustrated
in Fig. 10c. Two material properties, namely the tensile strength σu and the specific fracture energy Gf , have
great roles in the softening function. As can be seen in Fig. 10, the specific fracture energy Gf is equal to the
area under the softening curve.

As mentioned in Sect. 3, an appropriate brittle fracture model should be considered to be coupled with
XFEM for the theoretical failure predictions including the fracture load, crack trajectory and fracture initia-
tion angle. Hence, the CZM is utilized herein. For applying CZM, two essential material properties, namely
the ultimate tensile strength σu and the specific fracture energy Gf , should be given to the FE software. The
commercial FE code, which is linked to the XFEM toolbox of the Dassault systems, ABAQUS 6.13 is used
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for the numerical calculations. All material properties utilized in the FE simulations are taken from Table 1,
except for the specific fracture energy. As explained in the previous section and illustrated in Fig. 10, CZM
needs the specific fracture energy. The specific fracture energy for brittle materials can be calculated through
the Irwin’s equation [57] as follows:

Gf = KIc2

E/
(
1 − υ2

) (11)

Therefore, the value of Gf for the tested GPPS material is obtained from Eq. (11) to be equal to 0.559 N/mm.
Two rigid lines are considered at the top and bottom of the Key-BD specimen simulating the fixtures of

the universal test machine (see Fig. 13). Therefore, the boundary conditions in the FE analyses are such that
the top rigid line is constrained so that it can solely move along the loading direction and the bottom line is
completely fixed during loading. Note that the surface-to-surface contact is considered between the upper half
of Key-BD specimen and the top rigid line, as well as between the bottom half of the specimen and the bottom
rigid line. Moreover, in order to prevent rotating the disk, the upper and bottom points of the disk, which are
tangent to the top and bottom rigid lines, are fixed in the horizontal axis. The loading and boundary conditions
utilized in the FE analyses agree well with the real conditions that exist in the fracture experiments. Also,
4-node bilinear plane strain quadrilateral elements are utilized in the 2D FE models.

Unlike the CZM in combinationwith the embedded crack approach inwhich the crack propagation does not
have a considerable dependency on the finite element meshing algorithm, the crack propagation in the notched
components is almost dependent upon the element size at the notch border in the CZM approach without
any embedded crack. In both approaches, the critical distance, called the characteristic length (lch), has been
considered; however, application of this critical distance is different for each of them. In fact, in XFEM-CZM
approach utilized in the present research, the characteristic length of material allows to apply homogeneous
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Fig. 11 Variations of the element size at the notch border versus the notch tip radius in XFEM-CZM simulation of the Key-BD
GPPS specimens

meshes to the notch border by setting a special region around the notch border to generate an initial crack in
this area. In order to achieve representative simulations in XFEM-CZM approach, the element size at the notch
bordermust be limited by considering the characteristic length (lch)which is related to the fracture process zone
(FPZ).The characteristic length canbe evaluated through the following equation as previously presented in [46]:

lch = GfE(
1 − υ2

)
σu2

(12)

As can be seen in Eq. (12), the characteristic length depends on the material properties; hence, the value of
lch for the tested GPPS material is evaluated from Eq. (12) to be equal to 2.17mm. For this purpose, a new
meshing algorithm is suggested and utilized in this research paper to determine the element size at the notch
border as follows.

According to the meshing algorithm proposed herein, a circle-shaped partition whose radial size is equal
to lch should firstly be created around the notch border for all of the notched specimens tested. Then, the
element size around the notch border for the two notched specimens having the minimum radii (i.e., ρ = 1 and
2mm) must be limited as possible to a minimum size with the main constraint that multiple cracks should not
propagate within the same mesh and additionally, the element size in the fracture process zone (FPZ) should
be considered in homogeneous shape by applying the bias seed edges tool. As a result, the element size at the
notch border for the two notch geometries having the minimum radii is determined. After that, the element
size at the notch border for the other notch geometries having larger radii can be evaluated by using a new
formulation based on the mathematics principles as follows:

ESρi+1 − ESρi

ESρi+2 − ESρi

= ρi+1 − ρi

ρi+2 − ρi
(13)

where ES is the element size applied to the notch border in FPZ. Also, the indices ρi and ρi+1 denote the
notched specimens having the minimum radius and larger radius, respectively. Hence, the element size at the
notch border is variously achieved for different notch tip radii. The variations of the element size versus the
notch tip radius are plotted in Fig. 11.

It is useful to note that by performing the iteration process (i.e., determination of the element size at the notch
border with the main constraint that multiple cracks should not propagate within the same mesh) on the FE
models for the two notched specimens having theminimum radii, i.e., RNL = 0.5 and ρ = 1 and 2mm, the ele-
ment size at the notch border for the other notch geometries having larger radii can be simply estimated by using
Eq. (13). The process of evaluating the element size at the notch border is conceptually illustrated in Fig. 12.
Also, a typical mesh pattern of the Key-BD specimen with RNL = 0.5 and ρ = 4mm is depicted in Fig. 13.

In many researches, the shape of the softening function has been deeply analyzed. Up to date, although var-
ious standard types of softening curve have been proposed for different engineering materials, like bilinear and
exponential types for concrete and rectangular type for PMMAand steel, no particular method has been already
proposed in the scientific literature about how to obtain the shape of softening curve for any tested material.
In [13–16], researchers applied an iterative process to their numerical FE models to obtain the corrected shape
of the softening curve. Therefore, the present authors decided to determine the shape of softening curve by
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Fig. 13 A Key-BD specimen meshed in FE software (RNL = 0.5, ρ = 4mm

applying an iterative method to their numerical calculations. In this way, the linear softening curve is firstly
considered and applied to the numerical simulations because of its simplicity and after that, it is found that the
predictions obtained from considering this softening curve are in a good agreement with the experimentally
obtained fracture loads. Therefore, the linear softening function inwhich the specific fracture energyGf is equal
to the area under the softening curve is considered for polystyrene material utilized in this study (see Fig. 10c).
The numerical load–displacement curves obtained from the XFEM-CZM simulations are compared with the
experimental ones to verify the FE analyses performed. Figure 14 illustrates the load–displacement curves
obtained from the XFEM-CZM approach and the three repeated experimentally obtained curves for the four
arbitrarily selectedKey-BDspecimens tested undermixedmode I/II loadingwith negativemode I contributions.

As can be seen in Fig. 14, the trend of the curves shows that XFEM-CZM results are generally in a good
consistency with the experimental results for the fracture loads (i.e., the peak points). However, for some
specimens tested, such as 0.5-4-50, the peak point is satisfactorily predicted, but the load–displacement curve
is not. Moreover, for some other specimens, like 0.5-6-30, neither the peak point nor the load–displacement
curve is predicted well by XFEM-CZM approach. About the inconsistency of the load–displacement curves, it
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Fig. 14 Load–displacement curves obtained from the fracture experiments in comparison with the numerical results of the
XFEM-CZM for some of the tested Key-BD GPPS specimens

should be expressed that a commercial code with explicit time integration is utilized in all of the finite element
(FE) models. The numerical codes utilized in this research need small integration time steps, and therefore, it
is expected that the peak point (i.e., the fracture load) is reached by XFEM-CZM approach quicker than the
fracture tests. As a result, it is seen that the displacement at the peak point for XFEM-CZM approach is signif-
icantly less than that for the experiment. Hence, these effects are ignored and just the peak point is recognized
to be important for reporting the critical load of the tested specimens. Additionally, in some research papers
published, it has been stressed that there is no necessity for coinciding the load–displacement curves obtained
from the experiments and the numerical FE models [13–16]. About the specimen 0.5-6-30, however, the peak
point is not also predicted very well as shown in Fig. 14. For this specific geometry, most of the mentioned
criteria, including XFEM-CZM criterion, could not provide very good predictions to the experimental results
(see Table 5). Although the fracture load prediction of XFEM-CZM criterion is not very well for this specific
geometry, its accuracy (84%) seems satisfactory from the viewpoint of engineering.

4.2 Numerical analysis of the incremental method based on the Key-MTS criterion

In this subsection, the numerical FE analysis performed to estimate the crack trajectory by using the incremen-
tal method combined with the MTS criterion is elaborated. The whole FE analyses in this study are performed
on the Key-BD specimens with the plane strain and linear elastic assumptions. Unlike for XFEM, refined
elements should be utilized at the notch vicinity for the incremental method due to the high level of stress
gradient. Moreover, the boundary and loading conditions utilized in the incremental method are the same as
those used in XFEM approach. For each FE model of the Key-BD specimens, a polar coordinate system is
defined with the origin located on the key-hole notch bisector line at the center of curvature of the notch
border. As stated in Sect. 2, the loading angles β in Key-BD specimen which are between βII and 90◦ result in
mixed mode I/II loading with negative mode I contributions. To understand better this concept, for instance,
the tangential stress distributions around the notch border corresponding to the specimen with RNL = 0.5,
ρ = 2mm, β = 50◦ and P = 2637N are presented in Fig. 15.

This figure indicates that the key-hole notch sustains two types of stress distributions. As seen in Fig. 15, the
right half of the notch bisector line experiences tensile stresses, while the left half and the bisector line sustain
compressive stresses, meaning that the key-hole notch is subjected to mixed mode I/II loading with negative
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Fig. 15 Tangential stress contours around the notch border corresponding to the load of 2637N (RNL = 0.5, ρ = 2mm, β = 50◦)

mode I contributions. Torabi et al. [42] had recently shown that although the stress level at the compressive
side of the notch border is higher than that at the tensile side, brittle fracture always initiates from the tensile
side of the notch border.

To perform the crack trajectory estimations by means of the incremental method, first, a crack of 1mm
length is considered as an embedded crack at the notch right border where the tensile tangential stress is a
maximum. The orientation of this crack is radial and perpendicular to the maximum tangential stress. After the
first step of FE analysis, the next steps begin. As can be seen in Fig. 9, the orientations of the new embedded
cracks are obtained by means of the MTS criterion. Erdogan and Sih [58] were the first ones who proposed
the MTS criterion for predicting the fracture toughness and fracture initiation angle in brittle materials under
mixed mode I/II loading. The crack growth equation of the MTS criterion is as follows:

KISinθ0 + KII (Cosθ0 − 1) = 0 (14)

In Eq. (14), the parameters KI, KII and ϑ0 denote the mode I and mode II stress intensity factors (SIFs) and
the fracture initiation angle, respectively. The orientation of the next embedded crack (ϑ0) can be obtained by
first calculating the values of the SIFs (i.e., KI and KII) for the existing crack using the FE analysis and then
substituting into Eq. 14. These calculations are continued until the embedded cracks reach the outer boundary
of the Key-BD specimen. Note that the size of the crack embedded at each step of the incremental method is set
to be equal to 1mm. The values of the SIFs together with those of the next crack orientation (θ0) obtained for
the first 9 steps of the incremental method are presented in Table 5 for the Key-BD specimen with RNL = 0.5,
ρ = 2mm and β = 30◦. The entire values presented in Table 4 are calculated by considering the applied load
equal to 2299 N. The first nine increments of the crack growth process obtained from the incremental method
are illustrated in Fig. 16. It is worth noting that the crack trajectory prediction by the incremental method does
not depend on the magnitude of the applied load. According to Eq. 14, it depends solely on the mode mixity
ratio KII/KI. Hence, any arbitrary load could be applied to the Key-BD specimens for such a prediction.

5 Results and discussion

Three subsections of the theoretical predictions, including the fracture load, crack trajectory and fracture
initiation angle of the tested Key-BD specimens are presented in this section.
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Table 4 The values of KI and KII together with the values of the next crack orientation (θ0) for the first nine increments for the
Key-BD specimen with RNL = 0.5, ρ = 2mm, β = 30◦, and P = 2299N

Increment number KI (MPamm0.5) KII (MPamm0.5) θ0 (◦)

1 45.59 + 0.876 −2.199
2 45.41 + 0.518 −1.307
3 44.53 − 0.417 +1.073
4 43.70 − 0.760 + 1.993
5 43.03 − 0.850 +2.262
6 42.52 − 0.835 +2.247
7 42.17 − 0.775 +2.105
8 41.95 − 0.701 +1.913
9 41.86 − 0.627 +1.716

Fig. 16 The scheme of the first 9 increments of the crack growth in a Key-BD specimen obtained from the incremental method

5.1 Fracture load prediction

As mentioned previously, the experimental results presented in Sect. 2 have been recently predicted in [42] by
means of the two stress-based brittle fracture criteria, namely the Key-MTS and Key-MS criteria, and also re-
predicted in [41] by means of the two energy-based criteria, namely the averaged strain energy density (ASED)
and averaged strain energy density based on the equivalent factor concept (ASED-EFC) criteria. Hence, six
distinct predictions of the fracture load have been performed and reported in [41,42] for the Key-BD GPPS
specimens, four of which for the two stress-based criteria and the two other ones for the two energy-based
criteria. In this subsection, a discussion is made on the differences between these six fracture load results and
particularly on the new one obtained from XFEM-CZM approach. In other words, the results of XFEM-CZM
approach in predicting the experimentally obtained fracture loads of theKey-BDGPPS specimens undermixed
mode I/II loading with negative mode I contributions are compared with the other six results mentioned above
and reported in [41,42]. Thus, the variations of the fracture load of the Key-BD GPPS specimens versus the
loading angle β are plotted in Figs. 17 and 18 for the various notch tip radii and RNL ratios of 0.3 and 0.5,
respectively. As seen in these figures, the experimental results are denoted by distinct circular symbols and the
seven theoretical predictions by variously dashed and continuous solid lines.

As is obvious in Figs. 17 and 18, the trends of both the experimental results and theoretical predictions
indicate that the variations of the fracture load versus the loading angle β first decrease and then increase as β
enhances from 30◦ to 70◦ except for the two cases of RNL = 0.5, ρ = 1mm and RNL = 0.5, ρ = 2mm.More
details aboutwhy these trends are seen in Figs. 17 and 18 have been presented in [42]. Briefly speaking, Torabi et
al. [42] had conducted some FE analyses, for instance for the Key-BD specimen of RNL = 0.3, ρ = 2mm, by
applying the constant external load of P = 1000N at various loading angles β and plotted the variations of the
maximum tangential stress versus the loading angle. The plot showed that the value of the maximum tangential
stress first increases and then decreases, meaning that the fracture load first decreases and then increases. This
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Fig. 17 Variations of the theoretical and experimental fracture loads of the Key-BD GPPS specimens versus the loading angle β
for the RNL = 0.3 and various notch tip radii

result of the FE analyses was in a good consistency with the trend of the experimental results. Therefore, it is
expected that similar justifications can also be provided for the trends of the other tested Key-BD specimens.

Table 5 presents the discrepancies between the experimental results of the fracture load and the six theo-
retical predictions reported in [41,42] plus the other ones obtained from XFEM-CZM approach. As seen in
Table 5, the average discrepancies for the ASED and ASED-EFC criteria are almost identical and equal to
8.3 and 8.8%, respectively, while for the Key-MTS and Key-MS criteria with the theoretical critical distances,
they are obtained to be equal to 12.7 and 10.7%, respectively. Also, the discrepancies of the Key-MTS and
Key-MS criteria based on the experimentally obtained critical distances are resulted to be equal to 8.3 and 7.7%,
respectively. A particular attention to Table 5 indicates that the average discrepancy for the newly proposed
XFEM-CZM approach is 8.8%.
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Fig. 18 Variations of the theoretical and experimental fracture loads of the Key-BD GPPS specimens versus the loading angle β
for the RNL = 0.5 and various notch tip radii
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Table 5 Percent discrepancies between the experimental results of the fracture load and the theoretical results

d/D−ρ−β ASED ASED-EFC Key-MTS theor.
critical distance

Key-MTS exp.
critical distance

Key-MS theor.
critical distance

Key-MS exp.
critical distance

XFEM-CZM

0.3–1–30 4.2 1.2 12.6 8.4 9.6 6.4 1.2
0.3–1–50 11.8 17.7 2.3 7 26.3 8.8 10.0
0.3–1–70 10.8 19.8 6.6 11.3 26 10.7 9.6
0.3–2–30 3.9 3.4 14.1 2.6 6.6 1.7 9.8
0.3–2–50 6.5 3.3 16.3 5.7 3.1 4.6 11.6
0.3–2–70 3.9 2.3 15.1 5.1 2.6 4.6 10.2
0.3–4–30 9.5 6.7 18 7 2.9 7 10.2
0.3–4–50 13.3 7.5 20.4 10.6 6.6 10.3 13.8
0.3–4–70 12.6 6.7 20 10.3 6.4 10 12.9
0.5–1–30 19.2 27.9 7.9 17.9 33.3 19.9 17.3
0.5–1–50 7.3 13.5 2.8 5.9 16.9 6.2 0.9
0.5–1–70 5.6 19.3 8.7 18.3 24.8 15 4.6
0.5–2–30 2.9 13 6.9 0 13.8 2.4 1.3
0.5–2–50 7.1 2 16.2 9.9 1.4 8.2 9.5
0.5–2–70 3.3 14.2 3.6 3.9 15.3 4.9 0.6
0.5–4–30 9.5 3.7 17 8.1 2.7 7 11.4
0.5–4–50 10.2 2.2 17 8.8 3.5 7.6 11.5
0.5–4–70 1 5.5 9.9 0.8 4.5 0 3.8
0.5–6–30 14 10.6 21 14.2 9.6 12.8 15.8
0.5–6–50 8.2 1.9 14.9 8.3 3.6 6.8 8.9
0.5–6–70 8.9 2.9 15.9 9.4 5 8 10.6
Average 8.3 8.8 12.7 8.3 10.7 7.7 8.8

The percent discrepancy is defined to be the absolute value of ((FTheor. − FExp.)/FExp.) × 100%

According to Table 5, the best criterion from the viewpoint of accuracy is the Key-MS criterion with the
experimentally obtained critical distance. Although such a criterion is shown to be the most accurate fracture
model, it is very important to note that Key-MS criterion has relatively heavy numerical calculations and
additionally requires an experimentally obtained input for its prediction which can apparently be realized
as a weak point. Meanwhile, such a weak point exists for the Key-MTS criterion with the experimentally
obtained critical distance. While the accuracies of ASED and ASED-EFC criteria are very good and close to
those of Key-MTS and Key-MS criteria with experimentally obtained critical distances, they have generally
two advantages compared with the stress-based criteria: (i) they have better accuracies than the Key-MTS
and Key-MS criteria with theoretical critical distances, and (ii) they have less calculations compared with the
two stress-based criteria with the experimentally obtained critical distances. However, the authors believe that
XFEM-CZM model is an excellent approach due to its high accuracy plus low calculations. Trivially, each of
the mentioned models has some advantages and disadvantages. Therefore, they have been frequently applied
to various experimental results (in some works to the same experimental results) in order to evaluate them and
realize their strong and weak points. Consequently, existence of a suitable model for fracture predictions does
not necessarily mean that other models should not be developed and evaluated.

To propose the pluralization of above-discussed points, it can be stated that in cases that designers are
needed by simple calculations and additionally satisfied by relatively lower accuracies, the Key-MTS and
Key-MS criteria regarding the theoretical critical distances may be preferred, while in the cases that designers
need just high accuracies, the Key-MTS and Key-MS criteria with the experimentally obtained critical dis-
tances can be utilized. Additionally, it is very important to note that the ASED and ASED-EFC criteria are
more appropriate for designers who need relatively simple calculations with acceptable accuracies. Among the
mentioned criteria, XFEM-CZMapproach is superior because it has simultaneously high accuracy and low cal-
culations. The main strong point of XFEM-CZM approach is its ability in estimating rapidly and conveniently
the crack trajectory of the brittle components containing key-hole notches, e.g., the Key-BD GPPS specimens
studied in the present research. In the next subsection, the crack trajectory for some of the tested Key-BD
GPPS specimens is investigated experimentally and theoretically by means of the XFEM-CZM approach and
the incremental method based on the MTS criterion.
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Fig. 19 Combined compressive shear crack trajectories of Key-BD specimens for the XFEM-CZM approach and incremental
method together with the experimental results

5.2 Crack trajectory prediction

Figure 19 illustrates the predicted results of the crack trajectory obtained by using the two theoretical models
previously proposed in Sect. 3, namely XFEM based on the linear cohesive zone model (XFEM-CZM) and the
incremental method based on MTS criterion, for some arbitrarily selected Key-BD GPPS specimens together
with the experimental results. As seen in Fig. 19, both models are in good agreements with the experimen-
tal results under various compressive shear loading conditions. Although the incremental method has high
accuracy and works well in predicting the crack trajectory for the tested specimens, it needs several steps and
many iterations in mesh processing for the predictions that make this method rather time-consuming compared
with XFEM. Therefore, XFEM-CZMmodel is the best approach to predict the crack trajectory of the notched
brittle components from the viewpoint of real engineering applications. Also, it can be generally mentioned
that both FEM-MTS (i.e., incremental method based on MTS criterion) and XFEM-CZM approaches could
predict the crack trajectory of the tested specimens well with a bit less or more accuracy. However, FEM-
MTS approach has much more computational time than XFEM-CZM approach. In other words, by utilizing
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Table 6 The theoretical and experimental fracture initiation angles of Key-BD specimens (θ0) together with the discrepancies
for the Key-MTS criterion and XFEM-CZM approach

RNL−ρ−β ϑ0,Exp.(
◦) ϑ0,Key−MTS (◦) Discrepancy (%) ϑ0,XFEM (◦) Discrepancy (%)

0.3–1–30 51 54 5.9 54 5.9
0.3–1–50 72 79 9.7 77 6.9
0.3–1–70 97 94 3.1 93 4.1
0.3–2–30 39 46 18 47 21
0.3–2–50 70 73 4.3 74 5.7
0.3–2–70 103 91 12 92 11
0.3–4–30 36 40 11 41 14
0.3–4–50 67 66 1.5 66 1.5
0.3–4–70 93 88 5.4 88 5.4
0.5–1–30 61 66 8.2 66 8.2
0.5–1–50 91 84 7.7 84 7.7
0.5–1–70 105 98 6.7 98 6.7
0.5–2–30 62 60 3.2 61 1.6
0.5–2–50 76 83 9.2 82 7.9
0.5–2–70 109 96 12 95 13
0.5–4–30 54 52 3.7 51 5.6
0.5–4–50 83 78 6 78 6
0.5–4–70 102 95 6.9 94 7.8
0.5–6–30 44 47 6.8 47 6.8
0.5–6–50 72 73 1.4 72 0
0.5–6–70 78 93 19 93 19
Average discrepancies 7.7 – 7.9

XFEM-CZM approach, one can simply and accurately predict the crack trajectory of each notched specimen
with reasonable computational time, while FEM-MTS approach with much computational time may not be
preferred in real engineering applications. A computer with 1.6 GHz 4 CPUs processor, hard drive capacity of
1 TB and 4.0 GB RAM is provided to run the simulation of the notched specimens. For example, if 30 steps are
considered in the incremental method based on the MTS criterion, the computational time is obtained equal to
about 100 minutes, while the computational time of XFEM-CZM approach in our system is about 10 minutes.
In fact, unlike XFEM-CZM approach in which the computer can perform all steps of numerical analysis in
predicting the crack trajectory without any intervention of operator, for applying the incremental method to
our numerical prediction, the operator should perform all steps of the numerical FE analysis. Therefore, the
FEM-MTS approach is very time-consuming.

A question may be raised that if brittle fracture initiates always from the tensile side of the notch border
regardless of existing negative or positive mode I contributions.What is the motivation behind studying espe-
cially crack growth in the Key-BD specimen under mixed mode I/II loading in the domain of negative mode I
contributions? A detailed answer to this important question is provided in the next paragraph.

There are many cases in real engineering applications for which notched structural components sustain
compressive stresses at some of the points on the notch border, including the notch tip. Although tensile mode I
failure in notched members is much more serious than compressive one, the failure under compression loading
should also be studied to assure the safety of the whole structure. Moreover, the key-hole notch is a kind of
notch with widespread engineering applications; particularly, it is created where U-notched components and
structures encounter damage at the notch border for which the damage is removed by the hole-drilling method
and a key-hole notch is formed as a result of the damage removal. Hence, the authors studied the fracture
load and crack trajectories of the tested key-hole notched specimens subjected to mixed mode I/II loading
with negative mode I contributions by means of the two fracture models, namely the XFEM in combination
with the cohesive zone model and the incremental method based on Key-MTS criterion. Finally, it is found
that XFEM-CZMmodel is a suitable approach for predicting crack trajectory of the tested notched specimens
because of its low computational time.

In the next subsection, the fracture initiation angles for all of the tested Key-BD GPPS specimens are
theoretically predicted by means of XFEM-CZM approach.
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5.3 Fracture initiation angle prediction

The fracture initiation angles for all of the testedKey-BD specimens are predicted herein by usingXFEM-CZM
approach and the corresponding values are compared with the predicted values obtained from the Key-MTS
criterion [42] and with the average experimental values measured from the fracture tests. These results together
with the discrepancies between the experimental and theoretical results are summarized in Table 6.

The capability of the Key-MTS criterion in predicting the fracture initiation angle of Key-BD GPPS spec-
imens under combined compressive shear loading conditions has been recently shown by Torabi et al. [42],
and in this subsection, the capability of XFEM-CZM approach is evaluated. As can be seen in Table 6, a good
agreement exists between the experimental results and theoretical predictions of theXFEM-CZMapproach. An
average discrepancy of about 8% for the whole Key-BDGPPS specimens indicates that XFEM-CZM approach
is successful in predicting the fracture initiation angle of the key-hole notches under mixed mode I/II loading
with negative mode I contributions. As is obvious, both of the mentioned models (i.e., XFEM-CZM approach
and theKey-MTS criterion) are able to predict verywell the fracture initiation angles of theKey-BD specimens.
At the end, it is worth noting that XFEM-CZM approach can be considered for designing key-hole notched
members against brittle fracture and also maintenance and repair purposes in which the fracture initiation angle
and crack trajectory are very important parameters. By using XFEM-CZM approach, one can predict the frac-
ture load, fracture initiation angle and crack trajectory simultaneously, making the approach more interesting
and convenient for designers and engineers, since theywould not needmore thanonemodel for suchpredictions.

6 Conclusions

In the present research, mixed mode I/II brittle fracture with negative mode I contributions was investigated
in key-hole notched specimens. The experimental results were taken from the recent literature on the Key-
BD specimens made of GPPS. The experimentally obtained fracture loads and fracture initiation angles were
predicted by means of the extended finite element method (XFEM) combined with the cohesive zone model
(CZM).Moreover, the crack trajectory of the Key-BD specimens was predicted bymeans of the two theoretical
models, namely the XFEM-CZM approach and the incremental method based on the MTS criterion. Although
the incremental method was revealed to be successful in predicting the crack trajectory for the Key-BD speci-
mens, it needs several iterations with several re-meshing stages to reach the full prediction. Therefore, in cases
that designers are urged to perform simple and rapid calculations with good accuracy, XFEM approach may
be preferred. Finally, it can be stated that the predictions of the XFEM-CZM approach are very nice for the
fracture load, crack trajectory and fracture initiation angle because of its high accuracy and low amount of
numerical calculations.
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